重金属污染区秋季浮游植物群落特征及其与环境因子的关系

宋高飞, 朱宇轩, Anila P. Ajayan, 杨丽华, 贾云璐, 姜传奇, 毕永红

宋高飞, 朱宇轩, Anila P. Ajayan, 杨丽华, 贾云璐, 姜传奇, 毕永红. 重金属污染区秋季浮游植物群落特征及其与环境因子的关系[J]. 水生生物学报, 2021, 45(5): 1082-1092. DOI: 10.7541/2021.2020.138
引用本文: 宋高飞, 朱宇轩, Anila P. Ajayan, 杨丽华, 贾云璐, 姜传奇, 毕永红. 重金属污染区秋季浮游植物群落特征及其与环境因子的关系[J]. 水生生物学报, 2021, 45(5): 1082-1092. DOI: 10.7541/2021.2020.138
SONG Gao-Fei, ZHU Yu-Xuan, Anila P. Ajayan, YANG Li-Hua, JIA Yun-Lu, JIANG Chuan-Qi, BI Yong-Hong. THE COMMUNITY STRUCTURE OF PHYTOPLANKTON AND ITS RELATIONSHIPS WITH ENVIRONMENTAL FACTORS OF HEAVY METAL POLLUTION DISTRICTS IN AUTUMN[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(5): 1082-1092. DOI: 10.7541/2021.2020.138
Citation: SONG Gao-Fei, ZHU Yu-Xuan, Anila P. Ajayan, YANG Li-Hua, JIA Yun-Lu, JIANG Chuan-Qi, BI Yong-Hong. THE COMMUNITY STRUCTURE OF PHYTOPLANKTON AND ITS RELATIONSHIPS WITH ENVIRONMENTAL FACTORS OF HEAVY METAL POLLUTION DISTRICTS IN AUTUMN[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(5): 1082-1092. DOI: 10.7541/2021.2020.138

重金属污染区秋季浮游植物群落特征及其与环境因子的关系

基金项目: 国家重点研发计划(2020YFA0907402); 中国博士后科学基金面上基金(2016M602394)资助
详细信息
    作者简介:

    宋高飞(1985—), 女, 博士; 研究方向为水域生态学。E-mail: song@ihb.ac.cn

    通信作者:

    毕永红(1974—), 男, 博士, 研究员; 研究方向为水域生态学。E-mail: biyh@ihb.ac.cn

  • 中图分类号: Q145

THE COMMUNITY STRUCTURE OF PHYTOPLANKTON AND ITS RELATIONSHIPS WITH ENVIRONMENTAL FACTORS OF HEAVY METAL POLLUTION DISTRICTS IN AUTUMN

