ANALYSIS OF PIGMENT CELLS DIFFERENCE IN BODY COLOR VARIATION OF PLECTROPOMUS LEOPARDUS
-
摘要: 为了揭示豹纹鳃棘鲈(Plectropomus leopardus)体色变异机制, 研究选取了不同体色个体的样本, 利用石蜡切片、冰冻切片及体视显微镜观察等方法揭示不同皮肤部位色素细胞的类型、分布和数量的差异, 并对应激和非应激状态下色素细胞的变化进行了研究。结果显示, 黑色素细胞在背部和尾部分布比较密集, 在腹部较为稀疏, 黑色个体的黑色素细胞数量较红色个体多; 在应激状态下个体能迅速发生体色变化, 主要由于色素细胞快速扩张和收缩导致。研究为进一步揭示豹纹鳃棘鲈体色变异的分子机制和优良品种选育奠定了基础。Abstract: Body color is an unique phenotypic trait of fish, which is of great significance to the survival of species, avoiding enemy damage and preventing ultraviolet erosion. Coral reef fishes have rich species diversity and body color variation. Plectropomus leopardus, a coral reef fish, shows significantly different body colors in different environments. Its body color is gorgeous and bright, with high ornamental value and high economic value. Plectropomus leopardus is a valuable material to study the development and variation of body color. In order to reveal the mechanism of fish body color variation, Plectropomus leopardus individuals with different colors were selected. The skin color, types of pigment cells and movement state of pigment cells in different parts were observed by means of paraffin section, frozen section and stereoscopic microscope to compare the red and black Plectropomus leopardus. Then, the skin sections of the individuals with different colors were observed to analyze the influence of the number and distribution of pigment cells on the change of body color. Meanwhile, the difference of pigment cells between stress and non-stress groups was also studied. The results showed that the morphology of melanocytes and erythrocytes was mainly dendritic, and some are punctate. The size of melanocytes was 20—35 μm, and that of erythrocytes was 20—25 μm. In the black individuals, the back epidermis were mainly melanocytes, and the cells were zonal distribution. In the abdomen epidermis of the black individuals, a large number of melanocytes were observed. While in the tail of the black individuals, a large number of melanocytes were mainly distributed, the cell density was the largest, some cells were stacked distribution, and the tissue color was the deepest. In the red individuals, the dorsal epidermis was mainly composed of red pigment cells. In the abdominal epidermis, only red pigment cells were observed, with a small number of cells scattered in the tissues and the lightest color. In the tail of the red individuals, red pigment cells were widely distributed, with a block distribution, and a small number of melanocytes were observed in the tail epidermis. In the stress group, body color changed quickly and the granular pigment cells were smaller and darker than those in non-stress group, which was mainly due to the rapid expansion and contraction of pigment cells. This research will lay the foundation for further discovery of the development mechanism of body color formation of Plectropomus leopardus, and also provide theoretical guidance for the breeding.
-
Keywords:
- Plectropomus leopardus /
- Body color variation /
- Pigment cells /
- Stress /
- Frozen section
-
-
图 4 豹纹鳃棘鲈皮肤组织切片显微结构
A. 红色个体背部切片; B. 红色个体腹部切片; C. 红色个体尾部切片; D. 黑色个体背部切片; E. 黑色个体腹部切片; F. 黑色个体尾部切片; M. 色素细胞
Figure 4. Microscopical observation on skin section of Plectropomus leopardus
A. red individual back section; B. red individual abdomen section; C. red individual tail section; D. black individual back section; E. black individual abdomen section; F. black individual tail section; M. melanocytes
图 6 非应激状态和应激状态下的豹纹鳃棘鲈表皮色素体
A. 非应激状态下色素细胞分布; B. 应激状态下色素细胞分布; M. 黑色素体; R. 红色素体
Figure 6. Microscopic observation results of the Plectropomus leopardus in unstress state and stress state
A. Distribution map of pigment cells in unstress state; B. distribution map of pigment cells in stress state; M. melanosome; R. red pigment
表 1 豹纹鳃棘鲈皮肤色差值比较
Table 1 Comparison of color difference of Plectropomus leopardus
皮肤部位
Skin region红色个体
Red individual黑色个体
Black individual应激状态 非应激状态 应激状态 非应激状态 背部Dorsal 43.80b 63.23a 26.00c 47.50b 腹部Abdomen 21.77a 19.57ab 12.80b 22.83a 尾部Tail 61.23ab 59.47a 52.2a 50.07b 注: 上标不同字母之间表示存在显著性差异(P<0.05); 表格所示结果为总色差Note: Different superscript letters indicate significant differences (P<0.05). The result shown in the table is the total color difference -
[1] Storebakken T, No H K. Pigmentation of rainbow trout [J]. Elsevier, 1992, 100(1-3): 209-229.
