鄱阳湖不同水文期浮游生物群落结构特征和影响因素及水质评价

杨潇, 马吉顺, 张欢, 周琼

杨潇, 马吉顺, 张欢, 周琼. 鄱阳湖不同水文期浮游生物群落结构特征和影响因素及水质评价[J]. 水生生物学报, 2021, 45(5): 1093-1103. DOI: 10.7541/2021.2020.148
引用本文: 杨潇, 马吉顺, 张欢, 周琼. 鄱阳湖不同水文期浮游生物群落结构特征和影响因素及水质评价[J]. 水生生物学报, 2021, 45(5): 1093-1103. DOI: 10.7541/2021.2020.148
YANG Xiao, MA Ji-Shun, ZHANG Huan, ZHOU Qiong. COMMUNITY STRUCTURE AND THE WATER QUALITY DURING DIFFERENT HYDROLOGICAL PERIODS IN POYANG LAKE[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(5): 1093-1103. DOI: 10.7541/2021.2020.148
Citation: YANG Xiao, MA Ji-Shun, ZHANG Huan, ZHOU Qiong. COMMUNITY STRUCTURE AND THE WATER QUALITY DURING DIFFERENT HYDROLOGICAL PERIODS IN POYANG LAKE[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(5): 1093-1103. DOI: 10.7541/2021.2020.148

鄱阳湖不同水文期浮游生物群落结构特征和影响因素及水质评价

基金项目: 国家自然科学基金面上项目(31670459); 国家自然科学基金(31700403)资助
详细信息
    作者简介:

    杨潇(1996—), 女, 硕士; 主要从事渔业资源与环境研究。E-mail: 504297705@qq.com

    通信作者:

    周琼(1978—), 男, 博士, 教授; 主要从事渔业资源与环境研究。E-mail: hainan@mail.hzau.edu.cn

  • 中图分类号: Q145

COMMUNITY STRUCTURE AND THE WATER QUALITY DURING DIFFERENT HYDROLOGICAL PERIODS IN POYANG LAKE

Funds: Supported by the General Project of National Natural Science Foundation of China (31670459)
    Corresponding author:
  • 摘要: 为阐明鄱阳湖不同水文期浮游生物群落结构特征及其影响因素, 研究于2017年8月(丰水期)和12月(枯水期)在鄱阳湖湖区典型水域设置5个采样点进行浮游生物采样调查。研究期间共鉴定浮游植物8门75属186种, 丰水期与枯水期均以硅藻门和绿藻门为主。共鉴定浮游动物4类76种, 丰水期与枯水期均以原生动物和轮虫为主。方差分析显示: 浮游植物密度与生物量在不同水文期之间的差异均为极显著(P<0.01), 浮游动物丰水期密度高于枯水期, 但无显著差异(P>0.05), 浮游动物生物量(P<0.05)在不同水文期差异显著。冗余分析(RDA)显示: 丰水期透明度和浮游生物呈显著负相关关系, 电导率和浮游生物呈显著正相关。透明度、电导率与营养盐是影响丰水期浮游生物群落结构的主要环境因素, 枯水期水温和溶解氧是驱动鄱阳湖浮游生物群落生态分布的主要环境因素。基于Shannon-Wiener(H′)、Margalef(d)和Pielou(J)等生物多样性指数的水质评价结果表明: 鄱阳湖研究区域水质状态处于寡污-中污之间。研究揭示了2个水文期对通江湖泊浮游生物的影响: 季节变化不改变湖泊浮游生物的物种组成及优势种, 但显著影响浮游生物的丰度及多样性。
    Abstract: Poyang Lake is a large Yangtze-connected lake in the middle and lower reaches of the Yangtze River and its water level fluctuates periodically with the hydrological rhythm. In order to clarify the characteristics and influencing factors of plankton community structure during different hydrological periods, the survey on plankton structure was conducted at five typical sampling sites of Poyang Lake in August (wet season) and December (dry season) of 2017. The results indicated that phytoplankton assemblage was composed of 186 species and 75 genera, belonging to 8 phylum. Bacillariophyta and Chlorophyta dominated in wet and dry seasons. Zooplankton was composed of 76 species, belonging to four taxonomic groups. Protozoa and Rotifers were dominant during wet and dry seasons. The density and biomass of phytoplankton were statistically significantly higher during wet season than those during dry season (P<0.01). The density of zooplankton in wet period was higher than that in dry water period, but there was no significant difference (P>0.05). The biomass of zooplankton (P<0.05) was significantly different in different hydrological periods. Redundancy analysis suggested that there was negative correlation between the plankton community structure and transparency. The conductivity showed a positive correlation with the plankton community structure. Transparency, conductivity and nutrient were key factors affecting the community structure of plankton during wet season, whereas water temperature and dissolved oxygen were key factors affecting the community structure of plankton during dry season. Based on the diversity indices of Shannon-wiener, Margalef and Pielou, the results showed that the water quality of Poyang Lake was at low-to-medium pollution level. Our findings revealed the impact of two hydrologic periods on the plankton of Yangtze-connected lakes. Seasonal change did not change the species composition and dominant species of plankton in Poyang Lake, but affected the abundance and diversity of plankton greatly.
  • 图  1   鄱阳湖采样位置及各采样点分布