Funds: Supported by the National Key Research and Development Project (2020YFA0907402); the Postdoctoral Science Foundation of China (2016M602394)
    Corresponding author:
  • 摘要: 为探究重金属污染区秋季浮游植物群落特征及其影响因子, 2019年11月对攸县和万山不同类型水体进行了采样调查, 共检出浮游植物7门52属67种, 结果显示不同类型水体间浮游植物群落结构差异不显著(R= –0.022, P=0.549), 攸县和万山浮游植物群落结构存在差异(R=0.152, P=0.083); 但均以绿藻、硅藻和蓝藻为主; 细胞密度变化范围为1.11×104—1.17×107 cells/L; 物种数分别为10—31种和6—18种, Shannon-Wiener 多样性指数分别为2.28—3.29和0.482—2.401, 均匀性指数分别为0.979—0.996和0.244—0.742, 两地的多样性指数存在显著差异(P<0.05)。Pearson相关性分析显示: 浮游植物细胞密度与CODMn、TOC、ORP呈显著正相关, 与Cr、Se、Ba、V呈显著负相关; Mantel test显示CODMn、WT、pH、TC、IC、${\rm{PO}}_4^{3 - }$-P及Co、Ni、Zn、Cd和Pb是影响浮游植物群落的关键因子; CCA分析显示常规理化因子对攸县和万山浮游植物群落的影响大于重金属。研究表明, 重金属污染区水体浮游植物群落结构存在显著的地域差异, 重金属离子含量及常规理化因子对群落结构特征均存在显著的影响。
    Abstract: To study the community structure of phytoplankton in different aquatic bodies polluted by heavy metals and its relationships with environmental factors, field surveys were conducted in Youxian County and Wanshan District in November 2019. A total of 67 phytoplankton species were identified, belonging to 7 phyla and 52 genera. The community structure of phytoplankton has no remarkable difference between different water types (R=–0.022, P=0.549), but the two study areas were different (R=0.152, P=0.083). The communities were dominated by Chlorophyta, Bacillariophyta, and Cyanophyta. The phytoplankton abundance ranged from 1.11×104 to 1.17×107. The species richness of the phytoplankton community was 10—31 in Youxian County and 6—18 in Wanshan District, the Shannon-Wiener index of the phytoplankton community was 2.28—3.29 in Youxian County and 0.482—2.401 in Wanshan District, the evenness index of the phytoplankton community was 0.979—0.996 in Youxian County and 0.244—0.742 in Wanshan District. These three indices showed significant differences in different districts (P<0.05). Pearson correlation analysis indicated that CODMn, TOC and ORP were significantly positively correlated with phytoplankton abundance, and Cr, Se, Ba and V were significantly negatively correlated with phytoplankton abundance. Mantel test analysis indicated that CODMn, WT, pH, TC, IC, ${\rm{PO}}_4^{3 - }$-P and Co, Ni, Zn, Cd, and Pb were the key factors that explain the phytoplankton community structure. The canonical correlation analysis indicated that the changes in the phytoplankton community were more related to routine physics and chemistry index than to heavy metals. There were significant differences in phytoplankton community structure in heavy metal polluted areas, and heavy metal ion content and routine physics and chemistry index had significant influences on the community structure. These results provide a research basis for isolating heavy metal tolerant algal strains and carrying out subsequent transformation. Meanwhile, the research is of great significance to the management and protection of water ecosystem.
  • 图  1   采样点位图 (A. 攸县; B. 万山)

    Figure  1.   Distribution of the sampling sites (A. Youxian County; B. Wanshan District)

    图  2   浮游植物群落特征

    A. 攸县浮游植物物种数组成; B. 万山浮游植物物种数组成; C. 攸县和万山各样点浮游植物相对丰度与叶绿素a含量

    Figure  2.   Phytoplankton community characteristics

    A. Species composition in Youxian County; B. Species composition in Wanshan District; C. The proportions of phytoplankton and Chl.a concentrations in each sampling site

    图  3   不同采样位点浮游植物物种组成的Upset图(实心圆表示该样点用于统计物种数目)

    Figure  3.   The upset diagram showing the number of shared and specific phytoplankton in each sampling site (The solid circle represents the point used to conduct analysis of species numbers statistics)

    图  4   浮游植物群落结构ANOSIM分析(A. 采样区域; B. 不同水体类型)

    Figure  4.   Analysis of similarities (ANOSIM) of the phytoplankton community structure between Youxian County and Wanshan district (A) and Different water type (B)

    图  5   浮游植物群落组成的环境驱动因素

    Mantel’s p表示Mantel test的相关关系的检测水平; Mantel’s r表示Mantel test的相关系数; corr表示Pearson相关系数

    Figure  5.   Environmental drivers of phytoplankton community composition

    Pairwise comparison of environmental factors were shown with a color gradient denoting Pearson’s correlation coefficients. Phytoplankton community composition was related to each environmental factor by partial Mantel tests

    图  6   各采样位点物种矩阵与环境因子矩阵的CCA分析

    A. 采样位点聚类; B. CCA1轴与环境因子的关系

    Figure  6.   Biplot diagram for CCA on the relationship between environmental variables and phytoplankton community composition

    A. the similarity of sample. B. the relationship between CCA1 and environmental factors

    表  1   攸县和万山两地浮游植物优势种及优势度

    Table  1   Dominant species of phytoplankton in Youxian County and Wanshan District


    Phylum
    属种
    Species
    拉丁名
    Latin name
    优势度
    Dominance
    攸县万山
    蓝藻微小平裂藻Merismopedia tenuissima0.03
    假鱼腥Pseudoanabaena sp.0.15
    细鞘丝藻Leptolyngbya sp.0.15
    硅藻舟形藻Navicula sp.0.02
    菱形藻Nitzschia sp.0.03
    绿藻衣藻Chlamydomonas sp.0.02
    隐藻隐藻Cryptomonas sp.0.030.03
    甲藻二叉角藻Ceratium furcoides0.03
    金藻锥囊藻Dinobryon sp.0.02
    下载: 导出CSV

