艾美游仆虫大核基因组与转录组测序及结构特征

何燕, 尹家奇, 生欣

何燕, 尹家奇, 生欣. 艾美游仆虫大核基因组与转录组测序及结构特征[J]. 水生生物学报, 2021, 45(5): 1014-1023. DOI: 10.7541/2021.2020.212
引用本文: 何燕, 尹家奇, 生欣. 艾美游仆虫大核基因组与转录组测序及结构特征[J]. 水生生物学报, 2021, 45(5): 1014-1023. DOI: 10.7541/2021.2020.212
HE Yan, YIN Jia-Qi, SHENG Xin. MACRONUCLEUS GENOME AND TRANSCRIPTOME SEQUENCING AND STRUCTURE ANALYSIS OF EUPLOTES AMIETI[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(5): 1014-1023. DOI: 10.7541/2021.2020.212
Citation: HE Yan, YIN Jia-Qi, SHENG Xin. MACRONUCLEUS GENOME AND TRANSCRIPTOME SEQUENCING AND STRUCTURE ANALYSIS OF EUPLOTES AMIETI[J]. ACTA HYDROBIOLOGICA SINICA, 2021, 45(5): 1014-1023. DOI: 10.7541/2021.2020.212

艾美游仆虫大核基因组与转录组测序及结构特征

基金项目: 国家自然科学基金(31760616)资助
详细信息
    作者简介:

    何燕(1993—), 女, 硕士研究生; 研究方向为纤毛和纤毛疾病的细胞与分子生物学。E-mail: 1458820307@qq.com

    通信作者:

    生欣(1983—), 女, 博士; 研究方向为纤毛和纤毛疾病的细胞与分子生物学。E-mail: xshengbio@163.com

  • 中图分类号: Q959.116

MACRONUCLEUS GENOME AND TRANSCRIPTOME SEQUENCING AND STRUCTURE ANALYSIS OF EUPLOTES AMIETI

Funds: Supported by the National Natural Science Foundation of China (31760616)
    Corresponding author:
  • 摘要: 为获得艾美游仆虫(Euplotes amieti)大核基因组结构特征、分析基因功能及其表达调控方式, 研究采用高通量测序技术对艾美游仆虫进行了大核基因组与转录组测序, 结果显示基因组测序最终得到原始reads数据为10.92 Gb, 过滤后得到50287条Contigs。GC含量较低, 为31%; 其中两端同时具有端粒的微染色体数量为27542条, 占54.76%, 只含有一端端粒的基因数量为6118条。Contigs进行基因结构分析, 96.5%的基因能够被预测出功能, 最终得到27650条基因, 平均外显子长度为311.69 bp; 内含子较短, 平均长度为150 bp。转录组测序结果为76219898条, 拼接后获得38588条转录组Unigenes, 其平均长度为1189 bp。将转录组的38588条Unigenes比对发现有2%—3%基因发生了编程性移码, 其中, 绝大多数为+1PRF; 除此之外, 艾美游仆虫的终止密码子还存在重配现象, 其终止密码子为UAA和UAG, 而UGA编码半胱氨酸或硒代半胱氨酸。这与游仆虫属的编程性移码及终止密码子重配的特点一致。将27650条基因组Contigs与38588条转录组Unigenes成功获得注释。基因功能分析显示转录本显著富集于细胞生长与死亡、膜转运、运输与细胞学过程等。将基因组与转录组随机各抽取50个基因进行PCR验证。95%的基因均验证成功。结果表明艾美游仆虫除了具有游仆虫特有的微染色体、密码子重新分配和程序性移码等基因组特征外, 还具有大量“联合微染色体”, 编码大量与感受外界环境变化、细胞周期与蛋白表达调控等相关的特殊蛋白质, 并通过一定量的miRNA与锌指类转录因子对基因进行表达调控。
    Abstract: To explore genome structure characteristics, gene function and expression regulation of Euplotes amieti, high-throughput sequencing technique was used to sequence the macronucleus genome and transcriptome of Euplotes amieti. A total of 10.92 Gb data and 50287 Contigs were obtained after filtration. The GC content was 31% and the average length of exons and introns were 311.69 bp and 150 bp, respectively. The number of microchromosomes with telomeres at both ends was 27542, accounting for 54.76%, and the number of genes containing only one telomere was 6118. 38588 Unigenes were split, and the average length was 1189 bp. There were 2%—3% PRF in the total Unigenes, and most of which were +1PRF. Besides, the stop codon of Euplotes amieti also has a reconfiguration phenomenon. The stop codons are UAA and UAG, while UGA codes cysteine and selenocysteine. This was consistent with the characteristics of programmed ribosomal frameshifting and stop codon reassignments in Euplotes. 27650 genomic contigs and 38588 transcriptome Unigenes were successfully annotated. Gene function analysis showed that transcripts were significantly enriched in multiple biological processes, mainly involved cell growth and death, membrane transport, transport, and cytology. Moreover, 50 genes were randomly selected from the genome and transcriptome for PCR verification, and 95% of them were successfully verified. The results indicated that in addition to the characteristic microchromosomes and programmed frameshift, the Euplotes amieti had a large number of “combined microchromosomes” and encoded a large number of special proteins related to the perception of changes in the external environment, cell cycle, and protein expression regulation. In addition,, the gene expression may be regulated by some miRNA and zinc finger transcription factors.
  • 图  1   基因组及转录组测序结果

