在极度弱光和两种底质条件下苦草的生长和生理响应

张忠海, 杨桐, 文紫豪, 张霄林, 曹特, 倪乐意, 袁昌波

张忠海, 杨桐, 文紫豪, 张霄林, 曹特, 倪乐意, 袁昌波. 在极度弱光和两种底质条件下苦草的生长和生理响应[J]. 水生生物学报, 2021, 45(3): 652-662. DOI: 10.7541/2021.2020.178
引用本文: 张忠海, 杨桐, 文紫豪, 张霄林, 曹特, 倪乐意, 袁昌波. 在极度弱光和两种底质条件下苦草的生长和生理响应[J]. 水生生物学报, 2021, 45(3): 652-662. DOI: 10.7541/2021.2020.178
ZHANG Zhong-Hai, YANG Tong, WEN Zi-Hao, ZHANG Xiao-Lin, CAO Te, NI Le-Yi, YUAN Chang-Bo. GROWTH AND PHYSIOLOGICAL RESPONSE OF VALLISNERIA NATANS UNDER EXTREME LOW LIGHT AND TWO SUBSTRATE CONDITIONS[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(3): 652-662. DOI: 10.7541/2021.2020.178
Citation: ZHANG Zhong-Hai, YANG Tong, WEN Zi-Hao, ZHANG Xiao-Lin, CAO Te, NI Le-Yi, YUAN Chang-Bo. GROWTH AND PHYSIOLOGICAL RESPONSE OF VALLISNERIA NATANS UNDER EXTREME LOW LIGHT AND TWO SUBSTRATE CONDITIONS[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(3): 652-662. DOI: 10.7541/2021.2020.178

在极度弱光和两种底质条件下苦草的生长和生理响应

基金项目: 国家自然科学基金(31870446); 淡水生态与生物技术国家重点实验室项目(2019FBZ01); 中国科学院科技服务网络计划重点项目(KFJ-STS-QYZD-156)资助
详细信息
    作者简介:

    张忠海(1995—), 男, 硕士研究生; 主要从事水生植物学研究。E-mail: 1161962932@qq.com

    通信作者:

    袁昌波(1990—), 男, 博士后; 主要从事水生植物生态学研究。E-mail: yuancb@ihb.ac.cn

  • 中图分类号: Q142

GROWTH AND PHYSIOLOGICAL RESPONSE OF VALLISNERIA NATANS UNDER EXTREME LOW LIGHT AND TWO SUBSTRATE CONDITIONS

Funds: Supported by the National Natural Science Foundation of China (31870446); State Key Laboratory of Freshwater Ecology and Biotechnology (2019FBZ01); Science and Technology Service Network Initiative, Chinese Academy of Sciences (KFJ-STS-QYZD-156)
    Corresponding author:
  • 摘要: 实验以云南大理州洱海水生植被重度退化区(湖心平台)作为实验地点, 探究极度弱光和两种底质(黏土、淤泥)环境下苦草(Vallisneria natans)在恢复过程中的形态及生理响应, 并依此探讨底质改善对苦草种群恢复的作用。结果表明: (1)在极度弱光环境下, 苦草部分死亡, 存活数量下降, 并在形态特征和生理特征上均表现出胁迫响应, 其形态特征值下降, 氮(N)含量和游离氨基酸含量上升, 碳(C)含量和淀粉含量下降; (2)苦草不同器官对弱光环境的响应有所差异, 叶片(地上部分)受到的胁迫影响大于根茎(地下部分); (3)苦草对弱光环境的响应在不同底质条件下有显著性差异, 苦草在黏土底质上表现出更小的胁迫反应和更高的存活数量, 两种底质相比较, 黏土更适合作为苦草恢复的底质条件。研究表明在洱海当前的水质环境下有希望结合局部的底质改善来实现在南部湖心平台的沉水植物恢复。
    Abstract: In restoration of aquatic vegetation in the degraded area of shallow lakes, it is necessary to study the effects of low light stress and sediment types on aquatic plants. Vallisneria natans has strong tolerance to low light and sediment, and can be selected as a restoration species. The central part of the southern Erhai Lake (a mesotrophic lake in Yunnan Province, China) is flat, with an average annual water depth of about 6.3 m, which was called the “lake center platform” (LCP). Large areas of aquatic vegetation, including V. natans, was used to exist in LCP, it played important roles in the lake ecological function, but has completely disappeared since 2003. So, we chose V. natans as experimental material, and set two kinds of sediment conditions to study the morphological and physiological responses of V. natans under weak light of LCP and two kinds of sediment (clay and silt) environment, in order to explore the effect of substrate improvement on the restoration of V. natans. The results showed that: (1) Under the extremely low light environment, the survival number of V. natans decreased, and it also showed morphological and physiological responses to stress. The biomass and length of leaf and rhizome decreased in both sediments, and the contents of carbon (C), soluble carbohydrate and starch decreased, but the contents of free amino acid (FAA) and nitrogen (N) increased. The low light intensity inhibited the growth of V. natans and caused some plant deaths. (2) The effect of weak light stress on leaves in both sediments was greater than that on rhizome, which was shown in the increasing biomass ratio of rhizome and leaf. The physiological stress response of leaves was relatively greater than that of rhizomes, which was reflected in the decrease in the ratio of N and FAA contents, and the increase in the ratio of soluble carbohydrate and starch contents. (3) There were significant differences in the responses of V. natans to weak light environment under different sediment conditions, which was shown below: the survival number, starch content and biomass of rhizome in clay group were higher than those in sludge group, while FAA and N contents of leaves were lower. This attempt indicated that under the current water quality environment, it was possible to achieve the restoration of submerged plants in the LCP by combining with local sediment improvement.
  • 图  1   实验地点位置图

    Figure  1.   Location map of experimental sites

    图  2   水环境因子变化

    A. 苦草的光补偿点

    Figure  2.   Changes in water environmental factors

    A. Light compensation point of V. natans

    图  3   苦草存活数量变化

    Figure  3.   Changes in the survival number of V. natans

    图  4   苦草的生长特征变化

    Figure  4.   Changes of growth characteristics of V. natans

    图  5   苦草的碳(C)和氮(N)含量变化

    Figure  5.   Changes of carbon (C) and nitrogen (N) contents in V. natans

    图  6   苦草的游离氨基酸、可溶性糖和淀粉含量变化

    Figure  6.   Changes of free amino acid, soluble carbohydrate and starch content in V. natans

    表  1   洱海湖心平台区域水生植被群落变化[1517]

    Table  1   Changes of aquatic vegetation community in the lake center platform of Erhai Lake

    时间
    Time
    分布面积
    Distribution area (km2)
    在全湖水生植被面积的百分比
    Distribution proportion (%)
    群落
    Community
    优势种
    Dominant species
    1975—1983金鱼藻群落金鱼藻、苦草、黑藻
    1981—198323.029.76微齿眼子菜、金鱼藻群落金鱼藻、微齿眼子菜
    199833.434.80微齿眼子菜群落微齿眼子菜、苦草、黑藻
    下载: 导出CSV

    表  2   苦草存活数和不同器官生物量、长度的双因素方差分析

    Table  2   Two factor ANOVA table of survival number, biomass and length of different organs of V. natans (*P<0.05,** P <0.01, ***P<0.001)

    指标
    Index
    方差变异百分比 Percentage (%)
    底质时间底质×时间误差
    存活数
    Survival number
    2.9**61.7***7.1*28.2
    生物量
    Biomass
    叶片0.091.0***4.1***4.9
    根茎6.3***63.3***4.925.3
    根茎/叶片3.8***66.8***22.6***6.8
    长度
    Length
    叶片0.255.1***1.543.1
    根茎0.065.5***529.6
    根茎/叶片0.958.4***5.735.1
    下载: 导出CSV

