池塘内循环流水养殖模式对养殖塘上覆水-沉积物-间隙水磷时空分布特征及释放通量的影响

刘梅, 原居林, 练青平, 倪蒙, 郭爱环, 张雷鸣, 顾志敏

刘梅, 原居林, 练青平, 倪蒙, 郭爱环, 张雷鸣, 顾志敏. 池塘内循环流水养殖模式对养殖塘上覆水-沉积物-间隙水磷时空分布特征及释放通量的影响[J]. 水生生物学报, 2021, 45(5): 1045-1056. DOI: 10.7541/2021.2020.158
引用本文: 刘梅, 原居林, 练青平, 倪蒙, 郭爱环, 张雷鸣, 顾志敏. 池塘内循环流水养殖模式对养殖塘上覆水-沉积物-间隙水磷时空分布特征及释放通量的影响[J]. 水生生物学报, 2021, 45(5): 1045-1056. DOI: 10.7541/2021.2020.158
LIU Mei, YUAN Ju-Lin, LIAN Qing-Ping, NI Meng, GUO Ai-Huan, ZHANG Lei-Min, GU Zhi-Min. EFFECTS OF INNER-CIRCULATION POND AQUACULTURE ON DISTRIBUTION AND RELEASE FLUX OF PHOSPHORUS IN THE OVERLAYING-SEDIMENT-INTERSTITIAL WATER[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(5): 1045-1056. DOI: 10.7541/2021.2020.158
Citation: LIU Mei, YUAN Ju-Lin, LIAN Qing-Ping, NI Meng, GUO Ai-Huan, ZHANG Lei-Min, GU Zhi-Min. EFFECTS OF INNER-CIRCULATION POND AQUACULTURE ON DISTRIBUTION AND RELEASE FLUX OF PHOSPHORUS IN THE OVERLAYING-SEDIMENT-INTERSTITIAL WATER[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(5): 1045-1056. DOI: 10.7541/2021.2020.158

池塘内循环流水养殖模式对养殖塘上覆水-沉积物-间隙水磷时空分布特征及释放通量的影响

基金项目: 国家重点研发计划 (2020YFD0900105); 浙江省农业重大技术协同推广项目(2020XTTGSC01); 湖州市公益性重点应用研究 (2019GZ17)资助
详细信息
    作者简介:

    刘梅(1988—), 女, 博士, 助理研究员; 研究方向为养殖水域生态修复。E-mail: liumei@zju.edu.cn

    通信作者:

    顾志敏(1963—), 研究员。E-mail: guzhiming2006@126.com

  • 中图分类号: X171.1

EFFECTS OF INNER-CIRCULATION POND AQUACULTURE ON DISTRIBUTION AND RELEASE FLUX OF PHOSPHORUS IN THE OVERLAYING-SEDIMENT-INTERSTITIAL WATER