    Figure  1.   The distribution of sampling sites of Poyang Lake

    图  2   不同水文期浮游植物(a)和浮游动物(b)的密度

    Figure  2.   The density of phytoplankton (a) and zooplankton (b) during different hydrologic periods

    图  3   不同水文期浮游植物(a)和浮游动物(b)生物量

    Figure  3.   The biomass of phytoplankton (a) and zooplankton (b) during different hydrologic periods

    图  4   丰水期浮游生物优势种与环境因子的RDA排序图

    “△”代表浮游植物, “○”代表浮游动物

    Figure  4.   RDA analysis of dominant plankton species and environmental factors during wet season

    Triangles and circles represent phytoplankton and zooplankton, respectively

    图  5   枯水期浮游生物优势种与环境因子RDA排序图

    “△”代表浮游植物, “○”代表浮游动物

    Figure  5.   RDA analysis of dominant plankton species and environmental factors during dry season

    Triangles and circles represent phytoplankton and zooplankton, respectively

    图  6   不同水文期浮游植物多样性指数

    Figure  6.   Diversity indices of phytoplankton during different hydrological periods

    图  7   不同水文期浮游动物多样性指数

    Figure  7.   Diversity indices of zooplankton during different hydrological periods

    表  1   多样性指数评价标准

    Table  1   Evaluation standard of diversity indices

    多样性指数
    Diversity indices
    评价标准Evaluation standard
    Shannon-Wiener index0—1
    重污
    1—2 α-
    中污
    2—3 β-
    中污
    >3 寡污
    或无污
    Margalef index0—1
    重污
    1—2 α-
    中污
    2—3 β-
    中污
    >3 寡污
    或无污
    Pielou index0—0.3
    重污
    0.3—0.4
    α-中污
    0.4—0.5
    β-中污
    >0.5寡污
    或无污
    下载: 导出CSV

    表  2   鄱阳湖不同水文期的浮游生物优势种

    Table  2   Dominant species of plankton during different hydrological periods in Poyang Lake

    水文期Period门类Category优势种Dominant species 优势度Dominance index
    丰水期
    Wet season
    浮游植物硅藻门颗粒直链藻极狭变种Melosira granulata var.angutissima0.04
    蓝藻门水华束丝藻Aphanizomenon flos-aquae0.11
    拟短形颤藻Oscillatoria subbrevis0.07
    小形色球藻Chroococcus minor0.07
    细小平裂藻Merismopedia minima0.09
    卷曲鱼腥藻Anabaena circinalis0.02
    伪鱼腥藻Pseudoanabaena sp.0.02
    绿藻门双对栅藻Scenedesmus bijuga0.02
    浮游动物轮虫纤巧异尾轮虫Trichocerca tenuior0.02
    针簇多肢轮虫Polyarthra trigla0.02
    枝角类颈沟基合溞Bominopsis deitersis0.04
    简弧象鼻溞Bosmina coregoni0.25
    桡足类广布中剑水蚤Mesocyclops leuckarti0.10
    枯水期
    Dry season
    浮游植物硅藻门颗粒直链藻极狭变种Melosira granulata var. angutissima0.03
    梅尼小环藻Cyclotella meneghiniana0.02
    蓝藻门不定微囊藻Microcystis incerta0.05
    绿藻门双对栅藻Scenedesmus bijuga0.02
    小球衣藻Chlamydomonas microsphaera0.04
    卵形衣藻Chlamydomonas ovalis0.19
    隐藻门卵形隐藻Crytomonas ovata0.02
    浮游动物原生动物湖沼砂壳虫Difflugia urceolata0.02
    枝角类简弧象鼻溞Bosmina coregoni0.09
    桡足类右突新镖水蚤Neodiaptomus schmackeri0.14
    广布中剑水蚤Mesocyclops leuckarti0.05
    下载: 导出CSV