    表  3   样本t 检验苦草生理指标在两种底质间的差异显著性分析

    Table  3   Significant analysis on the difference of physiological indexes of V. natans between two kinds of sediment by t test

    部位Position生理指标
    Physiological index
    底质(P值)
    Sediment (P)
    叶片LeafC含量0.943
    N含量0.047
    游离氨基酸含量0.168
    可溶性糖含量0.501
    淀粉含量0.306
    根茎RhizomeC含量0.575
    N含量0.000
    游离氨基酸含量0.002
    可溶性糖含量0.681
    淀粉含量0.016
    下载: 导出CSV
  • [1] 吴振斌. 水生植物与水体生态修复 [M]. 北京: 科学出版社, 2011: 66-138.

    Wu Z B. Aquatic Plants and Water Ecological Restoration [M]. Beijing: Science Press, 2011: 66-138.

    [2]

    Moss B. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components [J]. Hydrobiologia, 1990, 200-201(1): 367-377. doi: 10.1007/BF02530354

    [3] 邱东茹, 吴振斌, 刘保元, 等. 武汉东湖水生植被的恢复试验研究 [J]. 湖泊科学, 1997, 9(2): 168-174.

    Qiu D R, Wu Z B, Liu B Y, et al. Ecological restoration of aquatic vegetation in a eutrophic shallow lake, Donghu Lake, Wuhan [J]. Acta Hydrobiologica Sinica, 1997, 9(2): 168-174.

    [4] 陈洪达. 杭州西湖水生植被恢复的途径与水质净化问题 [J]. 水生生物学报, 1984, 8(2): 237-244.

    Chen H D. An approach to the restoration of aquatic vegetation in the Xihu Lake of Hangzhou, with reference to the water quality problem [J]. Acta Hydrobiologica Sinica, 1984, 8(2): 237-244.

    [5] 丁小青, 贾延亭, 杨娇艳, 等. 洪湖养殖区水生植物种子库现状及水生植被恢复策略研究 [J]. 华中师范大学, 2010, 44(2): 236-300.

    Ding X Q, Jia Y T, Yang J Y, et al. Seed bank in aquaculture area of Honghu lake and the strategy of aquatic vegetation restoration [J]. Journal of Huazhong Normal University, 2010, 44(2): 236-300.

    [6]

    Qiu D R, Wu Z B, Liu B Y, et al. The restoration of aquatic macrophytes for improving water quality in a hypertrophic shallow lake in Hubei Province, China [J]. Ecological Engineering, 2001, 18(2): 147-156. doi: 10.1016/S0925-8574(01)00074-X

    [7]

    Joanna R, Michal R, Ryszard G. Patterns of macrophyte community recovery as a result of the restoration of a shallow urban lake [J]. Aquatic Botany, 2017(138): 45-52.

    [8] 郑忠明, 宋广莹, 周志翔, 等. 基于植物多样性特征的武汉市城市湖泊湿地植被分类保护和恢复 [J]. 生态学报, 2010, 30(24): 7045-7054.

    Zheng Z M, Song G Y, Zhou Z X, et al. Classified conservation and restoration of vegetation in Wuhan urban lake wetlands based on plant diversity characteristics [J]. Acta Ecologica Sinica, 2010, 30(24): 7045-7054.

    [9] 战吉宬, 黄卫东, 王利军. 植物弱光逆境生理研究综述 [J]. 植物学通报, 2003, 20(1): 43-50.

    Zhan J C, Huang W D, Wang L J. Research of weak light stress physiology in plants [J]. Chinese Bulletin of Botany, 2003, 20(1): 43-50.

    [10]

    Chen J F, Cao T, Zhang X L, et al. Differential photosynthetic and morphological adaptations to low light affect depth distribution of two submersed macrophytes in lakes [J]. Scientific Reports, 2016(6): 1-9.

    [11] 薛维纳, 彭岩波, 宋祥甫, 等. 弱光胁迫对黑藻生理生化特性的影响 [J]. 安徽农业科学, 2012, 40(7): 4169-4172.