[2] Kelsh R N. Genetics and evolution of pigment patterns in fish [J]. Pigment Cell Research, 2010, 17(4): 326-336.
[3] 刘力, 裴思然, 吴华丽, 等. 基于tyrp1a转基因斑马鱼构建色素障碍性疾病药物筛选模型 [J]. 中国药科大学学报, 2016, 47(6): 740-743. Liu L, Pei S R, Wu H L, et al. Drug screening model of treating pigmentation disorders in tyrp1a transgenic zebrafish [J]. Journal of China Pharmaceutical University, 2016, 47(6): 740-743.
[4] Hee C S, Hoon K B, Hoon L C, et al. Response of body color change rearing under different light intensity conditions in farmed red spotted grouper, Epinephelus akaara [J]. Fisheries and Aquatic Sciences, 2020, 23(1): 1-9. doi: 10.1186/s41240-020-0147-y
[5] Kasagi S, Miura M, OkazakiT, et al. Effects of tank color brightness on the body color, somatic growth, and endocrine systems of rainbow trout Oncorhynchus mykiss [J]. General and Comparative Endocrinology, 2020(298): 113581.
[6] 徐伟, 李池陶, 曹顶臣, 等. 几种鲤鲫鳞片色素细胞和体色发生的观察 [J]. 水生生物学报, 2007, 31(1): 67-72. doi: 10.3321/j.issn:1000-3207.2007.01.010 Xu W, Li C T, Cao D C, et al. Observation on scale chromatophore and body color’s genesis of carp and cruscian carp [J]. Acta Hydrobiologica Sinica, 2007, 31(1): 67-72. doi: 10.3321/j.issn:1000-3207.2007.01.010
[7] Liu J, Zhang Y, Gui S, et al. Observation and regression models on body colour inheritance and development in crucian carp and carp [J]. Aquaculture International, 2016, 24(4): 1191-1199. doi: 10.1007/s10499-016-9979-y
[8] Parichy D M, Johnson S L. Zebrafish hybrids suggest genetic mechanisms for pigment pattern diversification in Danio [J]. Development Genes and Evolution, 2001, 211(7): 319-328. doi: 10.1007/s004270100155
[9] Hoekstra H E. Genetics, development and evolution of adaptive pigmentation in vertebrates [J]. Heredity, 2006, 97(3): 222-234. doi: 10.1038/sj.hdy.6800861
[10] Nilsson S H, Aspengren S, Wallin M. Rapid color change in fish and amphibians-function, regulation, and emerging applications [J]. Pigment Cell & Melanoma Research, 2013, 26(1): 29-38.
[11] Kindermann C, Hero J. Pigment cell distribution in a rapid colour changing amphibian (Litoria wilcoxii) [J]. Zoomorphology, 2016, 135(2): 197-203. doi: 10.1007/s00435-016-0303-1
[12] 马本贺, 孙志宾, 马爱军, 等. 环境光色对白条双锯鱼幼鱼生长和体色的影响 [J]. 海洋与湖沼, 2017, 48(1): 148-154. Ma B H, Sun Z B, Ma A J, et al. Effect of light color on growth and body color in tomato clownfish Amphiprion frenatus juvenile [J]. Oceanologia et Limnologia Sinica, 2017, 48(1): 148-154.