    A. 基因组注释, B. 转录组注释; GO. GO数据库中被注释到的Conting和Unigene数目; NR. NR数据库中被注释到的Conting和Unigene数目; KEGG. KEGG数据库中被注释到的Conting和Unigene数目; Swissprot. Swissprot数据库中被注释到的Conting和Unigene数目; Pfam. Pfam数据库中注释的Conting数目; Interpro. Interpro 数据库中注释的Conting数目; PFAM. PFAM数据库中注释到的Unigene数目

    Figure  1.   Genome and transcriptome sequencing results

    A. Genome annotation; B. Transcriptome annotation. GO. Number of Contigs and Unigenes annotated in the GO database; NR. Number of Contigs and Unigenes annotated in the NR database; KEGG. Number of Contigs and Unigenes annotated in the KEGG database; Swissprot. Number of Contigs and Unigenes annotated in the Swissprot database; Pfam. Number of Contigs annotated in the Platform database; Interpro. Number of Contigs annotated in the Interpro database; PFAM. Number of Unigenes annotated in the PFAM database

    图  2   基因结构特征比较

    A. 平均CDS长度比较; B. 每个基因平均外显子比较结果; C. 几种腹毛类纤毛虫基因结构比较

    Figure  2.   Comparison of gene structures

    A. The average CDS length; B. The average exons of each gene; C. Comparison of the gene structure of some Hypotrichida ciliates

    图  3   艾美游仆虫与多种真核生物基因组比较(进化树基于18S rRNA绘制)

    Figure  3.   CComparison of representative eukaryotic genome. The tree was constructed based on the sequences of 18S rRNA genes

    图  4   转录因子家族统计图

    Figure  4.   Transcription factor family statistic

    图  5   基因组及转录组结果验证

    A. 基因组测序1—24号基因验证结果; B. 基因组测序26—50号基因验证结果; C. 转录组测序1—24号基因验证结果; D. 转录组测序26—50号基因验证结果 Marker从上到下依次为2000、1000、750、500、250和100 bp

    Figure  5.   Genome and transcriptome validation

    A. Genome sequencing 1—24 gene validation results; B. Genome sequencing 26—50 gene validation results; C. Transcriptome sequencing 1—24 gene validation results; D. Transcriptome sequencing 26—50 gene validation resultsMarkers from top to bottom are 2000, 1000, 750, 500, 250 and 100 bp

