TOPOLOGICAL STRUCTURE AND KEYSTONE SPECIES OF BOTTOM FISHERY COMMUNITIES IN THE SEA ADJACENT TO MIAODAO ARCHIPELAGO
-
摘要: 研究基于2020—2021年庙岛群岛毗邻海域底层渔业生物调查, 构建其食物网拓扑结构, 结合网络分析法计算拓扑学指标, 筛选关键种。研究结果表明, 庙岛群岛毗邻海域包含重要种和优势种37个, 摄食关系数量223个, 节点密度为0.17, 连结密度为6.03, 连结复杂性指数为12.21, 种间关联度指数为0.16, 特征路径长度为2.10, 平均聚类系数为0.30。综合各拓扑学指数排序(D、Dout、Din、BC、CC、IC、TI1、TI3、TI5、K、Kb、Kt、F和DF), 口虾蛄(Oratosquilla oratoria)、日本鼓虾(Alpheus japonicus)、白姑鱼(Pennahia argentata)、矛尾虾虎鱼(Chaemrichthys stigmatias)和扁玉螺(Glossaulax didyma)为庙岛群岛毗邻海域关键种。其中, 口虾蛄和白姑鱼是关键捕食者, 矛尾虾虎鱼是关键中间种, 扁玉螺是关键饵料种, 日本鼓虾则介于关键中间种和关键饵料种之间。该海域底层消费者多为杂食性物种, 具有高复杂性、高连接性和低路径长度的特点, 使外界扰动的影响可以相对迅速地扩散到整个底层食物网, 从而减少任何特定波动的总体影响。Abstract: Biodiversity is not only the key factor to maintain the stability of the ecosystem, but also the basis of human survival and sustainable development. Both dominant and key species play important roles in maintaining biodiversity and ecosystem stability. Therefore, the selection of key species is the basis of biodiversity conservation and one of the beneficial methods to analyze and explore the structure of the ecosystem. As a typical nearshore island in the north of China, Miaodao Archipelago has important value in ecosystem services and biodiversity maintenance. Phica largha pallas and Neophocaena Asiaeorientalis sunameri are representative flagship species. In the past, researchers have carried out a systematic and comprehensive investigation of the ecological environment, vegetation status, and plankton distribution in the adjacent waters of the region, but there are few reports on the scientific research on the fishery resources in the adjacent waters. In recent decades, the structure of fishery resources in the Bohai Sea and the North Yellow Sea, which are important fishery waters in northern China, has changed to some extent due to the influence of human activities and climate change. The adjacent sea area of Miaodao Archipelago plays an important role in maintaining fishery resource structure and biodiversity in the Bohai Sea and the North Yellow Sea as an important migration channel and habitat. Therefore, it is urgent to carry out systematic research on fishery communities in this area to make up for the lack of relevant data. This study focuses on the key species of the bottom fishery community in this area. Since there are many small benthic invertebrates and small fishes in the bottom fishery community in the adjacent waters of Miaodao Islands, it is impossible to obtain feeding data by traditional gastric content method and published literature. Therefore, important and dominant species with IRI>100 were selected as the research objects for this key species screening. Remove the interference of a smaller number of redundant species. Based on the feeding relationship between important species and dominant species (IRI>100) in bottom fishery organisms in the adjacent waters of Miaodao Islands, this study calculated the topological index of the structure based on the topological structure of food web and network analysis method, and screened key species. The results showed that the study area contains a total of 37 important and dominant species (IRI>100), 223 feeding relationships, node density of 0.17, connection density of 6.03, connection complexity index of 12.21, and interspecific association degree. The index is 0.16, the feature path length is 2.10, and the average clustering coefficient is 0.30. Comprehensive topological index ranking (D, Dout, Din, BC, CC, IC, TI1, TI3, TI5, K, Kb, Kt, F and DF), screening for export mantis shrimp (Oratosquilla oratoria), Japanese drum shrimp (Alpheus japonicus), Pennahia argentata, Chaemrichthys stigmatias, Glossaulax didyma are the main key species in the study area. Among them, mantis shrimp and white jellyfish are the key predators, gobies are the key intermediate species, and the platy snail is the key bait species, while the Japanese drum shrimp is between the key intermediate species and the key bait species. Most species in the regional food web are likely to be very close “neighbors”, and negative impacts can spread rapidly and widely throughout the food web. For example, the effects of disturbances such as overfishing may be more widespread in this marine ecosystem. However, rich interaction networks quantified by high connectivity and low path lengths may also suggest that strong effects can spread rapidly throughout the marine food web, reducing the overall impact of any particular fluctuation. The results can provide basic data and a scientific basis for further understanding of the marine food web structure in the adjacent waters of the Miaodao Islands and the protection of biodiversity. In the future, more methods should be combined to carry out a more systematic study on the seasonal and interannual changes of key species in this area, to provide information for the adjacent islands in my country. The related research on the structure of the marine food web provides a more scientific and valuable reference.