Funds: Supported by National Key R &D Program (2020YFD0900105); Zhejiang Province Key R &D Program (2018C02033); Zhejiang Major Agricultural Technology Cooperative Extension Project (2020XTTGSC01); Huzhou Public Welfare Key Applied Research Project (2019GZ17)
    Corresponding author:
  • 摘要: 为了揭示池塘内循环流水养殖模式(Inner-circulation Pond Aquaculture, IPA)上覆水-沉积物-间隙水不同磷形态时空分布特征, 探讨沉积物-水界面磷的释放通量及其主要影响因素, 在IPA一条水槽前后端设置6个采样点, 共设置4条, 同时对常规传统池塘(Usual Pond Aquaculture, UPA)设置5个采样点, 采用SMT(磷形态标准测试程序)法测量沉积物中磷的形态组成, 对上覆水-沉积物-间隙水磷时空分布特征进行了分析, 统计了磷释放通量及主要影响环境因子的关系。结果表明: (1)从整体上, IPA上覆水及间隙水中不同形态磷含量低于UPA, 且IPA水体磷空间分布差异较大, 水槽后端沉积物向上覆水释放, 水槽前端则表现为上覆水向沉积物汇集; (2)在养殖中后期, 空间上, IPA水槽后端沉积物不同磷形态随着距离增加逐渐降低, 且均低于UPA; 时间上, 2种模式TP、IP、OP和Fe/Al-P随着养殖的进行而显著增加, Ca-P呈先降低后增加的趋势; (3)UPA基本表现为沉积物对磷的吸收, 而IPA磷释放通量时空差异较大, 养殖初期, 水槽前端表现对磷的吸收, 水槽后端10 m内则少量释放; 至养殖中后期, 槽后端10 m内表现对磷的大量释放; 而后端20和30 m在养殖初期磷通量较小, 至养殖中期均转变为对磷的吸收, 至养殖末期则转变为对磷的释放; (4)2种模式磷通量和环境因子的关系基本一致, TP、IP释放通量和pH呈显著正相关, 各形态磷释放通量和沉积物Eh呈显著负相关, 其中温度的升高对各沉积物不同形态磷的释放有显著的促进作用。综上所述, IPA沉积物磷组分时空差异较大, 主要集中分布在水槽后端10 m内, 且在养殖中后期向上覆水大量集中释放。研究旨在为IPA改进固体颗粒物拦截方法、提高残饵和粪便的收集效率及养殖水环境调控提供理论依据。
    Abstract: To reveal the spatial and temporal distribution characteristics of different phosphorus forms in the overlying-sediment-interstitial water, the release flux of phosphorus at sediment-water interface as well as relevant main influence factors from the Inner-circulation Pond Aquaculture (IPA), 4 IPA tanks were sampled to measure the composition of phosphorus forms in sediment by the Standards Measurements and Testing Program of the European commission (SMT method). Each IPA tank has 6 sampling points at the front and rear ends, and the Usual Pond Aquaculture (UPA) has 5 sampling points. The results showed that: (1) different forms of phosphorus content from overlying and interstitial water of IPA were lower than those of UPA, and the spatial distribution of phosphorus in IPA water body was quite different. The P at the front of water tank diffused from the sediment to overlaying water, while the P at the rear end of water tank collected from overlaying water into sediment. (2) In the middle and later stage of aquaculture, different phosphorus forms in the sediment at the back of IPA tank gradually decreased with the increase of distance, which were lower than those in the UPA. TP, IP, OP and Fe/AL-P increased significantly with the proceeding of agriculture under both modes, while Ca-P showed a trend of first decreasing and then increasing. (3) In the UPA mode, phosphorus was basically absorbed by the sediment, while in the IPA mode, phosphorus release flux varied greatly with time and space. In the early stage of aquaculture, phosphorus was absorbed at the front end of water tank, and a small amount of phosphorus was released within 10 m from the back end of water tank. In the middle or late stages of aquaculture, a large amount of phosphorus were released from sediment within 10 m from the back end of water tank. At 20 m and 30 m from the rear end, the initial phosphorus flux was small, and phosphorus was absorbed in the middle stage of agriculture, and phosphorus was released at the end of aquaculture. (4) The relationship between phosphorus flux and environmental factors was generally consistent in both models. There was a significant positive correlation between TP/IP release flux and pH, while there was a significant negative correlation between release flux for forms of phosphorus and sediment Eh. The increase of T significantly promoted the release of various inorganic forms of phosphorus. IPA sediment was significantly different in time and space. Sediments were mainly distributed within 10 m from the rear end of water tank, and a large amount of P was released upward into the overlying water in the middle or late stage of aquaculture. This study provides a theoretical support for improving solid particle interception method, promoting efficiency for collection of residual bait and feces, and regulating aquaculture water environment under IPA mode.
  • 图  1   IPA (a)和UPA (b)模式采样点示意图

    Figure  1.   Sample points of IPA (a) and UPA (b) modes

    图  2   养殖期内pH、溶解度和温度变化趋势

    Figure  2.   The change trend of pH, DO and T in the aquaculture period

    图  3   养殖期内氧化还原电位变化趋势

    Figure  3.   Changes of Eh in the aquaculture period

    图  4   UPA养殖池塘上覆水-间隙水磷垂向特征

    Figure  4.   Vertical characteristics of phosphorus from overlaying-interstitial water in UPA