    表  1   艾美游仆虫基因组测序数据统计

    Table  1   Genomic sequencing data statistics of Euplotes amieti

    拼装结果
    Assembler
    SPAdes
    测序软件
    SPAdes+CAP3拼接软件最终拼装
    结果
    Final assembly
    组装的大小Assembly size (Mb)95.5094.5689.46
    片段Contigs (n)648365979550287
    具有两端端粒的片段Number of 2-telomere contigs (n)273152754427542
    具有一端端粒的片段Number of 1-telomere contigs (n)771965376118
    不具有端粒的片段Number of 0-telomere contigs (n)298022571416627
    长度小于500 bp的片段Number of length<500 bp25179
    22279
    13472
    GC百分比GC (%)31
    下载: 导出CSV

    表  2   艾美游仆虫转录组拼接序列

    Table  2   Transcriptome splicing sequence of Euplotes amieti

    序列Sequence重叠群
    Contigs
    转录组序列
    Transcript
    转录本代表序列Unigene
    序列总数Sequence number689026069138588
    序列最大长度Max. length (bp)166441664816648
    序列平均长度Mean length (bp)609.451326.61189.99
    所有序列长到短排列并相加, 相加的长度达到序列总长度的50%时, 最后一条序列长度 N50 (bp)131917591643
    长度大于N50 的序列总数
    N50 Sequence No.
    9738152279000
    所有序列长到短排列并相加, 相加的长度达到序列总长度的90%时, 最后一条序列长度 N90 (bp)203699581
    长度大于N90的序列总数
    N90 Sequence No.
    392904229126558
    序列的GC含量GC (%)33.4732.9933.19
    下载: 导出CSV

    表  3   非编码RNA序列注释

    Table  3   Noncoding RNA sequence annotation

    类型
    Type
    拷贝数
    Copy
    (w*)
    平均长度
    Average
    length
    (bp)
    总长度
    Total length
    (bp)
    占基因组比例Of genome
    (%)
    miRNA23125.7828930.003234
    tRNA10574.3278040.008724
    rRNA28104.6829310.003276
    rRNA18S26104.8127250.003046
    28S21032060.000230
    5.8S0000
    5S0000
    snRNA11164.7318120.002026
    snRNACD-box12632630.000294
    HACA-box0000
    splicing9145.2213070.001461
    注: *全基因组注释, 综合数据计算平均长度和总长度Note: *Genome annotation, synthesis data calculate average length and total length
    下载: 导出CSV
  • [1] 生欣, 王正君, 尹飞, 等. 纤毛虫阔口游仆虫皮层微管胞器的形态及形态发生 [J]. 华东师范大学学报, 2010(6): 83-90.

    Sheng X, Wang Z J, Yin F, et al. Morphology and morphogenesis of the cell microtubular organelles in the cortex of Euplotes eurystomus [J]. Journal of East China Normal University, 2010(6): 83-90.

    [2]

    Eisen J A, Coyne R S, Wu M, et al. Macronuclear genome sequence of the ciliate Tetrahymena thermophila [J]. Model Eukaryote, 2006, 4(9): e286.

    [3]

    Aury J M, Jaillon O, Duret L, et al. Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia [J]. Nature, 2006, 444(7116): 171-178. doi: 10.1038/nature05230

    [4]

    Coyne R S, Hannick L, Shanmugam D, et al. Comparative genomics of the pathogenic ciliate Ichthyophthirius multifiliis, its free-living relatives and a host species provide insights into adoption of a parasitic lifestyle and prospects for disease control [J]. Genome Biology, 2011, 12(10): R100. doi: 10.1186/gb-2011-12-10-r100

    [5]

    Swart E C, Bracht J R, Magrini V, et al. The Oxytricha trifallax macronuclear genome: a complex eukaryotic genome with 16, 000 tiny chromosomes [J]. PLoS Biology, 2013, 11(1): e1001473. doi: 10.1371/journal.pbio.1001473