    表  3   鄱阳湖丰水期与枯水期的环境因子特征

    Table  3   Characteristics of environmental factors during wet and dry seasons in Poyang Lake

    水文期
    Period
    采样点
    Sampling site
    水温
    WT(℃)
    透明度
    Transparency(m)
    电导率
    Cond(μs/cm)
    pH溶解氧
    DO(mg/L)
    TP
    (mg/L)
    TN
    (mg/L)
    $ {\rm{N}}{{\rm{H}}}^ +_4 $-N
    (mg/L)
    丰水期Wet season吴城30.460.49142.687.757.420.031.590.29
    星子29.670.50110.807.536.820.031.210.29
    都昌31.500.58101.407.767.400.040.950.29
    鄱阳31.530.53 92.478.297.460.040.830.20
    余干31.330.30133.407.827.020.061.060.30
    平均30.900.48116.157.837.220.041.130.27
    枯水期Dry season吴城13.030.33106.137.988.010.061.750.27
    星子11.800.38145.077.647.820.051.910.3
    都昌 8.230.33105.777.669.400.051.110.15
    鄱阳 8.470.24 88.977.6510.54 0.030.910.08
    余干 8.900.39101.1 7.379.120.092.030.36
    平均10.090.33109.417.668.980.061.54 0.23
    t检验 P<0.01 P<0.05 P>0.05 P>0.05 P<0.01 P>0.05 P>0.05 P>0.05
    丰水期×枯水期
    注: P<0.05和P<0.01表示差异性显著Note: P<0.05 and P<0.01 indicate significant difference
    下载: 导出CSV

    表  4   RDA排序图中的浮游生物物种及其编号

    Table  4   The species and codes of plankton for RDA analysis

    编号Code物种Species编号Code物种Species
    sp1颗粒直链藻极狭变种Melosira granulata var. angutissimasp12简弧象鼻溞Nauplius
    sp2水华束丝藻Aphanizomenon flos-aquaesp13广布中剑水蚤Mesocyclops leuckarti
    sp3拟短形颤藻Oscillatoria subbrevissp14梅尼小环藻Cyclotella meneghiniana
    sp4小形色球藻Chroococcus minorsp15不定微囊藻Microcystis incerta
    sp5细小平裂藻Merismopedia minima sp16小球衣藻Chlamydomonas microsphaera
    sp6卷曲鱼腥藻Anabaena circinalissp17卵形衣藻Chlamydomonas ovalis
    sp7伪鱼腥藻Pseudoanabaena sp.sp18卵形隐藻Crytomonas ovata
    sp8双对栅藻Scenedesmus bijugasp19湖沼砂壳虫Difflugia urceolata
    sp9纤巧异尾轮虫Trichocerca tenuiorsp20右突新镖水蚤Neodiaptomus schmackeri
    sp10针簇多肢轮虫Polyarthra trigla
    sp11颈沟基合溞Bominopsis deitersis
    下载: 导出CSV
  • [1]

    Rubin M A, Leff L G. Nutrients and other abiotic factors affecting bacterial communities in an Ohio River (USA) [J]. Microbial Ecology, 2007, 54(2): 374-383. doi: 10.1007/s00248-007-9209-2

    [2] 文红星, 彭松, 黄斌, 等. 洱海浮游植物种类组成及多样性分析 [J]. 人民珠江, 2017, 38(8): 84-87. doi: 10.3969/j.issn.1001-9235.2017.08.019

    Wen H X, Peng S, Huang B, et al. Species composition and diversity of phytoplankton in Erhai Lake [J]. Pearl River, 2017, 38(8): 84-87. doi: 10.3969/j.issn.1001-9235.2017.08.019

    [3]

    Stephen R, James F, James R, et al. Cascading trophic interactions and lake productivity [J]. Limnology and Oceanography Bulletin, 1985, 35(10): 634-639.

