留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
武文一, 吉红. 越冬胁迫对草鱼抗氧化能力及脂肪酸组成的影响[J]. 水生生物学报, 2022, 46(8): 1223-1236. DOI: 10.7541/2022.2020.213
引用本文: 武文一, 吉红. 越冬胁迫对草鱼抗氧化能力及脂肪酸组成的影响[J]. 水生生物学报, 2022, 46(8): 1223-1236. DOI: 10.7541/2022.2020.213
WU Wen-Yi, JI Hong. EFFECTS OF OVERWINTERING ON ANTIOXIDANT CAPACITY AND FATTY ACID COMPOSITION IN GRASS CARP (CTENOPHARYNGODON IDELLUS)[J]. ACTA HYDROBIOLOGICA SINICA, 2022, 46(8): 1223-1236. DOI: 10.7541/2022.2020.213
Citation: WU Wen-Yi, JI Hong. EFFECTS OF OVERWINTERING ON ANTIOXIDANT CAPACITY AND FATTY ACID COMPOSITION IN GRASS CARP (CTENOPHARYNGODON IDELLUS)[J]. ACTA HYDROBIOLOGICA SINICA, 2022, 46(8): 1223-1236. DOI: 10.7541/2022.2020.213

越冬胁迫对草鱼抗氧化能力及脂肪酸组成的影响

EFFECTS OF OVERWINTERING ON ANTIOXIDANT CAPACITY AND FATTY ACID COMPOSITION IN GRASS CARP (CTENOPHARYNGODON IDELLUS)

  • 摘要: 为了探讨草鱼(Ctenopharyngodon idellus)越冬期间氧化应激状况及其与组织脂肪酸比例变化的关联性, 将草鱼初始体重 (1053.33±16.11) g分别置于室外水泥培育池, 自然越冬处理0、1周、2周、4周、8周、12周和16周后, 进行生物学性状指标, 肝胰脏、肌肉、前肠、脂肪组织和血清抗氧化能力指标及肝胰脏、肌肉、脂肪组织脂肪酸比例的测定, 同时进行了抗氧化能力指标与脂肪酸比例间的关联性分析。结果表明, 在越冬期间, 草鱼机体体重、肝胰脏重量、肥满度、肝体比、脏体比、肠体比和腹腔脂肪指数均发生显著下降(P<0.05); 但是肾指数和脾指数显著上升(P>0.05)。氧化胁迫应激最大的3个组织分别是脂肪组织、肝胰脏和肌肉。肝胰脏PUFA比例对总体脂肪酸比例产生了主要的影响(主成分载荷特征值>0.5), 肌肉C18﹕2n-6和C16﹕0比例对总体脂肪酸组成产生主要影响, 脂肪组织中的PUFA、n-6PUFA、SFA和MUFA比例对总体脂肪酸比例产生了主要影响; 关联分析表明草鱼脂肪组织中SFA在越冬期间供应能量同时, 与氧化应激乃至机体损伤显示正相关关联性, 肌肉中PUFA和MUFA比例变化分别与氧化应激, 甚至机体损伤显示主要正相关的关联性, 而肝胰脏中MUFA比例变化与氧化应激乃至机体损伤显示主要正相关的关联性。研究表明, 越冬期间草鱼机体受到了很强的氧化应激现象, 其中脂肪组织受到的应激最强烈; 肝胰脏、肌肉和脂肪组织脂肪酸比例发生了显著变化, 同时与各组织抗氧化性指标进行关联分析发现: 脂肪组织中的SFA、肝胰脏中的MUFA、肌肉中的PUFA和MUFA与氧化应激乃至机体损伤间具有较为直接的联系。研究提供的基准研究信息可用于制定有效越冬前投喂的策略, 同时在越冬期间以及越冬后的恢复阶段做出适当的管理与投喂决策, 以期改善草鱼越冬后存活率及其生产效率。

     

    Abstract: Grass carp Ctenopharyngodon idellus often faces the stress of overwintering in natural environment. It has been reported that fish can induce excessive production of reactive oxygen species (ROS) and cause oxidative stress during overwintering. Excessive ROS may destroy the balance and stability of antioxidant system, resulting in cell damage, nuclear apoptosis and fatty acid peroxidation. Especially during the period of overwintering, the fatty acids as the main energy supply material, have been greatly threatened and challenged because of the fatty acids maybe influenced by ROS. The most direct effect is to reduce the level of energy supply, the antioxidant capacity and immunity of the body, and increase the mortality rate, and to explore the relationship between oxidative stress and the change of fatty acid composition in tissues, In order to explore the metabolic adaptation mechanism of energy utilization of grass carp during overwintering, the initial body weight of (1053.33±16.11) g was investigated, 45 fish were randomly divided into three repetitions. When the water temperature (15℃) naturally decreased to the point that the grass carp ceased ingestion, the experiment began. When the water temperature (15℃) naturally rose to the point that the grass carp refeeding commenced, the overwintering period and our experiments were concluded. Samples were collected after 0, 1, 2, 4, 8, 12 and 16 weeks of natural overwintering. Biological indexes, antioxidant capacity of hepatopancreas, muscle, foregut, adipose tissue and serum and the fatty acid composition of hepatopancreas, muscle and adipose tissue were measured. The relationship between antioxidant capacity index and fatty acid composition was also studied association analysis. The results showed that the BW, CF, HSI, VSI, IFI and LW decreased significantly (P<0.05), while KI and SI increased significantly (P<0.05). Adipose tissue, hepatopancreas and muscle are the three tissues with the largest oxidative stress. During the overwintering period, the proportion of PUFA in hepatopancreas had a major effect on the total fatty acid composition (principal component load characteristic value >0.5), the proportion of C18﹕2n-6 and C16﹕0 in muscle had a major impact on the total fatty acid composition, and the proportion of PUFA, n-6 PUFA, SFA and MUFA in adipose tissue had a major impact on the total fatty acid composition. At the same time, association analysis showed that SFA in adipose tissue of grass carp was mainly positively correlated with oxidative stress and the fish body damage during the period of overwintering. PUFA and MUFA in muscle were positively correlated with oxidative stress and the fish body damage, while MUFA in hepatopancreas was mainly positively correlated with oxidative stress and the fish body damage. This study showed that the grass carp was subjected to strong oxidative stress during the period of overwintering, especially in adipose tissue; the fatty acid ratio of hepatopancreas, muscle and adipose tissue changed significantly, the correlation analysis with antioxidant index showed that SFA in adipose tissue, MUFA in hepatopancreas, PUFA and MUFA in muscle were related to oxidative stress have a more direct relationship between stimulation and injury. The baseline information provided in this study can be used to formulate effective feeding strategies before overwintering, and to make appropriate management and feeding decisions during the period of overwintering, and the recovery stage after overwintering and improving the survival rate and production efficiency of grass carp after overwintering.

     

/

返回文章
返回