THE EFFECT OF SHORT-TERM MICRO-FLOW WATER TREATMENT ON THE MUSCLE TASTE QUALITY OF BIGHEAD CARP CULTURED IN PONDS
-
摘要: 为探究短时微流水处理对池塘养殖鳙鱼(Aristichthys nobilis)肌肉滋味品质的影响, 采用微流水装置对池塘养殖鳙鱼进行处理, 研究处理时间(0、2d、4d、6d、8d和10d)对池塘养殖鳙鱼肌肉中基本营养成分、游离氨基酸、脂肪酸、核苷酸及其降解产物、甜菜碱含量和感官评分的影响, 以期为提升鳙鱼滋味品质提供新方法。结果表明: 随着微流水处理时间的延长, 鳙鱼肌肉中总游离氨基酸含量、甜味氨基酸含量、腺苷酸(Adenosine monophosphate, AMP)含量和甜菜碱含量呈现先增加后降低的趋势, 均在处理6d时含量最高, 较未处理组分别增加了17.74%、39.45%、28.00%和50.16%; 灰分和鲜味氨基酸含量呈现增加的趋势; 粗脂肪、总脂肪酸含量、饱和脂肪酸含量、单不饱和脂肪酸含量、多不饱和脂肪酸含量、苦味氨基酸含量、酸味氨基酸含量、次黄嘌呤核苷(Hypoxanthine riboside, HxR)和次黄嘌呤(Hypoxanthine, Hx)含量则逐渐降低; 粗蛋白含量在处理过程中无显著变化。滋味分析仪(电子舌)和感官评分结果表明, 微流水处理显著提高了鳙鱼肌肉鲜味和甜味, 降低了其咸味、苦味和腥味, 且处理6d时鳙鱼肌肉的滋味、气味、质地和色泽感官评分最高。故短时微流水处理可显著提高鳙鱼的肌肉滋味品质, 不降低营养品质, 适宜的处理时间为6d。Abstract: In order to explore the effect of short-term micro-flow water treatment on the muscle taste quality of bighead carp (Aristichthys nobilis) cultured in ponds, the micro-flow device was used to treat bighead carp in ponds. The treatment times were set as 0, 2d, 4d, 6d, 8d, and 10d. The contents of moisture, protein, lipid, ash, free amino acids, free fatty acids, nucleotides and betaine, and the sensory analysis of the treated bighead carp muscle were determined to get an appropriate treatment time. The results showed that with the extension of the micro-flow water treatment time, the total free amino acid content, adenosine monophosphate content, and betaine content in the bighead carp muscle increased first and then decreased, and the contents of them were the highest at the 6th day of the treatment. While the content of lipid, the total free fatty acid, hypoxanthine riboside (HxR), and hypoxanthine (Hx) gradually decreased. The content of protein showed no significant change during the treatment. Taste analyzer (electronic tongue) and sensory analysis showed that the micro-flow water treatment significantly improved the umami and sweet taste of bighead carp muscle, and reduced the saltiness, bitterness, and fishy taste. In addition, the sensory score of the taste of bighead carp muscle was the highest at the 6th day of treatment. Therefore, the short-term micro-flow water treatment could significantly improve the muscle taste quality of bighead carp without reducing the nutritional quality, and the appropriate treatment time was 6 days.