    [4] 聂雪, 胡旭仁, 刘观华, 等. 鄱阳湖子湖泊浮游动物多样性及水质生物评价 [J]. 南昌大学学报(理科版), 2018, 42(2): 161-167.

    Nie X, Hu X R, Liu G H, et al. Species diversity of zooplankton and water quality biological assessment in a sub-lake of Poyang Lake [J]. Journal of Nanchang University (Natural Science), 2018, 42(2): 161-167.

    [5] 蔡阳, 陆欣鑫, 巴秋爽, 等. 镜泊湖春、夏两季浮游生物群落结构及其与环境因子的关系 [J]. 海洋与湖沼, 2019, 50(1): 116-128. doi: 10.11693/hyhz20180200040

    Cai Y, Lu X X, Ba Q S, et al. Plankton community structure in Jingpo Lake and the relationship with environmental factors [J]. Oceanologia et Limnologia Sinica, 2019, 50(1): 116-128. doi: 10.11693/hyhz20180200040

    [6]

    Pérez J R, Loureiro S, Menezes S. Assessment of water quality in the Alqueva Reservoir (Portugal) using bioassays [J]. Environmental Science & Pollution Research, 2010, 17(3): 688-702.

    [7]

    Stefanidis K, Papastergiadou E. Effects of a long term water level reduction on the ecology and water quality in an eastern Mediterranean lake [J]. Knowledge & Management of Aquatic Ecosystems, 2013, 411(5): 1-14.

    [8]

    O’Farrell, Izaguirre I, Chaparro G, et al. Water level as the main driver of the alternation between a free-floating plant and a phytoplankton dominated state: a long-term study in a floodplain lake [J]. Aquatic Sciences, 2011, 73(2): 275-287. doi: 10.1007/s00027-010-0175-2

    [9] 秦伯强, 高光, 胡维平. 浅水湖泊生态系统恢复的理论与实践思考 [J]. 湖泊科学, 2005, 17(1): 9-16. doi: 10.3321/j.issn:1003-5427.2005.01.002

    Qin B Q, Gao G, Hu W P. Reflections on the theory and practice of Shallow Lake ecosystem restoration [J]. Journal of Lake Science, 2005, 17(1): 9-16. doi: 10.3321/j.issn:1003-5427.2005.01.002

    [10] 黄爱平. 鄱阳湖水文水动力特征及富营养化响应机制研究 [D]. 北京: 中国水利水电科学研究院, 2018: 1-2.

    Huang A P. Characteristics and response mechanism of hydrology and hydrodynamics and eutrophication in Poyang Lake [D]. Beijing: China Institute of Water Resources and Hydropower Research, 2018: 1-2.

    [11] 谢平. 三峡工程对两湖的生态影响 [J]. 长江流域资源与环境, 2017, 26(10): 1607-1618.

    Xie P. Ecological impacts of Three Gorges Dam on lakes Dongting and Poyang [J]. Resources and Environment in the Yangtze Basin, 2017, 26(10): 1607-1618.

    [12] 张婷, 马行厚, 王桂苹, 等. 鄱阳湖国家级自然保护区浮游生物群落结构及空间分布 [J]. 水生生物学报, 2014, 38(1): 158-165.

    Zhang T, Ma H H, Wang G P, et al. Community structure and spatial distribution of plankton in the Poyang Lake national nature reserve, China [J]. Acta Hydrobiologica Sinica, 2014, 38(1): 158-165.

    [13] 张本. 鄱阳湖一些水文特征和整治战略 [J]. 长江流域资源与环境, 1993, 2(1): 36-42.

    Zhang B. The hydrological features and the renovative strategy of the Poyang Lake [J]. Resources and Environment in the Yangtze Basin, 1993, 2(1): 36-42.

    [14] 陈泽恺. 鄱阳湖着生藻类分布格局及其与环境相关性的研究 [D]. 上海: 上海师范大学, 2019: 9-11.

    Chen Z K. Distribution pattern of periphytic algae and its correlation with environmental factors in Poyang Lake [D]. Shanghai: Shanghai Normal University, 2019: 9-11.

    [15] 章宗涉, 黄翔飞. 淡水浮游生物研究方法 [M]. 北京: 科学出版社, 1991: 340-344.