    表  2   攸县各样点浮游植物多样性指数

    Table  2   The phytoplankton diversity index in Youxian County

    指标IndexYX1YX2YX3YX4YX5YX6
    物种丰富度D253116141027
    香农-威纳指数H′3.2063.4302.7682.6282.2823.290
    均匀性指数J0.9870.9960.9950.9890.9790.994
    下载: 导出CSV

    表  3   万山各样点浮游植物多样性指数

    Table  3   The phytoplankton diversity index in Wanshan District

    指标IndexWS1WS2WS3WS4WS5WS6WS7WS8WS9
    物种丰富度D1514177610141318
    香农-威纳指数H′1.6052.2331.4211.3170.4821.9631.4382.2672.401
    均匀性指数J0.3320.6660.2440.5330.2700.7120.3010.7420.613
    下载: 导出CSV

    表  4   攸县和万山重金属含量状况

    Table  4   Means (minimum-maximum) of heavy metal elements content in Youxian County and Wanshan District

    重金属含量Content of heavy
    metal elements (μg/L)
    攸县Youxian County万山Wanshan DistrictdfP
    平均值AVG最大值Max最小值Min平均值AVG最大值Max最小值Min
    Cd 111 1.434 4.189 0.025 0.018 0.055 0.003 1.5800.231
    Cr 52 2.614 2.928 2.323 8.158 21.761 3.107 4.7260.049
    Mn 55796.3314652.234 0.082 25.748169.649 0.114 1.5550.234
    Fe 57241.882 816.575 85.542212.187308.844106.823 0.0930.765
    Co 59 13.944 80.809 0.048 0.176 0.253 0.077 1.6530.221
    Ni 60 29.906 161.710 1.535 3.671 5.382 1.746 1.5420.236
    Cu 63 7.978 37.702 0.929 1.674 2.211 1.018 1.7480.209
    Zn 66 81.926 475.322 0.650 1.287 1.984 0.527 1.6380.223
    As 75 0.652 1.202 0.226 1.874 4.345 0.495 4.5550.052
    Se 82 0.679 0.963 0.492 22.897 60.258 1.077 4.0770.065
    Sr 88412.2591315.375137.471153.930225.770 72.637 2.9690.109
    Ba 138 14.925 26.260 6.061 85.879128.572 33.33828.8990.000
    Pb 208 1.453 2.898 0.008 0.027 0.033 0.021 1.5310.238
    V 51 0.260 0.420 0.097 1.434 3.584 0.358 4.7770.048
    Bi 209
    U 238 1.498 7.299 0.117 1.439 2.627 0.454 0.0040.952
    Rb 85 3.066 4.781 0.755 4.995 12.513 0.745 0.9720.342
    Hg
    下载: 导出CSV

    表  5   攸县和万山常规理化因子状况

    Table  5   Means (minimum-maximum) of routine physics and chemistry index in Youxian County and Wanshan District

    理化因子Physics and
    chemistry index
    攸县Youxian County万山Wanshan DistrictdfP
    平均值AVG最大值Max最小值Min平均值AVG最大值Max最小值Min
    TN (mg/L) 1.63 2.01 1.27 6.48 18.67 1.28 2.9710.108
    ${\rm{NO}}_3^ - $-N (mg/L) 0.75 1.56 0.18 5.21 13.40 0.00 3.7050.076
    ${\rm{NH}}_4^ + $-N (mg/L) 0.09 0.19 0.02 0.29 1.35 0.03 1.0220.330
    TP (mg/L) 0.03 0.07 0.01 0.08 0.24 0.01 1.9770.183
    ${\rm{PO}}_4^{3 - }$-P (mg/L) 0.01 0.02 0.01 0.03 0.10 0.00 1.4040.257
    CODMn (mg/L) 2.46 5.51 0.73 1.13 3.43 0.23 3.1080.101
    Chl. a (μg/L) 3.56 8.62 0.27 9.59 71.96 0.28 0.3810.548
    WT (℃) 20.45 22.10 18.10 10.17 12.00 5.10116.4050.000
    DO (mg/L) 8.08 11.00 2.50 10.20 12.90 6.80 3.2260.096
    SPC (μS/cm)395.05946.00121.10634.021247.00282.80 1.1720.213
    pH 7.23 8.32 3.86 7.96 8.87 7.71 1.5540.234
    ORP (mV)192.93484.50 41.90100.43 192.30 43.50 3.0020.107
    TC (mg/L) 18.74 28.79 1.20 31.33 47.61 9.49 3.8880.070
    IC (mg/L) 17.49 24.86 2.87 29.82 45.16 11.77 5.1500.041
    TOC (mg/L) 1.81 5.70 0.00 1.81 8.12 0.00 0.0000.999
    下载: 导出CSV