[13] 丁少雄, 刘巧红, 吴昊昊, 等. 石斑鱼生物学及人工繁育研究进展 [J]. 中国水产学, 2018, 25(4): 737-752. doi: 10.3724/SP.J.1118.2018.18110 Ding S X, Liu Q H, Wu H H, et al. A review of research advances on the biology and artificial breeding of groupers [J]. Journal of Fishery Sciences of China, 2018, 25(4): 737-752. doi: 10.3724/SP.J.1118.2018.18110
[14] 周邦维, 李勇, 高婷婷, 等. 主要营养素源对工业化养殖豹纹鳃棘鲈生长、体色和消化吸收的影响 [J]. 动物营养学报, 2014, 26(5): 1387-1401. doi: 10.3969/j.issn.1006-267x.2014.05.033 Zhou B W, Li Y, Gao T T, et al. Effects of main nutrient element and source on growth, body color, digestion and absorption of Plectropomus leopardus in industrialized culture [J]. Chinese Journal of Animal Nutrition, 2014, 26(5): 1387-1401. doi: 10.3969/j.issn.1006-267x.2014.05.033
[15] 田宗秀, 密守军. “采集和测算空气中的尘埃粒子”的教学设计 [J]. 生物学通报, 2012, 47(9): 22-25. doi: 10.3969/j.issn.0006-3193.2012.09.008 Tian Z X, Mi S J. A teaching design for collecting and measuring dust particles in the air [J]. Bulletin of Biology, 2012, 47(9): 22-25. doi: 10.3969/j.issn.0006-3193.2012.09.008
[16] 程辉辉, 刘新华, 涂尹, 等. 大口黑鲈、罗非鱼鳃弓色素颗粒的初步观察 [J]. 当代水产, 2013(5): 89-90. doi: 10.3969/j.issn.1674-9049.2013.05.027 Cheng H H, Liu X H, Tu Y, et al. Preliminary observation of pigment particles in gill bow of Micropterus salmoides and Tilapia [J]. Current Fisheries, 2013(5): 89-90. doi: 10.3969/j.issn.1674-9049.2013.05.027
[17] 程炜轩, 许国焕, 熊达, 等. 黄颡鱼黑色素细胞原代培养及迁移相关基因克隆分析 [J]. 生态毒理学报, 2014, 9(6): 1035-1040. Cheng W X, Xu G H, Xiong D, et al. Primary culturing of melanoma cells and cloning analysis of migrationrelated gene in Pelteobagrus fulvidraco [J]. Asian Journal of Ecotoxicology, 2014, 9(6): 1035-1040.
[18] Zarnescu O. Ultrastructure of the skin melanophores and iridophores in paddlefish, Polyodon spathula [J]. Micron, 2007, 38(1): 81-84. doi: 10.1016/j.micron.2006.03.015
[19] Bernatchez L. On the maintenance of genetic variation and adaptation to environmental change: considerations from population genomics in fishes [J]. Fish Biology, 2016, 89(6): 2519-2556. doi: 10.1111/jfb.13145
[20] 程炜轩, 许国焕, 张丽, 等. 氧化鱼油对黄颡鱼黑色素合成酶及内分泌激素的影响 [J]. 水生生物学报, 2017, 41(5): 1020-1026. doi: 10.7541/2017.127 Cheng W X, Xu G H, Zhang L, et al. Effects of dietary inclusion of oxidized fish oil on melanin, melanin synthetic enzymes and hormones of Pelteobagrus fulvidraco [J]. Acta Hydrobiologica Sinica, 2017, 41(5): 1020-1026. doi: 10.7541/2017.127
[21] Chen C, Wu L, Li Y, et al. Morphology of the early age and the pigment occurrence and the effects of different feed additives on the body color of Plectropomus leopardus [J]. Progress in Fishery Sciences, 2014, 35(5): 83-90.