    [6]

    Aeschlimann S H, Jönsson F, Postberg J, et al. The draft assembly of the radically organized Stylonychia lemnae macronuclear genome [J]. Genome Biology and Evolution, 2014, 6(7): 1707-1723. doi: 10.1093/gbe/evu139

    [7]

    Xiong J, Wang G, Cheng J, et al. Genome of the facultative scuticociliatosis pathogen Pseudocohnilembus persalinus provides insight into its virulence through horizontal gene transfer [J]. Scientific Reports, 2015, 5(1): 15470. doi: 10.1038/srep15470

    [8]

    Wang R, Miao W, Wang W, et al. EOGD: the Euplotes octocarinatus genome database [J]. BMC Genomics, 2018, 19(1): 1-6. doi: 10.1186/s12864-017-4368-0

    [9]

    Zhang W, Gao Y, Long M, et al. Origination and evolution of orphan genes and de novo genes in the genome of Caenorhabditis elegans [J]. Science China, 2019, 62(4): 579-593. doi: 10.1007/s11427-019-9482-0

    [10]

    Chen X, Jiang Y, Gao F, et al. Genome analyses of the new model protist Euplotes vannus focusing on genome rearrangement and resistance to environmental stressors [J]. Molecular Ecology Resources, 2019, 19(5): 1292-1308. doi: 10.1111/1755-0998.13023

    [11]

    Downing T, Imamura H, Decuypere S, et al. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance [J]. Genome Research, 2011, 21(12): 2143-2156. doi: 10.1101/gr.123430.111

    [12] 陈波, 许静, 王伟. 抗沉默因子Asf1调控嗜热四膜虫细胞核的稳定性 [J]. 中国生物化学与分子生物学报, 2015, 31(1): 55-63.

    Chen B, Xu J, Wang W. Anti-silencing factor Asf1 regulates the nuclear stability in Tetrahymena thermophila [J]. Chinese Journal of Biochemistry and Molecular Biology, 2015, 31(1): 55-63.

    [13] 王雪艳. 烟台近海周丛类纤毛虫物种多样性及系统发育研究 [D]. 烟台: 烟台大学, 2019: 270-295.

    Wang X Y. Species diversity and molecular phylogeny of periphyton ciliates in the littoral zone of Yantai[D]. Yantai: Yantai University, 2019: 270-295.

    [14] 顾福康. 纤毛虫大核和小核的形态及其发育过程 [J]. 动物学杂志, 1993, 28(5): 54-59.

    Gu F K. The morphology and development of ciliates’ large and small nuclei [J]. Chinese Journal of Zoology, 1993, 28(5): 54-59.

    [15] 伊珍珍, 苗苗, 高珊, 等. 纤毛虫原生动物的分子生物学研究: 若干热点领域及新进展 [J]. 科学通报, 2016, 61(20): 2227-2238. doi: 10.1360/N972016-00064

    Yi Z Z, Miao M, Gao S, et al. On molecular biology of ciliated protozoa: Frontier areas and progresses [J]. Chinese Science Bulletin, 2016, 61(20): 2227-2238. doi: 10.1360/N972016-00064

    [16] 肖羽, 王软林, 杜军, 等. 滑动序列对游仆虫中识别+1位和+2位编程性核糖体移码具有关键作用 [J]. 中国生物化学与分子生物学报, 2020, 36(3): 289-299.

    Xiao Y, Wang R L, Du J, et al. Slippery sequence is important for distinguishing between +1 and +2 programmed ribosomal frameshifting in Euplotes [J]. Chinese Journal of Biochemistry and Molecular Biology, 2020, 36(3): 289-299.