    Zhang Z S, Huang X F. Methods for Study on Freshwater Plankton [M]. Beijing: Science Press, 1991: 340-344.

    [16] 胡鸿钧, 魏印心. 中国淡水藻类一系统、分类及生态 [M]. 北京: 科学出版社, 2006: 79-285.

    Hu H J, Wei Y X. System, Classification and Ecology of Freshwater Algae in China [M]. Beijing: Science Press, 2006: 79-285.

    [17] 王家楫. 中国淡水轮虫志 [M]. 北京: 科学出版社, 1961: 22-282.

    Wang J J. Freshwater Rotifer Fauna in China [M]. Beijing: Science Press, 1961: 22-282.

    [18] 韩茂森, 束蕴芳. 中国淡水生物图谱 [M]. 北京: 海洋出版社, 1995: 192-258.

    Han M S, Shu Y F. Atlas of Freshwater Organisms in China [M]. Beijing: Ocean Press, 1995: 192-258.

    [19] 王明翠, 刘雪芹, 张建辉. 湖泊富营养化评价方法及分级标准 [J]. 中国环境监测, 2002, 18(5): 47-49. doi: 10.3969/j.issn.1002-6002.2002.05.018

    Wang M C, Liu X Q, Zhang J H. Evaluation method and classification standard of lake eutrophication [J]. Environmental Monitoring in China, 2002, 18(5): 47-49. doi: 10.3969/j.issn.1002-6002.2002.05.018

    [20]

    Shannon C E. A mathematical theory of communications[J]. The Bell System Technical Journal, 1948(27): 379-423, 623-656.

    [21]

    Margalef R. Pathfinding in ecology. (Book reviews: perspectives in ecological theory) [J]. Science, 1969, 164(3881): 817.

    [22]

    Pielou E C. Species-diversity and pattern-diversity in the study of ecological succession [J]. Journal of Theoretical Biology, 1966, 10(2): 370-383. doi: 10.1016/0022-5193(66)90133-0

    [23] 陈红, 刘清, 潘建雄, 等. 灞河城市段浮游生物群落结构时空变化及其与环境因子的关系 [J]. 生态学报, 2019, 39(1): 173-184.

    Chen H, Liu Q, Pan J X, et al. Spatial and temporal variation of plankton community structure and its relationship with environmental factors in the city section of the Ba River [J]. Acta Ecologica Sinica, 2019, 39(1): 173-184.

    [24]

    Vonwehrden H, Hanspach J, Bruelheide H, et al. Pluralism and diversity: trends in the use and application of ordination methods 1990-2007 [J]. Journal of Vegetation Science, 2009(20): 695-705. doi: 10.1111/j.1654-1103.2009.01063.x

    [25] 况琪军, 马沛明, 胡征宇, 等. 湖泊富营养化的藻类生物学评价与治理研究进展 [J]. 安全与环境学报, 2005(2): 87-91. doi: 10.3969/j.issn.1009-6094.2005.02.024

    Kuang Q J, Ma P M, Hu Z Y, et al. Study on the evaluation and treatment of lake eutrophication by means of algae biology [J]. Journal of Safety and Environment, 2005(2): 87-91. doi: 10.3969/j.issn.1009-6094.2005.02.024

    [26] 杨丽, 张玮, 尚光霞, 等. 淀山湖浮游植物功能群演替特征及其与环境因子的关系 [J]. 环境科学, 2018, 39(7): 3158-3167.

    Yang L, Zhang W, Shang G X, et al. Succession characteristics of phytoplankton functional groups and their relationships with environmental factors in Dianshan Lake, Shanghai [J]. Environmental Science, 2018, 39(7): 3158-3167.

    [27] 林海, 王源, 李冰. 北京市妫水河浮游动物群落结构与水质评价 [J]. 生态学报, 2019, 39(20): 7583-7591.

    Lin H, Wang Y, Li B. Evaluation of zooplankton community structure and water quality of Guishui River, Beijing [J]. Acta Ecologica Sinica, 2019, 39(20): 7583-7591.

    [28] 汪梦琪, 汪金成, 王琪, 等. 洞庭湖区平水期浮游生物群落结构特征及富营养化现状 [J]. 生态学杂志, 2018, 37(8): 2418-2429.

    Wang M Q, Wang J C, Wang Q, et al. Characteristics of plankton community structure and eutrophication status in Dongting Lake in the season with normal water level [J]. Chinese Journal of Ecology, 2018, 37(8): 2418-2429.