    表  6   浮游植物丰度与环境因子的Pearson相关性分析

    Table  6   Pearson correlation coefficients between phytoplankton abundance and environmental factors

    环境因子Environmental factor蓝藻Cyanophyta硅藻Bacillariophyta绿藻Chlorophyta甲藻Pyrroptata隐藻Cryptophyta裸藻Euglenophyta金藻Chrysophyta总计
    Total
    ${\rm{NO}}_3^ - $-N–0.333–0.513–0.257–0.414–0.492–0.692**0.014–0.453
    ${\rm{NH}}_4^ + $-N–0.517*–0.0640.1340.041–0.184–0.334–0.071–0.166
    CODMn0.4470.535*0.613*0.4340.4770.539*–0.1240.585*
    ORP0.3780.3540.4230.1400.3660.591*–0.0890.418
    TOC0.2910.0870.1460.572*0.3040.285–0.0850.289
    Cr–0.774**–0.244–0.216–0.142–0.477–0.398–0.227–0.406
    Se–0.664**–0.312–0.274–0.329–0.481–0.640*–0.322–0.498
    Ba–0.597*–0.194–0.3310.203–0.142–0.1390.067–0.167
    V–0.515*–0.259–0.108–0.350–0.546*–0.448–0.300–0.356
    注: *. 相关关系在0.05水平(双尾检测), **. 相关关系在0.01水平(双尾检测)Note: *. Correlation is significant at the 0.05 level (2-tailed), **. Correlation is significant at the 0.01 level (2-tailed)
    下载: 导出CSV
  • [1]

    Richardson T L. Mechanisms and pathways of small-phytoplankton export from the surface ocean [J]. Annual Review of Marine Science, 2019, 11(1): 57-74. doi: 10.1146/annurev-marine-121916-063627

    [2]

    Hulyal S B, Kaliwal B B. Dynamics of phytoplankton in relation to physico-chemical factors of Almatti Reservoir of Bijapur District, Karnataka State [J]. Environmental Monitoring and Assessment, 2009, 153(1-4): 45-59. doi: 10.1007/s10661-008-0335-1

    [3]

    Schagerl M, Bloch I, Angeler D G, et al. The use of urban clay-pit ponds for human recreation: assessment of impacts on water quality and phytoplankton assemblages [J]. Environmental Monitoring and Assessment, 2010, 165(1-4): 283-293. doi: 10.1007/s10661-009-0945-2

    [4]

    Zhang M, Shi X, Yang Z, et al. Long-term dynamics and drivers of phytoplankton biomass in eutrophic Lake Taihu [J]. Science of The Total Environment, 2018(645): 876-886.

    [5]

    Becker V, Caputo L, Ordóñez J, et al. Driving factors of the phytoplankton functional groups in a deep Mediterranean Reservoir [J]. Water Research, 2010, 44(11): 3345-3354. doi: 10.1016/j.watres.2010.03.018

    [6]

    Vogt R J, Sharma S, Leavitt P R. Decadal regulation of phytoplankton abundance and water clarity in a large continental reservoir by climatic, hydrologic and trophic processes [J]. Journal of Great Lakes Research, 2015(41): 81-90.