    [17] 杨然, 陈天兵, 黄俊, 等. 尖毛虫属Actin Ⅰ、α-TBP和DNA pol α乱序基因的模式研究 [J]. 水生生物学报, 2017, 41(2): 285-295. doi: 10.7541/2017.35

    Yang R, Chen T B, Huang J, et al. Evolution of the scrambled pattern of the actin Ⅰ, α-TBP and DNA pol α gene within the genus Oxytricha (Protozoa, Ciliates) [J]. Acta Hydrobiologica Sinica, 2017, 41(2): 285-295. doi: 10.7541/2017.35

    [18] 生欣. 腹毛类纤毛虫阔口游仆虫微管类细胞骨架及γ-微管蛋白的研究 [D]. 上海: 华东师范大学, 2011: 275-286.

    Sheng X. Study on the microtubular cytoskeleton and γ-tubulin in the hypotrich ciliate Euplotes eurystomus [D]. Shanghai: East China Normal University, 2011: 275-286.

    [19] 王软林. 八肋游仆虫中编程性核糖体移码基因的鉴定及其分子机制研究[D]. 太原: 山西大学, 2017: 235-237.

    Wang R L. Identification of programmed ribosomal frameshifting genes and exploration of the frameshift mechanism in Euplotes octocarinatus [D]. Taiyuan: Shanxi University, 2017: 235-237.

    [20]

    Chen X, Jiang Y, Gao F, et al. Genome analysis of the unicellular eukaryote Euplotes vannus reveals molecular basis for sex determination and tolerance to environmental stresses [J]. bioRxiv, 2018: 357715.

    [21]

    Dawson D, Stetler D J, Swanton M T, et al. Tandemly repeated sequence families in micronuclear DNA of the ciliate Stylonychia pustulata [J]. Eukaryot Cell, 1983, 30(4): 7.

    [22]

    Tan M, Liang A H, Brünen-Nieweler C, et al. Programmed translational frameshifting is likely required for expressions of genes encoding putative nuclear protein kinases of the ciliate Euplotes octocarinatus [J]. Journal of Eukaryotic Microbiology, 2001, 48(5): 575-582. doi: 10.1111/j.1550-7408.2001.tb00193.x

    [23]

    Tan M, Heckmann K, Brünen N C. Analysis of micronuclear, macronuclear and cDNA sequences encoding the regulatory subunit of cAMP-dependent protein kinase of Euplotes octocarinatus: Evidence for a ribosomal frameshift [J]. Journal of Eukaryotic Microbiology, 2001, 48(1): 80-87. doi: 10.1111/j.1550-7408.2001.tb00418.x

    [24] 王昭. 八肋游仆虫中编程性翻译移码基因的研究 [D]. 太原: 山西大学, 2016: 288-290.

    Wang Z. Study of the Programmed translational frameshifting genes in Euplotes octocarinatus [D]. Taiyuan: Shanxi University, 2016: 288-290.

    [25]

    Chen X, Bracht J R, Goldman A D, et al. The architecture of a scrambled genome reveals massive levels of genomic rearrangement during development [J]. Cell, 2014, 158(5): 1187-1198. doi: 10.1016/j.cell.2014.07.034

    [26]

    Zhang J, Tian M, Yan G X, et al. E2fl1 is a meiosis-specific transcription factor in the protist Tetrahymena thermophila [J]. Cell Cycle, 2017, 16(1): 123-135. doi: 10.1080/15384101.2016.1259779

    [27] 张科, 邱世香, 王茂田, 等. ZBTB32生物学功能的研究进展 [J]. 成都医学院学报, 2016, 11(3): 381-386. doi: 10.3969/j.issn.1674-2257.2016.03.025

    Zhang K, Qiu S X, Wang T M, et al. Research progress of ZBTB32 biological function [J]. Journal of Chengdu Medical College, 2016, 11(3): 381-386. doi: 10.3969/j.issn.1674-2257.2016.03.025

图(5)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-16
  • 修回日期:  2021-02-05
  • 网络出版日期:  2021-07-01
  • 发布日期:  2021-09-08

目录

    /

    返回文章
    返回