    [29] 李共国, 尉美方, 吴芝瑛, 等. 疏浚后杭州西湖浮游动物群落的变化 [J]. 生态科学, 2005(3): 218-223. doi: 10.3969/j.issn.1008-8873.2005.03.006

    Li G G, Wei M F, Wu Z Y, et al. A change of zooplankton community after dredging in West Lake, Hangzhou [J]. Ecological Science, 2005(3): 218-223. doi: 10.3969/j.issn.1008-8873.2005.03.006

    [30] 钱奎梅, 刘宝贵, 陈宇炜. 鄱阳湖浮游植物功能群的长期变化特征(2009-2016年) [J]. 湖泊科学, 2019, 31(4): 1035-1044. doi: 10.18307/2019.0402

    Qian K M, Liu B G, Chen Y W. Long-term dynamics of phytoplankton functional groups in Poyang Lake during 2009-2016 [J]. Journal of Lake Science, 2019, 31(4): 1035-1044. doi: 10.18307/2019.0402

    [31]

    Noges T, Noges P. The effect of extreme water level decrease on hydrochemistry and phytoplankton in a shallow eutrophic lake [J]. Hydrobiologia, 1999(409): 277-283.

    [32]

    Albert C, Michael R, Landry. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems [J]. Limnology & Oceanography, 2004, 49(1): 51-57.

    [33] 万荣荣, 杨桂山, 王晓龙, 等. 长江中游通江湖泊江湖关系研究进展 [J]. 湖泊科学, 2014, 26(1): 1-8. doi: 10.18307/2014.0101

    Wan R R, Yang G S, Wang X L, et al. Progress of research on the relationship between the Yangtze River and its connected in the middle reaches [J]. Journal of Lake Science, 2014, 26(1): 1-8. doi: 10.18307/2014.0101

    [34] 何琦. 增江流域和东江惠州段底栖硅藻多样性及分布特征 [D]. 广州: 暨南大学, 2011: 4-5.

    He Q. Species diversity and distribution of benthic diatoms in Zeng River and in Huizhou section of Dongjiang River [D]. Guangzhou: Jinan University, 2011: 4-5.

    [35]

    Zheng Y Y, Niu J G, Zhou Q, et al. Effects of resource availability and hydrological regime on autochthonous and allo, chthonous carbon in the food web of a large cross-border river (China) [J]. Science of the Total Environment, 2018(612): 501-512.

    [36] 许海, 陈洁, 朱广伟, 等. 水体氮、磷营养盐水平对蓝藻优势形成的影响 [J]. 湖泊科学, 2019, 31(5): 1239-1247. doi: 10.18307/2019.0518

    Xu H, Chen J, Zhu G W, et al. Effects of concentrations of phosphorus and nitrogen on the dominance of cyanobacteria [J]. Journal of Lake Science, 2019, 31(5): 1239-1247. doi: 10.18307/2019.0518

    [37] 朱旭宇, 黄伟, 曾江宁, 等. 氮磷比对冬季浮游植物群落结构的影响 [J]. 应用与环境生物学报, 2013, 19(2): 293-299. doi: 10.3724/SP.J.1145.2013.00293

    Zhu X Y, Huang W, Zeng J N, et al. Effects of nitrogen and phosphorus ratios on phytoplankton community structure in winter [J]. Chinese Journal of Applied and Environmental Biology, 2013, 19(2): 293-299. doi: 10.3724/SP.J.1145.2013.00293

    [38] 季鹏飞, 许海, 詹旭, 等. 长江中下游湖泊水体氮磷比时空变化特征及其影响因素 [J]. 环境科学, 2020, 41(9): 1-17.

    Ji P F, Xu H, Zhan X, et al. Spatial-temporal variation and driving of nitrogen and phosphorus ratio in lakes in the middle and lower reaches of the Yangtze River [J]. Environmental Science, 2020, 41(9): 1-17.

    [39] 吕乾, 胡旭仁, 聂雪, 等. 鄱阳湖丰水期水位波动对浮游动物群落演替的影响 [J]. 生态学报, 2020, 40(4): 1486-1495.