    [7] 王颖雪, 王沛芳, 王超, 等. 太湖浮游植物中重金属含量的季节变化特征及湖区差异 [J]. 湖泊科学, 2015, 27(2): 258-265. doi: 10.18307/2015.0209

    Wang Y X, Wang P F, Wang C, et al. Seasonal variation and distribution characteristics of heavy metals in phytoplankton of different parts of Lake Taihu [J]. Journal of Lake Sciences, 2015, 27(2): 258-265. doi: 10.18307/2015.0209

    [8] 高玉荣, 许木启. 乐安江重金属污染对浮游植物群落结构的影响 [J]. 应用与环境生物学报, 1996(2): 175-183. doi: 10.3321/j.issn:1006-687X.1996.02.001

    Gao Y R, Xu M Q. A study on the effect of heavy mental pollution on phytoplankton community structure [J]. Chinese Journal Apply Environment Biology, 1996(2): 175-183. doi: 10.3321/j.issn:1006-687X.1996.02.001

    [9] 徐永梅. 阳宗海砷浓度与浮游植物的变化分析 [J]. 环境科学导刊, 2013, 32(5): 62-64. doi: 10.3969/j.issn.1673-9655.2013.05.017

    Xu Y M. Arsenic concentration and phytoplankton change in Lake Yangzong [J]. Environmental Science Survey, 2013, 32(5): 62-64. doi: 10.3969/j.issn.1673-9655.2013.05.017

    [10]

    Sainz A, Grande J A, de la Torre M L. Characterization of heavy metal discharge into the Ria of Huelva [J]. Environment International, 2004, 30(4): 557-566. doi: 10.1016/j.envint.2003.10.013

    [11]

    Borrego J M M D. Geochemical characteristics of heavy metal pollution in surface sediments of the Tinto and Odiel river estuary (southwestern Spain) [J]. Environmental Geology, 2002, 41(7): 785-796. doi: 10.1007/s00254-001-0445-3

    [12] 张敏, 王美娥, 陈卫平, 等. 湖南攸县典型煤矿和工厂区水稻田土壤镉污染特征及污染途径分析 [J]. 环境科学, 2015, 36(4): 1425-1430.

    Zhang M, Wang M E, Chen W P, et al. Characteristics and inputs of Cd contamination in paddy soils in typical mining and industrial areas in Youxian County, Hunan Province [J]. Environmental Science, 2015, 36(4): 1425-1430.

    [13] 丁振华, 王文华, 瞿丽雅, 等. 贵州万山汞矿区汞的环境污染及对生态系统的影响 [J]. 环境科学, 2004(2): 111-114. doi: 10.3321/j.issn:0250-3301.2004.02.023

    Ding Z H, Wang W H, Qu L Y, et al. Mercury pollution and its ecosystem effects in Wanshan mercury miner area, Guizhou [J]. Environmental Science, 2004(2): 111-114. doi: 10.3321/j.issn:0250-3301.2004.02.023

    [14] 张敏. 湖南攸县水稻田土壤镉污染评估与控制 [D]. 太原: 山西大学, 2015: 8-11.

    Zhang M. Assessment and control of Cd polluted paddy soils in Youxian, Hunan Province [D]. Taiyuan: Shanxi University, 2015: 8-11.

    [15] 常慧. 贵州省典型污染区镉的空间分布和来源识别 [D]. 北京: 中国地质大学, 2019: 1-57.

    Chang H. Spatial Distribution and source identification of cadmium in typical polluted areas of Guizhou Province: A case study of Wanshan mercury mine [D]. Beijing: China University of Geosciences, 2019: 1-57.

    [16] 苟体忠, 阮运飞. 万山汞矿区土壤重金属污染特征及来源解析 [J]. 化工环保, 2020, 40(3): 1-7.

    Gou T Z, Ruan Y F. Characteristics and source of heavy metals in contaminated soil in Wanshan mercury mine area [J]. Environmental Protection of Chemical Industry, 2020, 40(3): 1-7.

    [17] 胡国成, 张丽娟, 齐剑英, 等. 贵州万山汞矿周边土壤重金属污染特征及风险评价 [J]. 生态环境学报, 2015, 24(5): 879-885.

    Hu G C, Zhang L J, Qi J Y, et al. Contaminant characteristics and risk assessment of heavy metals in soils from Wanshan Mercury Mine Area, Guizhou Province [J]. Ecology and Environmental Sciences, 2015, 24(5): 879-885.

    [18] 章宗涉, 黄祥飞. 淡水浮游生物研究方法 [M]. 北京: 北京出版社, 1991: 333-362.

    Zhang Z S, Huang X F. Research Methods of Freshwater Plankton [M]. Beijing: Beijing Press, 1991: 333-362.

    [19] 胡鸿钧, 魏印心. 中国淡水藻类-系统, 分类及生态 [M]. 北京: 科学出版社, 2006: 1-1023.