-
Keywords:
- Bighead carp /
- Muscle /
- Micro-flow water treatment /
- Taste compounds /
- Sensory analysis
-
-
表 1 感官评分标准
Table 1 Sensory evaluation criteria
感官指标Sensory Index 评价标准和评分Evaluation criteria and ratings 8—10分8—10Points 6—8分6—8Points 4—6分4—6Points 2—4分2—4Points 0—2分0—2Points 气味Odour 鱼肉香气浓郁Strong fish smell 鱼肉香气淡, 无鱼腥味Light fish smell, no fishy smell 鱼肉香气淡, 鱼腥味淡Light fish smell, light fishy smell 鱼肉香气消失, 鱼腥味浓Fish smell disappeared, strong fishy smell 鱼腥味难以接受Fishy smell is unacceptable 滋味Taste 鱼肉固有的鲜味浓, 回味甘甜The inherent umami flavour of fish is stronger and the aftertaste is sweet 鱼肉固有的鲜味较浓, 回味甜The inherent umami flavour of fish is strong and the aftertaste is sweet 鱼肉固有的鲜味较淡, 有回味The inherent umami flavour of fish is light and has an aftertaste 鱼肉固有的鲜味淡, 无回味The inherent umami flavour of fish is lighter and has not an aftertaste 鱼肉无鲜味, 无回味The fish has not interent umarni flavour and aftertaste 色泽Colour 鱼片色泽白或透明, 断面光泽自然Fillets are white or transparent in color, with natural luster in section 鱼肉色泽白, 断面光泽淡The fish flesh is white in color and the section is light in luster 鱼肉色泽暗淡, 断面无光泽The color of the fish is dull and the section is dull 鱼肉呈灰色、淡黄色或淡红色The fish flesh is gray, light yellow or light red 鱼肉呈暗灰色、黄色或红色The fish flesh is dark gray, yellow or red 质地Texture 鱼肉嫩滑紧致, 有弹性The fish is firmer, smooth and more elastic 鱼肉较紧致, 有弹性The fish is firm and elastic 鱼肉粗糙或松散, 弹性弱The fish is rough or loose, weak elasticity 鱼肉较硬或软烂, 无弹性The fish is hard or soft and no elasticity 鱼肉过硬或呈渣状The fish is too hard or slag-like 表 2 不同微流水处理时间对鳙鱼肌肉主要营养成分的影响
Table 2 Effect of micro-flow water treatment time on nutrition composition in bighead carp muscle
处理时间
Time (d)水分Moisture (g/100 g, wb) 粗蛋白Protein (g/100 g, wb) 粗脂肪Lipid (g/100 g, wb) 灰分Ash (g/100 g, wb) 0 79.75±0.23a 17.86±0.41a 1.37±0.02a 1.03±0.02c 2 79.60±0.27ab 18.12±0.32a 1.29±0.06ab 1.07±0.03bc 4 79.49±0.23ab 17.97±0.32a 1.22±0.05ab 1.21±0.04a 6 79.42±0.20b 18.27±0.23a 1.22±0.08ab 1.11±0.05b 8 79.49±0.22ab 18.16±0.28a 1.18±0.10b 1.10±0.05b 10 79.55±0.22ab 18.08±0.26a 0.92±0.16c 1.24±0.07a 注: 同一列相同右上角含有不同英文上标字母表示有显著差异(P<0.05); 下同Note: Different letters in the same column represent significant differences (P<0.05). The same applies below 表 3 鳙鱼肌肉在不同微流水处理时间下的感官评分
Table 3 Sensory scores of bighead carp muscle under different micro-flow water treatment time
处理时间
Time (d)气味
Odour滋味
Taste色泽
Colour质地
Texture总体得分
Total score0 5.71±
1.11c5.14±
0.90c7.14±
0.69bc5.14±
0.90c5.61±
0.43d2 6.71±
0.95b6.43±
0.79b6.00±
1.00c5.43±
2.51bc6.20±
0.94cd4 6.86±
0.69b7.14±
0.90ab6.71±
1.38bc6.71±
0.95abc6.89±
0.42bc6 8.00±
1.15a7.86±
1.35a8.71±
0.76a7.71±
1.25a7.99±
1.01a8 7.29±
0.76ab7.00±