    Xue W N, Peng Y B, Song X F, et al. Effects of light intensity on physiological and biochemical characteristics of Hydrilla verticillata (L.f.) Royle [J]. Journal of Anhui Agriculture Science, 2012, 40(7): 4169-4172.

    [12]

    Barko J W, Gunnison D, Carpenter S R. Sediment interactions with submersed macrophyte growth and community dynamics [J]. Aquatic Botany, 1991, 41(1-3): 41-65. doi: 10.1016/0304-3770(91)90038-7

    [13]

    Cao T, Ni L Y, Xie P, et al. Effects of moderate ammonium enrichment on three submersed macrophytes under contrasting light availability [J]. Freshwater Biology, 2011, 56(8): 1620-1629. doi: 10.1111/j.1365-2427.2011.02601.x

    [14] 倪乐意. 富营养水体中肥沃底质对沉水植物生长的胁迫 [J]. 水生生物学报, 2001, 25(4): 399-405.

    Ni L Y. Stress of fertile sediment on the growth of submersed macrophytes in eutrophic waters [J]. Acta Hydrobiologica Sinica, 2001, 25(4): 399-405.

    [15] 李恒, 尚榆民. 云南洱海水生植被 [J]. 山地研究, 1989, 7(3): 166-174.

    Li H, Shang Y M. Aquatic vegetation in Lake Erhai, Yunnan [J]. Mountain Research, 1989, 7(3): 166-174.

    [16] 戴全裕. 洱海水生植被的初步研究 [J]. 海洋湖沼通报, 1984(4): 31-41.

    Dai Q Y. A preliminary study of the aquatic vegetation in Erhaihu Lake [J]. Transactions of Oceanology and Limnology, 1984(4): 31-41.

    [17] 胡小贞, 金相灿, 杜宝汉, 等. 云南洱海沉水植被现状及其动态变化 [J]. 环境科学研究, 2005, 18(1): 1-4.

    Hu X Z, Jin X C, Du B H, et al. Submerged macrophyte of Lake Erhai and its dynamic change [J]. Research of Environmental Sciences, 2005, 18(1): 1-4.

    [18] 韩涛, 彭文启, 李怀恩, 等. 洱海水体富营养化的演变及其研究进展 [J]. 中国水利水电科学研究院学报, 2005, 3(1): 71-74.

    Han T, Peng W Q, Li H E, et al. Research on features and ecological function of plant root channel [J]. Journal of China Institute of Water Resources and Hydropower Research, 2005, 3(1): 71-74.

    [19] 吴庆龙, 王云飞. 洱海生物群落的历史演变分析 [J]. 湖泊科学, 1999, 11(3): 267-273. doi: 10.18307/1999.0312

    Wu Q L, Wang Y F. On the succession of aquatic communities in Erhai Lake [J]. Journal of Lake Sciences, 1999, 11(3): 267-273. doi: 10.18307/1999.0312

    [20] 储昭升, 叶碧碧, 田桂平, 等. 洱海沉水植物空间分布及生物量估算 [J]. 环境科学研究, 2014, 27(1): 1-5.

    Chu Z S, Ye B B, Tian G P, et al. Spatial distribution characteristics and estimation of submerged plant biomass in Lake Erhai [J]. Research of Environmental Sciences, 2014, 27(1): 1-5.

    [21] 陈耀东. 中国水生植物 [M]. 郑州: 河南科学技术出版社, 2012: 256-257.

    Chen Y D. The Chinese Aquatic Plants [M]. Zhengzhou: Henan Science and Technology Press, 2012: 256-257.

    [22]

    Lowden, Richard M. An approach to the taxonomy of Vallisneria L. (Hydrocharitaceae) [J]. Aquatic Botany, 1982(13): 269-298.