    Hu H J, Wei Y X. The Freshwater Algae of China: Systematics, Taxonomy and Ecology [M]. Beijing: Science Press, 2006: 1-1023.

    [20]

    Hammer O, Harper D A T, Ryan P D. PAST: paleontological statistics software package for education and data analysis [J]. Palaeontologia Electronica, 2001, 1(4): 9.

    [21] 董雅欠, 赵文, 季世琛, 等. 北京潮白河水系浮游动物群落结构特征及水质评价 [J]. 大连海洋大学学报, 2020, 35(3): 424-431.

    Dong Y Q, Zhao W, Ji S C, et al. Community structure of zooplankton and water quality evaluation in Chaobai River system in Beijing [J]. Journal of Dalian Ocean University, 2020, 35(3): 424-431.

    [22] 郝媛媛, 孙国钧, 张立勋, 等. 黑河流域浮游植物群落特征与环境因子的关系 [J]. 湖泊科学, 2014, 26(1): 121-130. doi: 10.18307/2014.0115

    Hao Y Y, Sun G J, Zhang L X, et al. Relationship between community characteristics of the phytoplankton and environmental factors in Heihe River basin [J]. Journal of Lake Sciences, 2014, 26(1): 121-130. doi: 10.18307/2014.0115

    [23] 陈倩. 贵州高原水库浮游植物对金属的富集与水体富营养化关系研究 [D]. 贵阳: 贵州师范大学, 2019: 3-48.

    Chen Q. Study on the relationship between metal enrichment and eutrophication of phytoplankton from in Guizhou Plateau Reservoir [D]. Guiyang: Guizhou Normal University, 2019: 3-48.

    [24] 王丽, 魏伟, 周平, 等. 铜陵市河流冬季浮游植物群落结构及其与环境因子的关系 [J]. 应用生态学报, 2013, 24(1): 243-250.

    Wang L, Wei W, Zhou P, et al. Phytoplankton’s community structure and its relationships with environmental factors in the rivers of Tongling City, Anhui Province of East China in winter [J]. Chinese Journal of Applied Ecology, 2013, 24(1): 243-250.

    [25] 龚川, 贡丹丹, 刘德富, 等. 不同光照强度下香溪河浮游植物演替过程研究 [J]. 环境科学研究, 2020, 33(5): 1214-1224.

    Gong C, Gong D D, Liu D F, et al. Phytoplankton succession process in Xiangxi River under different light intensity [J]. Research of Environmental Science, 2020, 33(5): 1214-1224.

    [26] 朱永锋, 琚珊珊, 蔡庆华, 等. 三峡水库春季浮游植物群落特征及影响因素 [J]. 长江流域资源与环境, 2019, 28(12): 2893-2900.

    Zhu Y F, Ju S S, Cai Q H, et al. Community characteristics of the spring phytoplankton in the Three Gorges Reservoir and the influencing factors [J]. Resources and Environment in the Yangtze Basin, 2019, 28(12): 2893-2900.

    [27]

    Li J, Zhang J, Huang W, et al. Comparative bioavailability of ammonium, nitrate, nitrite and urea to typically harmful cyanobacterium Microcystis aeruginosa [J]. Marine Pollution Bulletin, 2016, 110(1): 93-98. doi: 10.1016/j.marpolbul.2016.06.077

    [28]

    Jankowiak J, Hattenrath Lehmann T, Kramer B J, et al. Deciphering the effects of nitrogen, phosphorus, and temperature on cyanobacterial bloom intensification, diversity, and toxicity in western Lake Erie [J]. Limnology and Oceanography, 2018, 64(3): 1347-1370.

    [29]

    Chen Q, Wang M, Zhang J, et al. Physiological effects of nitrate, ammonium, and urea on the growth and microcystins contamination of Microcystis aeruginosa: Implication for nitrogen mitigation [J]. Water Research, 2019(163): 114890.

    [30] 江源, 王博, 杨浩春, 等. 东江干流浮游植物群落结构特征及与水质的关系 [J]. 生态环境学报, 2011, 20(11): 1700-1705. doi: 10.3969/j.issn.1674-5906.2011.11.020

    Jiang Y, Wang B, Yang H C, et al. Community structure of phytoplankon and its relation with water quality in Dongjiang River [J]. Ecology and Environmental Sciences, 2011, 20(11): 1700-1705. doi: 10.3969/j.issn.1674-5906.2011.11.020

    [31] 沈韫芬, 龚循矩, 顾曼如. 用PFU原生动物群落进行生物监测的研究 [J]. 水生生物学报, 1985, 9(4): 299-308.