1.15ab7.29±
0.76b6.86±
1.57abc7.09±
0.47b10 7.14±
0.69ab7.00±
1.15ab7.00±
1.29bc7.14±
1.07ab7.08±
0.33b表 4 不同微流水处理时间对鳙鱼肌肉游离氨基酸含量的影响
Table 4 Effect of different micro-flow water treatment time on the content of free amino acids in bighead carp muscle
游离氨基酸
Free amino acid含量Content (mg/100 g) 0 2d 4d 6d 8d 10d 天冬氨酸Asp 0.56±0.12d 0.62±0.06d 1.77±0.34c 3.64±0.44b 4.52±0.32a 4.70±0.64a 谷氨酸Glu 1.28±0.44c 2.58±0.43b 2.33±0.34bc 2.72±0.07b 5.06±1.34a 4.94±0.17a 苏氨酸Thr 7.17±0.57b 10.68±0.73a 10.70±0.87a 12.10±0.56a 6.84±1.33b 8.34±0.99b 丝氨酸Ser 7.42±0.74d 10.10±0.51c 13.36±0.84b 16.37±0.71a 12.96±1.02b 12.71±2.97b 甘氨酸Gly 111.22±3.78c 125.91±6.06b 143.57±9.93a 128.31±4.73b 131.13±5.20b 128.41±6.91b 丙氨酸Ala 27.74±0.83d 34.59±1.98c 40.90±3.00b 50.35±2.00a 45.54±1.56ab 44.24±4.05b 赖氨酸Lys 14.59±0.45d 21.70±1.64c 21.44±1.71c 33.82±2.00a 28.02±3.25b 22.39±3.06c 脯氨酸Pro 9.15±0.28a 6.40±0.44b 4.59±0.47c 6.29±0.35b 1.24±0.79e 3.23±0.56d 缬氨酸Val 7.01±0.23a 6.90±0.36a 6.97±0.54a 7.84±0.24a 6.57±2.03a 6.86±0.61a 蛋氨酸Met 1.72±0.05c 2.18±0.17b 2.28±0.28b 2.30±0.11b 2.39±0.30ab 2.80±0.34a 酪氨酸Tyr 2.54±0.31c 3.13±0.32bc 3.54±0.31b 3.82±0.10b 3.71±0.85b 6.13±0.55a 苯丙氨酸Phe 3.53±0.08c 4.56±0.42ab 4.92±0.58ab 4.39±0.21abc 4.06±0.55bc 5.23±0.57a 色氨酸Trp 0.43±0.22c 0.66±0.14abc 0.77±0.27abc 0.96±0.12a 0.56±0.21bc 0.92±0.13ab 亮氨酸Leu 8.23±0.34ab 7.71±0.53ab 8.45±1.00ab 9.07±0.36a 4.68±1.32c 7.41±0.35b 异亮氨酸Ile 4.62±0.11ab 4.79±0.31a 4.70±0.39ab 5.08±0.17a 2.63±0.62c 4.03±0.51b 精氨酸Arg 2.41±0.10c 4.61±0.33b 4.92±0.41b 7.14±0.40a 0.19±0.07d 0.17±0.01d 组氨酸His 157.54±10.71a 137.70±4.82b 122.64±8.96bc 138.12±7.31b 117.30±6.67c 98.47±13.10d 氨基酸总量TFAA 367.17±12.05b 384.79±11.93b 397.85±29.28ab 432.32±18.45a 377.41±24.93b 360.97±31.57b 鲜味氨基酸UMAA 1.84±1.01d 3.21±1.63c 4.09±2.08c 6.36±3.20b 9.58±4.88a 9.64±4.84a 甜味氨基酸SWAA 177.30±6.23d 209.37±11.28c 234.56±16.77ab 247.24±10.15a 225.73±15.11abc 219.32±15.76bc 苦味氨基酸BIAA 188.03±10.59a 172.22±4.85ab 159.20±12.20bc 178.72±8.81ab 142.10±10.37cd 132.02±15.62d 酸味氨基SOAA 159.38±10.31a 140.91±5.05bc 126.74±9.33c 144.48±6.94ab 126.88±6.65c 108.11±13.43d 注: 鲜味氨基酸包括天冬氨酸和谷氨酸; 甜味氨基酸包括甘氨酸、丙氨酸、丝氨酸、苏氨酸、赖氨酸和脯氨酸; 苦味氨基酸包括蛋氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、酪氨酸、组氨酸、精氨酸和色氨酸; 酸味氨基酸包括天冬氨酸、谷氨酸和组氨酸; “-”表示样品中未检测到该物质; 下同Note: Umami amino acids are Asp and Glu; sweetness amino acids are Gly, Ala, Ser, Thr, Lys and Pro; bitterness amino acids are Met, Val, Leu, Ile, Phe, Tyr, His, Arg and Trp; sourness amino acids are Asp, Glu and His; Different letters in the same cow represent significant differences (P<0.05), “-” represents not detected in the samples. The same applies below 表 5 不同微流水处理时间对鳙鱼肌肉脂肪酸含量的影响