    [23] 李威, 何亮, 朱天顺, 等. 洱海苦草(Vallisneria natans)水深分布和叶片C、N、P化学计量学对不同水深的响应 [J]. 湖泊科学, 2014, 26(4): 585-592. doi: 10.18307/2014.0413

    Li W, He L, Zhu T S, et al. Distribution and leaf C, N, P stoichiometry of Vallisneria natans in response to various water depths in a large mesotrophic lake, Lake Erhai, China [J]. Journal of Lake Sciences, 2014, 26(4): 585-592. doi: 10.18307/2014.0413

    [24] 符辉, 袁桂香, 曹特, 等. 洱海近50a来沉水植被演替及其主要驱动要素 [J]. 湖泊科学, 2013, 25(6): 854-861. doi: 10.18307/2013.0609

    Fu H, Yuan G X, Cao T, et al. Succession of submerged macrophyte communities in relation to environmental change in Lake Erhai over the past 50 years [J]. Journal of Lake Sciences, 2013, 25(6): 854-861. doi: 10.18307/2013.0609

    [25] 黄祥飞, 陈伟民, 蔡启铭. 湖泊生态调查观测与分析 [M]. 北京: 中国标准出版社, 2000: 42-54.

    Huang X F, Chen W M, Cai Q M. Observation and Analysis of Lake Ecology [M]. Beijing: Standards Press of China, 2000: 42-54.

    [26]

    Yemm E W, Willis A J. The estimation of carbohydrates in plant extracts by anthrone [J]. Biochemical Journal, 1954, 57(3): 508-514. doi: 10.1042/bj0570508

    [27]

    Yemm E W, Cocking E C. The determination of amino-acid with ninhydrin [J]. Analyst, 1955, 80(948): 209-213. doi: 10.1039/an9558000209

    [28]

    Dirk L M A, Krol A R V D, Vreugdenhil D, et al. Galactomannan, soluble sugar and starch mobilization following germination of Trigonella foenum-graecum seeds [J]. Plant Physiology and Biochemistry, 1999, 37(1): 41-50. doi: 10.1016/S0981-9428(99)80065-5

    [29] 苏文华, 张光飞, 张云孙, 等. 5种沉水植物的光合特征 [J]. 水生生物学报, 2004, 28(4): 391-395.

    Su W H, Zhang G F, Zhang Y S, et al. The photosynthetic characteristics of five submerged aquatic plants [J]. Acta Hydrobiologica Sinica, 2004, 28(4): 391-395.

    [30] 闫志强, 刘黾, 吴小业, 等. 温度对五种沉水植物生长和营养去除效果的影响 [J]. 生态科学, 2014, 33(5): 839-844.

    Yan Z Q, Liu M, Wu X Y, et al. Influence of temperature on the growth and nutrient removal of five submerged macrophytes [J]. Ecological Science, 2014, 33(5): 839-844.

    [31] 符辉, 袁桂香, 曹特, 等. 水深梯度对苦草(Vallisneria natans)克隆生长与觅食行为的影响 [J]. 湖泊科学, 2012, 24(5): 705-711. doi: 10.18307/2012.0510

    Fu H, Yuan G X, Cao T, et al. Clonal growth and foraging behavior of a submerged macrophyte Vallisneria natans in response to water depth gradient [J]. Journal of Lake Sciences, 2012, 24(5): 705-711. doi: 10.18307/2012.0510

    [32]

    Goss R M, Baird J H, Kelm S L, et al. Trinexapac-ethyl and nitrogen effects on creeping bentgrass grown under reduced light conditions [J]. Crop Science, 2002, 42(2): 472-479.

    [33]

    Larsson, Wiren, Lundgren, et al. Effects of light and nutrient stress on leaf phenolic chemistry in salix-dasyclados and susceptibility to galerucella-lineola (coleoptera) [J]. Oikos, 1986, 47(2): 5-10.

    [34]

    Cronin C, Lodge D M. Effects of light and nutrient availability on the growth, allocation, carbon/nitrogen balance, phenolic chemistry, and resistance to herbivory of two freshwater macrophytes [J]. Oecologia, 2003, 137(1): 32-41. doi: 10.1007/s00442-003-1315-3

    [35] 张素娟. 水深/光照对苦草生长的影响研究 [D]. 南昌: 江西师范大学, 2016: 24-27.