    图  5   IPA养殖池塘上覆水-间隙水磷空间特征

    Figure  5.   Spatial characteristics of phosphorus from overlaying-interstitial water in IPA

    图  6   UPA养殖塘沉积物不同形态磷含量分布特征

    Figure  6.   Characteristics of phosphorus content distribution from sediments in UPA

    图  7   IPA养殖塘沉积物不同形态磷含量分布特征

    Figure  7.   Characteristics of phosphorus content distribution from sediments in IPA

    图  8   不同形态磷释放通量空间分布特征

    Figure  8.   Spatial characteristics of phosphorus emission flux from sediments in UPA and IPA

    表  1   两种模式不同形态磷通量与环境因子的相关性分析

    Table  1   The relationship between environmental factors and phosphorus emission fluxes of different forms in UPA and IPA

    环境因子
    Environmental factor
    UPAIPA(槽后端成沉积物Sediment at the
    back of tank)
    TPIPOPTPIPOP
    上覆水pH
    Overlaying
    water pH
    0.48* 0.55* 0.42 0.51* 0.55*0.48
    间隙水pH
    Interstitial
    water pH
    0.66* 0.58* 0.51 0.55* 0.54*0.58
    上覆水Eh
    Overlaying
    water Eh
    0.47 0.52* 0.390.49 0.51*0.47
    沉积物Eh
    Sediment Eh
    –0.54*–0.68*–0.44–0.58*–0.58*–0.47*
    上覆水DO
    Overlaying
    water DO
    0.61*0.58 0.530.540.610.45
    上覆水T
    Overlaying
    water T
    0.65* 0.76** 0.61* 0.67* 0.78** 0.64*
    注: *代表显著相关(P<0.05), **代表极显著相关(P<0.01)Note: * indicates significant correlation (P<0.05). ** indicates extremely significant correlation (P<0.05)
    下载: 导出CSV
  • [1]

    Havens, Karl E. Phosphorus-algal bloom relationships in large lakes of South Florida: implications for establishing nutrient criteria [J]. Lake and Reservoir Management, 2003, 19(3): 222-228. doi: 10.1080/07438140309354087

    [2]

    Abell J M, Özkundakci D, Hamilton D P. Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand lakes: implications for eutrophication control [J]. Ecosystems, 2010, 13(7): 966-977. doi: 10.1007/s10021-010-9367-9

    [3] 郭永坚, 沈勇平, 王芳, 等. 草鱼不同养殖模式实验围隔内沉积物-水界面营养盐通量的研究 [J]. 水生生物学报, 2013, 37(4): 595-605. doi: 10.7541/2013.68

    Guo Y J, Shen Y P, Wang F, et al. Nutrient fluxes across sediment-water interface in different grass carp polyculture enclosures [J]. Acta Hydrobiologica Sinica, 2013, 37(4): 595-605. doi: 10.7541/2013.68

    [4]

    Cheng X, Zeng Y, Guo Z, et al. Diffusion of nitrogen and phosphorus across the sediment-water interface and in seawater at aquaculture areas of Daya Bay, China [J]. International Journal of Environmental Research and Public Health, 2014(11): 1557-1572.

    [5] 卢光明, 乐观宗, 钟明杰, 等. 锯缘青蟹养殖池塘中沉积物磷释放的初步研究 [J]. 中国水产科学, 2010, 17(5): 1115-1120.

    Lu G M, Le G Z, Zhong M J, et al. Phosphorus release in Scylla serrata (Forskal) ponds’ sediment [J]. Journal of Fishery Sciences of China, 2010, 17(5): 1115-1120.

    [6] 杨平, 金宝石, 谭立山, 等. 九龙江河口区养虾塘沉积物-水界面营养盐交换通量特征 [J]. 生态学报, 2017, 37(1): 192-203.

    Yang P, Jin B S, Tan L S, et al. Temporal variation of nutrients fluxes across the sediment-water interface of shrimp ponds and influencing factors in the Jiulong River Estuary [J]. Acta Ecological Sinica, 2017, 37(1): 192-203.