Table 5 Effect of micro-flow water treatment time on content of fatty acids in bighead carp muscle
脂肪酸Fatty acid 含量Content (mg/100 g) 0 2d 4d 6d 8d 10d 十一碳酸C11﹕0 0.40±0.00a 0.12±0.00d 0.14±0.01b 0.13±0.00c 0.12±0.00d 0.12±0.00d 月桂酸C12﹕0 2.76±0.01a 1.51±0.00b 1.31±0.00c 1.11±0.01d 1.05±0.05e 0.84±0.00f 十三碳酸C13﹕0 1.50±0.00a 0.85±0.02b 0.78±0.00c 0.56±0.00e 0.58±0.01d 0.40±0.00f 肉豆蔻酸C14﹕0 28.45±0.07a 12.88±0.05d 13.90±0.04b 13.83±0.01b 13.10±0.04c 12.78±0.04e 十五碳酸C15﹕0 12.61±0.03a 6.18±0.03f 7.06±0.02b 6.96±0.01c 6.43±0.02e 6.52±0.08d 棕榈酸C16﹕0 159.87±0.91a 132.05±0.38b 118.74±0.05c 100.06±1.06e 102.33±0.45d 97.42±0.29f 十七碳酸C17﹕0 10.67±0.1a 6.03±0.03c 7.45±0.06b 6.00±0.03d 5.37±0.02e 4.50±0.04f 硬脂酸C18﹕0 66.35±0.60a 54.44±0.12b 43.96±0.27c 43.98±0.07c 43.17±0.18d 42.91±0.05d 花生酸C20﹕0 4.36±0.12a 1.96±0.01b 1.74±0.01c 1.66±0.00c 1.66±0.02c 1.57±0.01d 二十一碳酸C21﹕0 0.56±0.01a 0.23±0.00d 0.29±0.00b 0.23±0.00d 0.27±0.00c 0.21±0.01e 二十二碳酸C22﹕0 1.09±0.01a 0.74±0.00b 0.64±0.00c 0.55±0.01e 0.58±0.01d 0.33±0.00f 二十三碳酸C23﹕0 — — — — — 0.27±0.02a 二十四碳酸C24﹕0 0.74±0.00a 0.58±0.01b 0.50±0.03c 0.46±0.01d 0.40±0.00e 0.35±0.01f 十五碳一烯酸C15﹕1 — — — — — 0.74±0.02a 棕榈油酸C16﹕1 65.68±0.17a 36.77±0.32c 38.18±0.24b 29.64±0.17d 30.08±0.18d 23.28±0.48e 油酸C18﹕1n9c 242.79±0.27a 227.05±0.20b 217.53±0.53c 194.59±5.66d 180.17±0.85e 179.50±0.41e 二十碳一烯酸C20﹕1 23.75±0.16a 19.71±0.08b 17.05±0.15 c 16.12±0.07d 13.09±0.12e 12.91±0.09e 芥酸C22.1n9 50.64±0.18b 49.54±0.38c 50.66±0.21b 51.14±0.19a 32.29±0.15e 34.90±0.11d 二十四碳一烯酸C24﹕1 2.56±0.01a 2.06±0.00b 2.03±0.01c 1.69±0.01d 1.52±0.02f 1.54±0.01e 亚油酸C18﹕2n6c 184.02±0.21e 173.56±0.32f 185.83±0.51d 225.13±0.75a 212.30±0.24b 201.32±0.68c 二十碳二烯酸C20﹕2 12.74±0.12a 10.93±0.05d 10.44±0.05e 11.24±0.06c 11.51±0.01b 11.55±0.09b 二十二碳二烯酸C22﹕2 0.75±0.01b 0.52±0.01e 0.65±0.01c 0.77±0.02a 0.58±0.01d 0.45±0.01f α-亚麻酸C18﹕3n3 65.09±0.25a 43.51±0.10b 40.37±0.26c 38.97±0.11d 34.28±0.11e 30.13±0.14f γ-亚麻酸C18﹕3n6 2.09±0.01a 1.95±0.01b 1.26±0.01d 1.37±0.01c 1.02±0.01e 0.87±0.01f 二十碳三烯酸C20﹕3n3 9.35±0.07a 7.06±0.01c 7.35±0.04b 6.96±0.01d 4.90±0.04e 4.93±0.06e 二十碳三烯酸C20﹕3n6 11.97±0.01a 11.57±0.03b 11.35±0.03bc 11.01±0.06c 11.63±0.51ab 11.43±0.10b 花生四烯酸(ARA)C20﹕4n6 10.11±0.11a 7.95±0.21b 7.43±0.07c 6.19±0.06d 5.99±0.03e 5.38±0.06f 二十碳五烯酸(EPA)C20﹕5n3 88.44±0.18a 65.23±0.13b 53.46±0.06c 50.19±0.18d 41.99±0.18e 39.92±0.25f 二十二碳六烯酸甲酯(DHA)C22﹕6n3 77.64±0.19c 76.16±0.15e 83.76±0.31a 83.03±0.10b 76.88±0.15d 72.31±0.53f 总脂肪酸TFA 1136.99±0.26a 951.15±0.79b 923.88±0.38c 903.57±6.03d 833.27±0.45e 799.37±1.18f 饱和脂肪酸SFA 289.35±1.38a 217.58±0.44b 196.50±0.32c 175.52±1.04d 175.05±0.43d 168.21±0.44e 单不饱和脂肪酸MUFA 385.43±0.21a 335.13±0.63b 325.46±0.46c 293.18±5.99d 257.14±0.85e 252.86±0.81e 多不饱和脂肪酸PUFA 462.21±0.96a 398.44±0.83d 401.91±0.29c 434.87±0.45b 401.08±0.71c 378.29±0.35e 多不饱和脂肪酸占比