    Shen Y F, Gong X J, Gu M R. Studies of biological monitoring by using PFU protozoan community [J]. Acta Hydrobiologica Sinica, 1985, 9(4): 299-308.

    [32]

    Zhu J, Hong D D, Wakisaka M. Phytic Acid extracted from rice bran as a growth promoter for Euglena gracilis [J]. Open Chemistry, 2019, 17(1): 57-63. doi: 10.1515/chem-2019-0006

    [33] 刘祚屹, 綦世斌, 何宁, 等. 碳、氮、磷营养对7种海洋微藻种群增长的影响研究 [J]. 南方水产科学, 2020, 16(1): 87-97. doi: 10.12131/20190089

    Liu Z Y, Qi S B, He N, et al. Effects of nitrogen, phosphorus and carbon on growth of seven marine microalgae [J]. South China Fisheries Science, 2020, 16(1): 87-97. doi: 10.12131/20190089

    [34] 李璇, 周燕平, 夏琼琼, 等. 磷胁迫对藻类生长代谢的影响及藻类对胁迫响应机制的研究进展 [J]. 环境化学, 2020, 39(8): 2074-2083. doi: 10.7524/j.issn.0254-6108.2019060401

    Li X, Zhou Y P, Xia Q Q, et al. The impacts of phosphorus stress in the growth and metabolism of algae and its response mechanism [J]. Environmental Chemistry, 2020, 39(8): 2074-2083. doi: 10.7524/j.issn.0254-6108.2019060401

    [35] 刘永健. 东海原甲藻磷胁迫响应基因的分析及细胞死亡相关基因的克隆与分析 [D]. 青岛: 中国海洋大学, 2007: 1-97.

    Liu Y J. Cloning and gene expression analysis of phosphate -stress gene and cell-lysis gene of prorocentrum Donghaiense [D]. Qingdao: Ocean University of China, 2007: 1-97.

    [36] 陈开宁, 周万平, 鲍传和, 等. 浮游植物对湖泊水体生态重建的响应——以太湖五里湖大型围隔示范工程为例 [J]. 湖泊科学, 2007(4): 359-366. doi: 10.3321/j.issn:1003-5427.2007.04.002

    Chen K N, Zhou W P, Bao C H, et al. Response of phytoplankton to ecological restoration in eutrophic lakes: an experimental large enclosure in Wuli Lake, Lake Taihu [J]. Journal of Lake Science, 2007(4): 359-366. doi: 10.3321/j.issn:1003-5427.2007.04.002

    [37] 张宾, 章飞军, 郭远明, 等. 舟山渔场海域春夏季氮磷分布及其对浮游植物的限制 [J]. 浙江海洋学院学报(自然科学版), 2011, 30(3): 185-189.

    Zhang B, Zhang F J, Guo Y M, et al. Micronutrients distributions and their Limitation on phytoplankton in the Zhoushan fishery ground in spring and summer 2011 [J]. Journal of Zhejiang Ocean University (Natural Science), 2011, 30(3): 185-189.

    [38]

    Ueda K, Kobayashi M, Takahashi E. Effect of anionic heavy metals on ammonification and nitrification in soil [J]. Soil Science and Plant Nutrition, 1988, 34(1): 139-146. doi: 10.1080/00380768.1988.10415587

    [39]

    Sun C, Liu J, Wang Y, et al. Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China [J]. Chemosphere, 2013, 92(5): 517-523. doi: 10.1016/j.chemosphere.2013.02.063

    [40]

    Akaloud P, Lukešová A, Malavasi V, et al. Molecular evidence for the polyphyletic origin of low pH adaptation in the genus Klebsormidium (Klebsormidiophyceae, Streptophyta) [J]. Plant Ecology and Evolution, 2014, 147(3): 333-345. doi: 10.5091/plecevo.2014.989

图(6)  /  表(6)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-09
  • 修回日期:  2020-12-26
  • 网络出版日期:  2021-05-25
  • 发布日期:  2021-09-08

目录

    /

    返回文章
    返回