    [7] 赵蕾, 王芳, 孙东, 等. 草鱼复合养殖系统间隙水与上覆水中营养盐分布特征 [J]. 渔业科学进展, 2011, 32(2): 70-77. doi: 10.3969/j.issn.1000-7075.2011.02.012

    Zhao L, Wang F, Sun D, et al. Distribution of nutrients in the pore water and overlying water in grass carp Ctenopharyngodon idellus polyculture system [J]. Progress in Fishery Sciences, 2011, 32(2): 70-77. doi: 10.3969/j.issn.1000-7075.2011.02.012

    [8] 皮坤, 张敏, 李保民, 等. 主养草鱼与主养黄颡鱼池塘沉积物—水界面氮磷营养盐通量变化及与环境因子的关系 [J]. 水产学报, 2018, 42(2): 246-256.

    Pi K, Zhang M, Li B M, et al. Diffusion fluxes of nitrogen and phosphorus across sediment-water interface in different aquaculture model ponds [J]. Journal of Fisheries of China, 2018, 42(2): 246-256.

    [9] 唐仁军, 成世清, 梁培义, 等. 池塘内循环流水养殖集成技术研究与应用 [J]. 科学养鱼, 2017(3): 21-22.

    Tang R J, Chen S Q, Liang P Y, et al. Research and application of the basic technology of circulating water culture in ponds [J]. Scientific Fish Farming, 2017(3): 21-22.

    [10] 郭水荣, 王力, 陈凌云, 等. 池塘内循环“水槽式”养殖青鱼试验 [J]. 科学养鱼, 2017(6): 18-19.

    Guo S R, Wang L, Chen L Y, et al. Experiment of pond circulation “flume type” herrings cultivation [J]. Scientific Fish Farming, 2017(6): 18-19.

    [11] 原居林, 刘梅, 倪蒙, 等. 不同养殖模式对大口黑鲈生长性能、形体指标和肌肉营养成分影响研究 [J]. 江西农业大学学报, 2018, 40(6): 1276-1285.

    Yuan J L, Liu M, Ni M, et al. Effects of different culture models on growth performances, morphological traits and nutritional quality in muscles of Micropterus salmoides [J]. Acta Agriculturae Universitatis Jiangxiensis, 2018, 40(6): 1276-1285.

    [12] 国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法(第四版) [M]. 北京: 中国环境科学出版社, 2002: 240-300.

    State Environmental Protection Administration of China Editor Committee of Water and Wastewater Monitoring and Analysis Methods. Water and Wastewater Monitoring and Analysis Methods (4th edition) [M]. Beijing: China Environmental Science Press, 2002: 240-300.

    [13]

    Hedley M J, Stewart J W B, Chauhan B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations [J]. Soil Science Society of America Journal, 1982, 46(5): 970-976. doi: 10.2136/sssaj1982.03615995004600050017x

    [14]

    Carter M R, Gregorich E G. Soil Sampling and Methods of Analysis (2nd edition) [M]. Florida: CRC Press, 2007: 75-86.

    [15] 徐洋, 陈敬安, 王敬富, 等. 氧化还原条件对红枫湖沉积物磷释放影响的微尺度分析 [J]. 湖泊科学, 2016, 28(1): 68-74. doi: 10.18307/2016.0108

    Xu Y, Chen J, Wang J F, et al. The micro-scale investigation on the effect of redox condition on the release of the sediment phosphorus in Lake Hongfeng [J]. Journal of Lake Sciences, 2016, 28(1): 68-74. doi: 10.18307/2016.0108

    [16] 郭永坚, 王芳, 刘红彩, 等. 草鱼不同养殖模式底泥间隙水与上覆水营养盐的分布特征 [J]. 中国海洋大学学报(自然科学版), 2012, 42(7-8): 82-89.

    Guo Y J, Wang F, Liu H C, et al. Study on nutrients in sediment interstitial water and overlying water in different grass carp polyculture enclosures [J]. Periodical of Ocean University of China, 2012, 42(7-8): 82-89.

    [17]

    Dalila S, Pedro P F, Miguel C, et al. Modelling of biogeochemical processes in fish earth ponds: model development and calibration [J]. Ecological Modelling, 2012(247): 286-301.