Proportion of PUFA (%)40.65±0.09e 41.89±0.06d 43.50±0.05c 48.13±0.11a 48.13±0.11a 47.32±0.08b 表 6 不同微流水处理时间对鳙鱼肌肉中核苷酸及其降解产物含量的影响
Table 6 Effects of micro-flow water treatment time on the content of Nucleotides compounds in bighead carp muscle
处理时间 Time (d) 含量Content (μmol/g) ATP ADP AMP GMP IMP HxR Hx 0 0.52±0.11a 0.03±0.02ab 0.25±0.03b 5.71±0.60a 7.87±0.25a 1.27±0.04a 0.71±0.06a 2 0.52±0.04a 0.04±0.01a 0.31±0.03ab 6.14±0.23a 7.96±0.40a 1.28±0.07a 0.70±0.03a 4 0.52±0.08ab 0.03±0.01ab 0.31±0.06a 5.68±0.43a 7.99±0.29a 1.21±0.08a 0.71±0.06a 6 0.49±0.05abc 0.04±0.01a 0.32±0.04a 5.77±0.42a 7.74±1.05a 1.22±0.04a 0.71±0.11a 8 0.42±0.02bc 0.03±0.01ab 0.27±0.03ab 5.60±0.37a 7.80±0.26a 0.86±0.07b 0.65±0.02a 10 0.41±0.03c 0.02±0.01b 0.31±0.01ab 5.36±0.75a 7.79±0.22a 0.89±0.05b 0.69±0.02a 表 7 滋味物质与电子舌响应值相关性分析
Table 7 Correlation analysis between the content of taste compounds and electronic tongue response value of bighead carp muscle
滋味物质
Taste compound电子舌探头Electronic tongue probe AHS
(酸味)CTS
(咸味)NMS
(鲜味)ANS
(甜味)SCS
(苦味)Hx 0.110 0.121 –0.060 –0.142 0.083 HxR 0.718** 0.719** –0.090 –0.562** 0.460* AMP –0.095 –0.173 0.380 0.255 0.117 IMP 0.396 0.357 0.098 0.408* 0.173 GMP 0.385 0.291 0.028 –0.246 0.178 鲜味氨基酸UMAA –0.861** –0.700** 0.668** 0.877** –0.580* 甜味氨基酸SWAA –0.195 –0.693** 0.794** 0.484* –0.022 苦味氨基酸BIAA 0.757** 0.563* –0.511* –0.715** 0.652** 酸味氨基酸SOAA 0.720** 0.686** –0.570* –0.723** 0.697** 饱和脂肪酸SFA 0.599** 0.830** –0.827** –0.776** 0.406 单不饱和脂肪酸MUFA 0.808** 0.759** –0.727** –0.869** 0.556* 多不饱和脂肪酸PUFA 0.580* 0.606** –0.504* –0.552* 0.594** 甜菜碱Betaine –0.563* –0.834** 0.825** 0.782** –0.346 注: “*”在 0.05 级别(双尾), 相关性显著; “**”在 0.01 级别(双尾), 相关性显著Note:“*”represents significant differences (P<0.05), “**”represents significant differences (P<0.01) -
[1] 农业农村部渔业渔政管理局. 中国渔业统计年鉴 [M]. 北京: 中国农业出版社, 2020: 17-34. Fisheries and Fisheries Administration of the Ministry of Agriculture. China Fishery Statistics Yearbook [M]. Beijing: China Agriculture Press, 2020: 17-34.
[2] 洪惠. 鳙脂肪酸组成及贮藏过程中品质变化规律与控制技术的研究 [D]. 北京: 中国农业大学图书馆, 2015: 12-20. Hong H. Fatty acid profile, quality changes and controlling technology of bighead carp (Aristichthys nobilis) during storage [D]. Beijing: China Agricultural University Library, 2015: 12-20.
[3] 李志辉, 马杭柯, 张培, 等. 不同养殖密度对脊尾白虾生长和水体氨氮含量的影响 [J]. 海洋渔业, 2018(5): 72-77. Li Z H, Ma H K, Zhang P, et al. Effects of density stress on the growth of Exopalaemon carinicauda and the ammonia nitrogen content in aquaculture water during culturing [J]. Marine Fisheries, 2018(5): 72-77.