    Zhang S J. The influence of Vallisneria natans growth under water gradient/light intensity [D]. Nanchang: Jiangxi Normal University, 2016: 24-27.

    [36] 潘慧云, 李小路, 徐小花, 等. 烯效唑对沉水植物伊乐藻(Elodea nuttallii)生长及抗氧化酶活性的影响 [J]. 生态学报, 2008, 28(12): 6159-6164.

    Pan H Y, Li X L, Xu X H, et al. Effects of uniconazole on the growth and activities of anti-oxidation enzymes of Elodea nuttallii [J]. Acta Ecologica Sinica, 2008, 28(12): 6159-6164.

    [37]

    Cao T, Xie P, Ni L Y, et al. The role of NH4+ toxicity in the decline of the submeerged macrophyte Vallisneria natans in lakes of the Yangtze River [J]. Marine and Freshwater Research, 2007, 58(6): 581-587. doi: 10.1071/MF06090

    [38] 邹丽莎, 聂泽宇, 姚笑颜, 等. 富营养化水体中光照对沉水植物的影响研究进展 [J]. 应用生态学报, 2013, 24(7): 2073-2080.

    Zou L S, Nie Z Y, Yao X Y, et al. Effects of light on submerged macrophytes in eutrophic water: Research progress [J]. Chinese Journal of Applied Ecology, 2013, 24(7): 2073-2080.

    [39]

    Lambers H. The physiological significance of cyanide-resistant respiration in higher plants [J]. Plant Cell & Environment, 1980, 3(5): 293-302.

    [40]

    Myers J A, Kitajima K. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest [J]. Journal of Ecology, 2007, 95(2): 383-395. doi: 10.1111/j.1365-2745.2006.01207.x

    [41] 雷泽湘, 谢贻发, 刘正文. 太湖梅梁湾不同沉积物对3种沉水植物生长的影响 [J]. 华中师范大学学报(自然科学版), 2006, 40(2): 125-129.

    Lei Z X, Xie Y F, Liu Z W. Effects of different sediments from Meiliang Bay of Taihu Lake on the growth of three submersed aquatic macrophytes [J]. Journal of Central China Normal University (Natural Science), 2006, 40(2): 125-129.

    [42] 谢贻发, 李传红, 刘正文, 等. 基质条件对苦草(Vallisneria natans)生长和形态特征的影响 [J]. 农业环境科学学报, 2007, 26(4): 1269-1272.

    Xie Y F, Li C H, Liu Z W, et al. Effects of sediments on the growth and morphology of Vallisneria natans [J]. Journal of Agro-environment Science, 2007, 26(4): 1269-1272.

    [43] 李文朝. 五里湖底质条件与水生高等植物的适应性研究 [J]. 湖泊科学, 1996(8): 30-36.

    Li W C. On the adaptiveness of aquatic macrophyte to the sediment in Wuli Lake [J]. Journal of Lake Sciences, 1996(8): 30-36.

    [44]

    Denny P. Solute movement in submerged angiosperms [J]. Biological Reviews, 2008, 55(1): 65-92.

    [45]

    Squires M M, Lesack L F W. The relation between sediment nutrient content and macrophyte biomass and community along a water transparency gradient among lakes of the Mackenzie Delta [J]. Canadian Journal of Fisheries & Aquatic Sciences, 2003, 60(3): 333-343.

    [46]

    Ni L Y. Effects of Water column nutrient enrichment on the growth of Potamogeton maackianus A. Been [J]. Journal of Aquatic Plant Management, 2001, 39(1): 83-87.

图(6)  /  表(3)
计量
  • 文章访问数:  2082
  • HTML全文浏览量:  633
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-09
  • 修回日期:  2020-12-13
  • 网络出版日期:  2021-05-11
  • 发布日期:  2021-05-14

目录

    /

    返回文章
    返回