    [18] 王圣瑞. 湖泊沉积物-水界面过程: 氮磷生物地球化学 [M]. 北京: 科学出版社. 2003: 1-25.

    Wang S R. Process of Lake Sediment-water Interface: Nitrogen and Phosphorus Biogeochemistry [M]. Beijing: Science Press, 2003: 1-25.

    [19] 李俊伟, 朱长波, 郭永坚, 等. 光裸方格星虫(Sipunculus nudus)生物扰动对混养系统沉积物及间隙水中营养物质的影响 [J]. 渔业科学进展, 2015, 36(1): 103-110. doi: 10.11758/yykxjz.20150116

    Li J W, Zhu C B, Guo Y J, et al. Influence of bioturbation of Sipunculus nudus on the nutrients of sediment and pore water in the polyculture system of S. nudes and Mugil cephlus [J]. Progress in Fishery Sciences, 2015, 36(1): 103-110. doi: 10.11758/yykxjz.20150116

    [20]

    Li D P, Huang Y. Sedimentary phosphorus fractions and bioavailability as influenced by repeated sediment resuspension [J]. Ecological Engineering, 2010, 36(7): 968-962.

    [21] 李大鹏, 黄勇, 李伟光. 再悬浮条件下底泥中磷赋存形态的转化研究 [J]. 环境科学, 2008, 29(5): 1289-1294. doi: 10.3321/j.issn:0250-3301.2008.05.024

    Li D P, Huang Y, Li W G. Transformation of phosphorus forms in the sediments under the conditions of sediments resuspension [J]. Environmental Science, 2008, 29(5): 1289-1294. doi: 10.3321/j.issn:0250-3301.2008.05.024

    [22] 郑余琦, 郑忠明, 秦文娟. 缢蛏(Sinonovacula constricta)生物扰动对养殖废水处理系统中沉积物磷赋存形态垂直分布的影响 [J]. 海洋与湖沼, 2017, 48(1): 161-170.

    Zhen Y G, Zhen Z M, Qin W J. Effects of bioturation by razor clam sinonovacula constricta on vertical distribution of phosphorus form in sediment in an aquaculture wastewater treatment ecosystem [J]. Oceanologia et Limnologia Sinica, 2017, 48(1): 161-170.

    [23] 徐洋. 氧化还原环境制约湖泊沉积物内源磷释放过程的研究 [D]. 贵阳: 贵州大学, 2015: 3-30.

    Xu Y. The investigation on the effect of redox condition on the release of the sediment phosphorus in Lake [D]. Guiyang: Guizhou University, 2015: 3-30.

    [24] 罗玉红, 聂小倩, 李晓玲, 等. 香溪河沉积物、间隙水的磷分布特征及释放通量估算 [J]. 环境科学, 2017, 38(6): 2345-2354.

    Luo Y H, Nie X Q, Li X L, et al. Distribution and emission flux estimation of phosphorus in the sediment and interstitial water of Xiangxi Rive [J]. Environmental Science, 2017, 38(6): 2345-2354.

    [25]

    Mlo A, Snl B, Al C. Spatial and temporal variation in sedimentary phosphorus species in Lake Champlain (Vermont, New York, Québec) [J]. Journal of Great Lakes Research, 2020, 46(5): 1277-1291. doi: 10.1016/j.jglr.2020.07.010

    [26]

    Zhang R, Yin A, Gao C. Sediment phosphorus fraction and release potential in the major inflow rivers of Chaohu Lake, Eastern China [J]. Environmental Earth Sciences, 2019, 78(4): 117. doi: 10.1007/s12665-019-8086-6

    [27] 杨永琼, 陈敬安, 王敬富, 等. 沉积物磷原位钝化技术研究进展 [J]. 地球科学进展, 2013, 28(6): 674-684. doi: 10.11867/j.issn.1001-8166.2013.06.0674

    Yang Y Q, Chen J A, Wang J F, et al. Research progress of sediments phosphorus in-situ inactivation [J]. Advances in Earth Science, 2013, 28(6): 674-684. doi: 10.11867/j.issn.1001-8166.2013.06.0674

    [28] 宋洪旭, 邢荣莲, 陈丽红, 等. 温度和pH对刺参养殖池塘沉积物营养盐释放的影响 [J]. 湖北农业科学, 2015, 54(4): 835-842.