[4] 李谷, 吴振斌, 侯燕松. 养殖水体氨氮污染生物修复技术研究 [J]. 大连海洋大学学报, 2004, 19(4): 281-286. doi: 10.3969/j.issn.1000-9957.2004.04.010 Li G, Wu Z B, Hou Y S. Perspective of bio-eco remediation technology for ammonia removal from intensive aquaculture waters [J]. Journal of Dalian Ocean University, 2004, 19(4): 281-286. doi: 10.3969/j.issn.1000-9957.2004.04.010
[5] Saadoun I, Schrader K K, Blevins W T. Identification of geosmin as a volatile metabolite of Anabaena sp. [J]. Journal of Basic Microbiology, 2001, 41(1): 51-55. doi: 10.1002/1521-4028(200103)41:1<51::AID-JOBM51>3.0.CO;2-R
[6] Palmeri G, Turchini G M, Caprino F, et al. Biometric, nutritional and sensory changes in intensively farmed Murray cod (Maccullochella peelii peelii, Mitchell) following different purging times [J]. Food Chemistry, 2008, 107(4): 1605-1615. doi: 10.1016/j.foodchem.2007.09.079
[7] Davidson J, Schrader K, Ruan E, et al. Evaluation of depuration procedures to mitigate the off-flavor compounds geosmin and 2-methylisoborneol from Atlantic salmon Salmo salar raised to market-size in recirculating aquaculture systems [J]. Aquacultural Engineering, 2014(61): 27-34.
[8] 郭晓东, 吕昊, 刘茹, 等. 加工前净化处理对团头鲂肌肉品质的影响 [J]. 肉类研究, 2018, 32(12): 1-7. Guo X D, Lü H, Liu R, et al. Effect of depuration treatment before processing on the flesh quality of blunt snout bream (Megalobrama amblycephala) [J]. Meat Research, 2018, 32(12): 1-7.
[9] Lü H, Hu W H, Xiong S B, et al. Depuration and starvation improves flesh quality of grass carp (Ctenopharyngodon idella) [J]. Aquaculture Research, 2018, 49(9): 3196-3206. doi: 10.1111/are.13784
[10] 胡伟华, 吕昊, 樊启学, 等. 净化时间对微流水系统中鳙品质影响的研究 [J]. 水生生物学报, 2019, 43(5): 1056-1061. doi: 10.7541/2019.124 Hu W H, Lü H, Fan Q X, et al. Influence of the purification time in micro-water purification aquaculture system on the meat quality of Aritichthys nobles [J]. Acta Hydrobiologica Sinica, 2019, 43(5): 1056-1061. doi: 10.7541/2019.124
[11] 陈周, 胡杨, 安玥琦, 等. 短时间微流水处理对池塘养殖草鱼鱼肉品质的提升作用 [J]. 水产学报, 2020, 44(7): 1198-1210. Chen Z, Hu Y, An Y Q, et al. Quality improvement of short-time micro-flow water treatment on the flesh of grass carp (Ctenopharyngodon idella) cultured in a pond [J]. Journal of Fisheries of China, 2020, 44(7): 1198-1210.
[12] 陈周. 短时间微流水处理对池塘养殖草鱼鱼肉品质的提升作用 [D]. 武汉: 华中农业大学, 2020: 7-35. Chen Z. Quality improvement of short-time micro-flow water treatment on the flesh of grass carp cultured in a pond [D]. Wuhan: Huazhong Agricultural University, 2020: 7-35.
[13] 吕昊. 微流水处理对淡水鱼的品质提升作用及其机制研究 [D]. 武汉: 华中农业大学, 2018: 44-82. Lü H. Studies on fresh quality improvement of freshwater fish by depuration with its metabolomic mechanism [D]. Wuhan: Huazhong Agricultural University, 2018: 44-82.
[14] 郭晓东. 循环水暂养处理对团头鲂肌肉品质的提升作用 [D]. 武汉: 华中农业大学, 2019: 12-36. Guo X D. Quality improvement of circulating water starvation treatment on the muscle of blunt snout bream [D]. Wuhan: Huazhong Agricultural University, 2019: 12-36.
[15] 中华人民共和国卫生部. 食品安全国家标准 食品中水分的测定 [S]. 北京: 中国标准出版社, 2016: 1-2. Ministry of Health of the People's Republic of China. National Food Safety Standards Determination of Moisture in Foods [S]. Beijing: Standards Press of China, 2016: 1-2.
[16] 中华人民共和国卫生部. 食品安全国家标准 食品中灰分的测定 [S]. 北京: 中国标准出版社, 2016: 1-3. Ministry of Health of the People’s Republic of China. National Food Safety Standards Determination of Ash in Foods [S]. Beijing: Standards Press of China, 2017: 1-3.