    Lü Q, Hu X R, Nie X, et al. Impact of water level fluctuation on succession of zooplankton in Poyang Lake [J]. Acta Ecologica Sinica, 2020, 40(4): 1486-1495.

    [40] 周礼斌, 陈非洲. 沉积物再悬浮对食浮游动物鱼类捕食浮游动物的影响 [J]. 湖泊科学, 2015, 27(5): 911-916. doi: 10.18307/2015.0518

    Zhou L B, Chen F Z. Effects of sediment resuspention on predation of planktivorous fish on zooplankton [J]. Journal of Lake Science, 2015, 27(5): 911-916. doi: 10.18307/2015.0518

    [41]

    Elliott J A, Jones I D, Thackeray S J. Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake [J]. Hydrobiologia, 2006, 559(1): 401-411. doi: 10.1007/s10750-005-1233-y

    [42]

    Kolmakov V I, Anishchenko O V, Ivanova E A, et al. Estimation of periphytic microalgae gross primary production with DCMU-fluorescence method in Yenisei River (Siberia, Russia) [J]. Journal of Applied Phycology, 2008, 20(3): 289-297. doi: 10.1007/s10811-007-9246-8

    [43] 聂雪, 胡旭仁, 刘观华, 等. 鄱阳湖子湖“堑秋湖”过程中水位变化对浮游动物群落结构的影响 [J]. 水生生物学报, 2019, 43(2): 402-414. doi: 10.7541/2019.050

    Nie X, Hu X R, Liu G H, et al. Effecta of water level on zooplankton community during “plate-shaped lake enclosed in autumn” in a sub-lake of the Poyang Lake [J]. Acta Hydrobiologica Sinica, 2019, 43(2): 402-414. doi: 10.7541/2019.050

    [44] 周莹. 水生生物对水体溶解氧日变化规律影响 [D]. 沈阳: 沈阳师范大学, 2016: 1-2.

    Zhou Y. Effect of aquatic organisms on diurnal variation of dissolved oxygen in wate [D]. Shenyang: Shenyang Normal University, 2016: 1-2.

    [45] 俞焰, 刘德富, 杨正健, 等. 千岛湖溶解氧与浮游植物垂向分层特征及其影响因素 [J]. 环境科学, 2017, 38(4): 1393-1402.

    Yu Y, Liu D F, Yang Z J, et al. Vertical stratification characteristics of dissolved oxygen and phytoplankton in Thousand-Island Lake and their influencing factors [J]. Environmental Science, 2017, 38(4): 1393-1402.

    [46] 王硕, 杨涛, 陈佳, 等. 渭河流域浮游动物群落结构及其水质评价 [J]. 水生生物学报, 2019, 43(6): 1333-1345. doi: 10.7541/2019.157

    Wang S, Yang T, Chen J, et al. Zooplankton community structure and the water quality in Wei River basin [J]. Acta Hydrobiologica Sinica, 2019, 43(6): 1333-1345. doi: 10.7541/2019.157

    [47] 李开枝, 尹健强, 黄良民, 等. 珠江口浮游动物的群落动态及数量变化 [J]. 热带海洋学报, 2005, 24(5): 60-68. doi: 10.3969/j.issn.1009-5470.2005.05.007

    Li K Z, Yin J Q, Huang L M, et al. Dynamics variations of community structure and quantity of zooplankton in Zhujiang River estuary [J]. Journal of Tropical Oceanography, 2005, 24(5): 60-68. doi: 10.3969/j.issn.1009-5470.2005.05.007

    [48]

    Lenz P H, Hower A E, Hartline D K. Temperature compensation in the escape response of a marine copepod, Calanus finmarchicus (Crustacea) [J]. Biological Bulletin, 2005, 209(1): 75-85. doi: 10.2307/3593143

    [49] 吕乾. 鄱阳湖及其连通水域浮游动物群落时空格局 [D]. 南昌: 南昌大学, 2019: 47-52.

    Lü Q. Temporal and spatial patterns of zooplankton community in Poyang Lake and its connected waters [D]. Nanchang: Nanchang University, 2019: 47-52.

    [50] 黄冬凌, 倪兆奎, 赵爽, 等. 基于湖泊与出入湖水质关联性研究: 以鄱阳湖为例 [J]. 环境科学, 2019, 40(10): 4450-4460.