    Song H X, Xing R L, Chen L H, et al. Effects of temperature and pH on release of nutrient in sediment from the ponds breeding Apostichopus japonicus [J]. Hubei Agricultural Sciences, 2015, 54(4): 835-842.

    [29]

    Zhang S, An W, Li X. Research on phosphorus loads and characteristic of adsorption and release in surface sediments of Nanyang Lake and Weishan Lake in China [J]. Environmental Monitoring and Assessment, 2015, 187(1): 1-7.

    [30]

    Liu C, Shao S, Shen Q, et al. Effects of riverine suspended particulate matter on the post-dredging increase in internal phosphorus loading across the sediment-water interface [J]. Environmental Pollution, 2016(211): 165-172.

    [31]

    Jiang X, Jin X C, Yao Y, et al. Effects of biological activity, light, temperature and oxygen on phosphorus release processes at the sediment and water interface of Taihu Lake [J]. Water Research, 2008, 42(8-9): 2251-2259. doi: 10.1016/j.watres.2007.12.003

    [32]

    Nicholaus R, Zheng Z. The effects of bioturbation bythe Venus clam Cyclina sinensis on the fluxes of nutrients across the sediment-water interface in aquaculture ponds [J]. Aquaculture International, 2014, 22(2): 913-924. doi: 10.1007/s10499-013-9716-8

    [33] 黄廷林, 周瑞媛, 夏超, 等. 氧化还原电位及微生物对水库底泥释磷的影响 [J]. 环境化学, 2014, 33(6): 930-936. doi: 10.7524/j.issn.0254-6108.2014.06.019

    Huang T L, Zhou R Y, Xia C, et al. Effects of oxidation-reduction potential and microorganism on the release of phosphorus from sediments [J]. Environmental Chemistry, 2014, 33(6): 930-936. doi: 10.7524/j.issn.0254-6108.2014.06.019

    [34] 张义, 刘子森, 张垚磊, 等. 环境因子对杭州西湖沉积物各形态磷释放的影响 [J]. 水生生物学报, 2017, 41(6): 1354-1361. doi: 10.7541/2017.167

    Zhang Y, Liu Z S, Zhang Y L, et al. Effects of varying environmental conditions on release of sediment phosphorus in west lake, Hangzhou, China [J]. Acta Hydrobiologica Sinica, 2017, 41(6): 1354-1361. doi: 10.7541/2017.167

    [35] 徐进, 徐力刚, 龚然, 等. 鄱阳湖沉积物中磷吸附释放特性及影响因素研究 [J]. 生态环境学报, 2014, 23(4): 630-635. doi: 10.3969/j.issn.1674-5906.2014.04.014

    Xu J, Xu L G, Gong R, et al. Adsorption and release characteristic of phosphorus and influential factors in Poyang Lake sediment [J]. Ecology and Environmental Sciences, 2014, 23(4): 630-635. doi: 10.3969/j.issn.1674-5906.2014.04.014

    [36] 袁和忠, 沈吉, 刘恩峰, 等. 模拟水体pH控制条件下太湖梅梁湾沉积物中磷的释放特征 [J]. 湖泊科学, 2009, 21(5): 663-668. doi: 10.3321/j.issn:1003-5427.2009.05.008

    Yuan H Z, Shen J, Liu E F, et al. Characteristic of phosphorus release with the control of pH of sediments from Meiliang Bay, Lake Taihu [J]. Journal of Lake Sciences, 2009, 21(5): 663-668. doi: 10.3321/j.issn:1003-5427.2009.05.008

图(8)  /  表(1)
计量
  • 文章访问数:  3237
  • HTML全文浏览量:  1120
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-08
  • 修回日期:  2020-10-23
  • 网络出版日期:  2021-07-01
  • 发布日期:  2021-09-08

目录

    /

    返回文章
    返回