[17] 中华人民共和国卫生部. 食品安全国家标准 食品中蛋白质的测定 [S]. 北京: 中国标准出版社, 2017: 1-7. Ministry of Health of the People’s Republic of China. National Food Safety Standards Determination of Protein in Foods [S]. Beijing: Standards Press of China, 2016: 1-7.
[18] Folch J, Lees M, Stanley G H S. A simple method for the isolation and purification of total lipides from animal tissues [J]. Journal of Biological Chemistry, 1957(226): 498-500.
[19] 安玥琦. 鱼糜凝胶的交联结构对风味释放的影响与机制 [D]. 武汉: 华中农业大学, 2020: 120-134. An Y Q. Mechanism of flavor release affected by cross-linking structure in surimi gels [D]. Wuhan: Huazhong Agricultural University, 2020: 120-134.
[20] 张伟伟, 陆剑锋, 焦道龙, 等. 钾法提取斑点叉尾鮰内脏油的工艺研究 [J]. 食品科学, 2009, 30(24): 42-46. doi: 10.3321/j.issn:1002-6630.2009.24.006 Zhang W W, Lu J F, Jiao D L, et al. Extraction of fish oil from viscera of channel catfish through potassium-method [J]. Food Science, 2009, 30(24): 42-46. doi: 10.3321/j.issn:1002-6630.2009.24.006
[21] 刘敬科. 鲢鱼风味特征及热历史对鲢鱼风味的影响 [D]. 武汉: 华中农业大学, 2009: 53-104. Liu J K. Flavor character of silver carp and the influence of heating history on the silver carp flavor [D]. Wuhan: Huazhong Agricultural University, 2009: 53-104.
[22] 张宁龙. 养殖河鲀鱼特征性滋味组分及呈味肽的研究 [D]. 上海: 上海海洋大学, 2019: 27-53. Zhang N L. Research on the taste characteristic components and flavor peptides of bred puffer fish [D]. Shanghai: Shanghai Ocean University, 2019: 27-53.
[23] 李婉君. 南极磷虾与南美白对虾营养与滋味成分比较 [D]. 上海: 上海海洋大学, 2015: 44-46. Li W J. Nutritional and flavor components analysis of Antarctic krill and white shrimp [D]. Shanghai: Shanghai Ocean University, 2015: 44-46.
[24] 韩剑众, 黄丽娟, 顾振宇, 等. 基于电子舌的鱼肉品质及新鲜度评价 [J]. 农业工程学报, 2008, 24(12): 141-144. doi: 10.3321/j.issn:1002-6819.2008.12.030 Han J Z, Huang L J, Gu Z Y, et al. Evaluation of fish quality and freshness based on the electronic tongue [J]. Journal of Agricultural Engineering, 2008, 24(12): 141-144. doi: 10.3321/j.issn:1002-6819.2008.12.030
[25] 杨文鸽, 徐大伦, 孙翠玲, 等. 缢蛏冰藏保活期间呈味物质的变化 [J]. 中国食品学报, 2009, 9(3): 181-186. doi: 10.3969/j.issn.1009-7848.2009.03.030 Yang W G, Xu D L, Sun C L, et al. Changes of taste components in Sinonovacula constricta during iced storage-keeping alive [J]. Journal of Chinese Institute of Food Science and Technology, 2009, 9(3): 181-186. doi: 10.3969/j.issn.1009-7848.2009.03.030
[26] 崔艳红, 黄现青. 甜菜碱含量测定与工业制备方法研究 [J]. 畜禽业, 2002(6): 38-40. doi: 10.3969/j.issn.1008-0414.2002.06.031 Cui Y H, Huang X Q. Determination of betaine content and research on industrial preparation methods [J]. Livestock and Poultry Industry, 2002(6): 38-40. doi: 10.3969/j.issn.1008-0414.2002.06.031
[27] 吴瑞梅, 赵杰文, 陈全胜, 等. 基于电子舌技术的绿茶滋味品质评价 [J]. 农业工程学报, 2011, 27(11): 378-381. doi: 10.3969/j.issn.1002-6819.2011.11.070 Wu R M, Zhao J W, Chen Q S, et al. Quality assessment of green tea taste by using electronic tongue [J]. Journal of Agricultural Engineering, 2011, 27(11): 378-381. doi: 10.3969/j.issn.1002-6819.2011.11.070
[28] 常亚楠, 赵改名, 柳艳霞, 等. 煮制对鸡肉及汤汁中游离氨基酸的影响 [J]. 食品工业科技, 2014, 35(9): 333-337, 342. Chang Y N, Zhao G M, Liu Y X, et al. Changes of free amino acids in chicken and its broth during cooking [J]. Science and Technology of Food Industry, 2014, 35(9): 333-337, 342.