    Huang D L, Ni Z K, Zhao S, et al. Correlation analysis of water quality between lake inflow and outflow: a case study of Poyang Lake [J]. Environmental Science, 2019, 40(10): 4450-4460.

  • [1] 陈凯, 方成池, 吴志刚, 熊凡, 俞丹, 崔永德, 张琪, 王宝强, 姜传奇, 宋立荣, 王洪铸, 刘焕章, 陈晓飞, 凌海波, 蔡俊雄, 李涛, 何舜平, 缪炜, 熊杰, 曾宏辉. AeDNA: 水生生物eDNA数据库 [J]. 水生生物学报, 2022, 46(11): 1741-1747. DOI: 10.7541/2022.2022.0379
    [2] 邢迎春, 高婉茹, 白洁, 赵亚辉. 环境DNA在湖泊生物多样性研究中的应用 [J]. 水生生物学报, 2022, 46(1): 137-148. DOI: 10.7541/2021.2020.237
    [3] 吴志刚, 熊文, 侯宏伟. 长江流域水生植物多样性格局与保护 [J]. 水生生物学报, 2019, 43(S1): 27-41. DOI: 10.7541/2019.164
    [4] 王金旺, 邹颖颖, 于丹. 瓯江流域水生植物多样性与生态位研究 [J]. 水生生物学报, 2015, 39(6): 1184-1197. DOI: 10.7541/2015.155
    [5] 王强, 袁兴中, 刘红. 西南山地源头溪流附石性水生昆虫群落特征及多样性--以重庆鱼肚河为例 [J]. 水生生物学报, 2011, 35(5): 887-892. DOI: 10.3724/SP.J.1035.2011.00887
    [6] 李中强, 张萌, 徐军. 青藏高原纳木错水生植物多样性及群落生态学研究 [J]. 水生生物学报, 2011, 35(1): 1-13. DOI: 10.3724/SP.J.1035.2011.006161
    [7] 郑凌凌, 宋立荣, 吴兴华, 庄惠如. 汉江硅藻水华优势种的形态及18S rDNA序列分析 [J]. 水生生物学报, 2009, 33(3): 562-565.
    [8] 董志国, 李家乐. 淡水贝类生物多样性保育 [J]. 水生生物学报, 2004, 28(4): 440-444.
    [9] 施炜纲, 王博, 王利民. 长江下游水生动物群落生物多样性变动趋势初探 [J]. 水生生物学报, 2002, 26(6): 654-661.
    [10] 李志岗, 杨官品, 朱艳红. 水环境细菌16S rDNA限制性片段长度多型性及群落结构分析 [J]. 水生生物学报, 2001, 25(2): 111-115.
  • 期刊类型引用(6)

    1. 赵燕, 吕若萱, 操志晨, 朱波润, 张芯玮, 唐清美, 张秋胜. 口服型重组草鱼生长激素基因的创建及其原核表达最佳条件研究. 鲁东大学学报(自然科学版). 2020(01): 40-47 . 百度学术
    2. 汪亚平, 何利波. 我国转基因鱼研制的历史回顾与展望. 生物工程学报. 2016(07): 851-860 . 百度学术
    3. 关海红, 梁利群. 转基因鲤与普通鲤鱼精巢结构和发育的对比观察. 东北农业大学学报. 2013(03): 95-100+151 . 百度学术
    4. 关海红, 梁利群. 转基因鲤性腺结构及繁殖性能的研究. 江苏农业科学. 2013(03): 191-194 . 百度学术
    5. 苗田田, 赵金良, 苌建菊, 许淼洋. 外源生长激素对尼罗罗非鱼生长、骨骼肌纤维增生及肥大的影响. 农业生物技术学报. 2012(11): 1315-1320 . 百度学术
    6. 刘春雷, 常玉梅, 梁利群, 徐丽华, 刘金亮, 闫学春. 饥饿对转基因鲤与野生鲤生长竞争和性腺发育的影响. 生态学报. 2010(21): 5975-5982 . 百度学术

    其他类型引用(4)

图(7)  /  表(4)
计量
  • 文章访问数:  3777
  • HTML全文浏览量:  763
  • PDF下载量:  178
  • 被引次数: 10
出版历程
  • 收稿日期:  2020-06-21
  • 修回日期:  2020-12-23
  • 网络出版日期:  2021-07-01
  • 发布日期:  2021-09-08

目录

    /

    返回文章
    返回