[22] Mahalwar P, Singh A P, Fadeev A, et al. Heterotypic interactions regulate cell shape and density during color pattern formation in zebrafish [J]. Biology Open, 2016, 5(11): 1680-1690. doi: 10.1242/bio.022251
[23] Liang Y, Meyer A, Kratochwil C F. Neural innervation as a potential trigger of morphological color change and sexual dimorphism in cichlid fish [J]. Scientific Reports, 2020, 10(1): 12329. doi: 10.1038/s41598-020-69239-w
[24] 彭康康, 张博, 鲍宝龙, 等. 黑化牙鲆不同部位皮肤黑色素细胞和鳞片形态的比较 [J]. 上海海洋大学学报, 2019, 28(5): 708-715. doi: 10.12024/jsou.20190502632 Peng K K, Zhang B, Bao B L, et al. Comparative analysis of skin melanophore and scales in different parts of melanized Japanese flounder Paralichthys olivaceus [J]. Journal of Shanghai Ocean University, 2019, 28(5): 708-715. doi: 10.12024/jsou.20190502632
[25] 刘伟, 赵金良, 魏磊, 等. 鳜早期色素发育和色彩图案的形成 [J]. 动物学杂志, 2019(2): 236-244. Liu W, Zhao J L, Wei L, et al. The early pigmentation and color pattern formation of mandarin fish Siniperca chautsi [J]. Chinese Journal of Zoology, 2019(2): 236-244.
[26] 张希, 杨宁, 孙鶱, 等. 不同颜色品系暹罗斗鱼色素细胞的观察 [J]. 水产科技情报, 2014, 41(6): 290-293. Zhang X, Yang N, Sun X, et al. Observation of pigment cells in different color strains of Betta splendens Regan [J]. Fisheries Science and Technology Information, 2014, 41(6): 290-293.
[27] 蒋燕玲. 橘色双冠丽鱼体色发育变化及体色相关基因TYR的克隆与表达研究 [D]. 上海: 上海海洋大学, 2016: 1-65. Jiang Y L. Body color variation and cloning, expression analysis of TYR gene in Amphilophus citrinellus [D]. Shanghai: Shanghai Ocean University, 2016: 1-65.
[28] Zhang Y, Liu J, Peng L, et al. Comparative transcriptome analysis of molecular mechanism underlying gray-to-red body color formation in red crucian carp (Carassius auratus, red var.) [J]. Fish Physiology and Biochemistry, 2017, 43(5): 1387-1398. doi: 10.1007/s10695-017-0379-7
[29] 于道德, 刘洪军, 关健, 等. 黑棘鲷早期色素细胞发育与体色变化 [J]. 渔业科学进展, 2012, 33(5): 1-7. doi: 10.3969/j.issn.1000-7075.2012.05.001 Yu D D, Liu H J, Guan J, et al. Early ontogeny of chromatophores and body color changes of Acanthopagrus schlegelii [J]. Progress in Fishery Sciences, 2012, 33(5): 1-7. doi: 10.3969/j.issn.1000-7075.2012.05.001
[30] Oshima N, Nakamaru N, Araki S, et al. Comparative analyses of the pigment-aggregating and dispersing actions of MCH on fish chromatophores [J]. Comparative Biochemistry and Physiology, Part C
, 2001, 129(2): 75-84. [31] Takahashi A, Mizusawa K, Amano M. Multifunctional roles of melanocy testimulating hormone and melanin-concentrating hormone in fish: evolution from classical body color change [J]. Aqua-Bioscience Monographs, 2014, 7(1): 1-46. doi: 10.5047/absm.2014.00701.0001
[32] Sugimoto M. Morphological color changes in fish: regulation of pigment cell density and morphology [J]. Microscopy Research and Technique, 2002, 58(6): 496-503. doi: 10.1002/jemt.10168
[33] Han J, Hong W S, Wang Q, et al. The regulation of melanocyte-stimulating hormone on the pigment granule dispersion in the xanthophores and melanophores of the large yellow croaker (Larimichthys crocea) [J]. Aquaculture, 2019(507): 7-20.
[34] Ramachandran V S, Tyler C W, Gregory R L, et al. Rapid adaptive camouflage in tropical flounders [J]. Nature, 1996, 379(6568): 815-818. doi: 10.1038/379815a0