[29] 赵静, 丁奇, 孙颖, 等. 香菇菌汤及酶解液中滋味成分及呈味特性的对比分析 [J]. 食品科学, 2016, 37(24): 99-104. doi: 10.7506/spkx1002-6630-201624015 Zhao J, Ding Q, Sun Y, et al. Comparison of taste compounds and taste characteristics of shiitake mushroom soup and enzymatic hydrolysate [J]. Food Science, 2016, 37(24): 99-104. doi: 10.7506/spkx1002-6630-201624015
[30] 王慧, 施文正, 吴旭干, 等. 不同温度养殖的雌体三疣梭子蟹性腺和蟹肉风味品质比较 [J]. 食品科学, 2016, 37(18): 84-90. doi: 10.7506/spkx1002-6630-201618014 Wang H, Shi W Z, Wu X G, et al. Comparison of flavor quality in gonads and meat of female Portunus trituberculatus cultured at different water temperatures [J]. Food Science, 2016, 37(18): 84-90. doi: 10.7506/spkx1002-6630-201618014
[31] Madruga M S, Elmore J S, Oruna-Concha M J, et al. Determination of some water-soluble aroma precursors in goat meat and their enrolment on flavour profile of goat meat [J]. Food Chemistry, 2010, 123(2): 513-520. doi: 10.1016/j.foodchem.2010.04.004
[32] 胡奇杰, 朱佳茜, 陈褚建, 等. 太湖蟹加工过程中呈味核苷酸变化规律研究 [J]. 食品研究与开发, 2017, 38(22): 102-104, 171. doi: 10.3969/j.issn.1005-6521.2017.22.021 Hu Q J, Zhu J Q, Chen C J, et al. Study on the change of flavor nucleotide during the process of Taihu crab processing [J]. Food Research and Development, 2017, 38(22): 102-104, 171. doi: 10.3969/j.issn.1005-6521.2017.22.021
[33] 欧阳芳芳, 王建辉, 陈奇, 等. 草鱼贮藏期间肌肉ATP关联物及K值的动态变化 [J]. 食品与机械, 2016, 32(3): 137-140, 159. Ouyang F F, Wang J H, Chen Q, et al. Study on dynamics of ATP-related compounds and freshness of grass carp muscles of during storage [J]. Food and Machinery, 2016, 32(3): 137-140, 159.
[34] 赵辉, 徐大伦, 周星宇, 等. 新鲜海鳗营养成分及其风味物质分析 [J]. 食品科学, 2010, 31(20): 278-281. Zhao H, Xu D L, Zhou X Y, et al. Analysis of nutritional and flavor compounds in fresh Muraenesox cinereus muscle [J]. Food Science, 2010, 31(20): 278-281.
[35] 马政禹, 曹日亮, 孟冬霞. 中草药超微粉添加剂对猪肉中呈味氨基酸含量的影响 [J]. 养猪, 2019(5): 51-52. doi: 10.3969/j.issn.1002-1957.2019.05.028 Ma Z Y, Cao R L, Meng D X. The effect of Chinese herbal medicine superfine powder additives on the content of flavored amino acids in pork [J]. Swine Production, 2019(5): 51-52. doi: 10.3969/j.issn.1002-1957.2019.05.028
[36] 孙亚伟, 张笑莹, 张晓红,等. 新疆褐牛不同部位肌肉氨基酸组成及分析 [J]. 新疆农业大学学报, 2010, 33(4): 299-302. doi: 10.3969/j.issn.1007-8614.2010.04.004 Sun Y W, Zhang X Y, Zhang X H, et al. Composition and analysis of amino acids in different parts muscle of Xinjiang brown cattle [J]. Journal of Xinjiang Agricultural University, 2010, 33(4): 299-302. doi: 10.3969/j.issn.1007-8614.2010.04.004
[37] 孙承锋, 周楠, 朱亮, 等. 卤猪肉加工过程中游离脂肪酸、游离氨基酸及核苷酸变化分析 [J]. 现代食品科技, 2016, 32(6): 200-206. Sun C F, Zhou N, Zhu L, et al. Changes in free fatty fcid, free amino acid, and nucleotide content during preparation of stewed pork [J]. Modern Food Science and Technology, 2016, 32(6): 200-206.