-
Keywords:
- Miaodao Archipelago /
- Food web /
- Topological structure /
- Keystone species /
- Biodiversity
-
生物多样性不仅是维持生态系统稳定的关键性因素, 更是人类赖以生存的条件和可持续发展的基础。优势种与关键种都在维持生物多样性和生态系统稳定性方面发挥着重要作用[1]。相比于在生物量和丰度上占据主导地位的优势种, 关键种的判断往往不是那么直观并且容易被忽视。关键种通常在食物网中直接或间接地影响和调控着群落结构, 同时对维持生态系统的稳定发挥着重要甚至是决定性的作用[2]。当把某些关键种从生态系统移除, 生态系统中的其他物种可能都会受到直接或间接的影响, 从而导致生物多样性和生态系统稳定性受到破坏[3]。因此, 关键种筛选是开展生物多样性保护基础研究、分析生态系统结构的有利方法之一[4]。
庙岛群岛(又称长岛)作为我国北方极具代表性的典型近岸岛屿, 在生态系统服务和维持生物多样性上具有重要价值, 是优先保护生物多样性的热点地区(Biodiversity hotspots)[5], 具有以斑海豹(Phica largha pallas)和东亚江豚(Neophocaena asiaeorientalis sunameri)为代表性的旗舰物种(Flagship species)[6]。过去, 科研工作者对该区域的生态环境、植被状况和邻近海域的浮游生物分布等方面展开过较为系统的综合调查, 然而对邻近水域渔业资源状况的科学研究却少有报道[7]。近十几年来, 受人类活动和气候变化的影响, 我国北方重要的渔业水域渤海与北黄海的渔业资源结构发生了一定程度的变化, 鱼类出现了小型化、低质化, 传统大型经济鱼类种类减少等现象[8]。处在渤海与北黄海交汇处的庙岛群岛毗邻海域, 作为重要的洄游通道与栖息生境, 在维持渤海与北黄海渔业资源结构和生物多样性上发挥着重要作用。因此, 亟须对该海域渔业生物群落结构展开系统研究。
本研究着重对庙岛群岛毗邻水域底层渔业生物群落关键种展开研究, 由于庙岛群岛毗邻水域底层渔业生物群落中包含多种小型底栖无脊椎动物和小型鱼类, 它们不仅优势度低, 也无法通过传统的胃含物方法和公开发表的文献来获取食性数据, 因此, 本研究选取了IRI>100的重要种和优势种作为本次关键种筛选的研究对象, 去除了数量较少的小型冗余种的干扰。基于2020—2021年对庙岛群岛毗邻海域底层渔业生物调查数据, 以渔业生物间的摄食关系为基础构建庙岛群岛毗邻水域底层渔业生物群落食物网拓扑结构, 运用网络分析法计算该结构的拓扑学指标, 筛选关键种, 以期为庙岛群岛毗邻水域的渔业资源研究与生物多样性保护提供基础资料和科学依据。
1. 材料与方法
1.1 采样站位
本研究于2020年9、11、12月和2021年3—12月对庙岛群岛毗邻海域(120.5°— 120.8°E, 37.8°—38.0°N)逐月展开了调查, 其中2020年9、11、12月和2021年3、8月分别开展了30个站位的航次调查(图 1), 其余月份均进行了10个站位调查(图 1中三角形站位)。
1.2 样品采集与处理
庙岛群岛毗邻海域水深较浅, 采样站位平均水深十几米, 最浅处仅为4 m, 岛屿周边存在许多的养殖筏架, 海底情况较为复杂, 具有大量的石头与碎贝壳。受底质环境和养殖筏架等客观因素限制, 在该海域无法进行常规底拖网调查。因此, 本研究选取阿氏网(网架高0.4 m、长2.4 m; 网长9 m、网口高2.5 m、网目共380扣, 最大网目直径2.54 cm、最小网目直径0.9 cm)进行底层渔业生物采样。该网具通常情况下无法捕获全部水层的海洋生物, 但考虑到庙岛群岛周边水域水深浅的特点, 且在本研究中选取的阿氏网网架较大、网衣较长, 结合实际野外调查和观测结果, 该阿氏网在浅水海域捕获生物种类和生物量基本可以涵盖底层渔业生物, 起网过程中也会捕获一些中上层鱼类。调查船只为“鲁昌渔65678”和“鲁昌渔64756”, 功率为110 kw, 每站拖网时间为10min, 拖速为2.5 kn。样品在船上采集完成后, 冷冻保存, 带回实验室进行种类鉴定与生物学测量。样品的处理、保存、计数和鉴定等均按《海洋调查规范》(GB/T 12763.6—2007)[9]进行。生物均鉴定至种, 统计数量和湿重。分类依照《中国海洋生物名录》[10]《渤海山东海域海洋保护区生物多样性图集》[11]等。
在分析渔业生物食性和食物网结构时, 胃含物分析仍旧是各种新技术分析研究的重要前提。本研究中较大个体生物采用胃含物分析结合邻近海域文献的方法来确定摄食关系, 如白姑鱼、虾虎鱼类、大泷六线鱼(Hexagrammos otakii)、褐牙鲆(Paralichthys olivaceus)、许氏平鲉(Sebastes schlegelii)和口虾蛄等。首先将样品解剖获取其肠胃, 按照其胃含物体积与饱满程度目测将其分为5个摄食等级(0级: 空胃; 1级: 食物占胃的体积不到一半; 2级: 食物所占体积超过胃体积的一半; 3级: 食物充满胃但不膨胀; 4级: 胃部膨胀)[12]。在双筒解剖镜下根据胃含物中饵料形态鉴定其食物种类, 尽可能鉴定到种[13]。其余小型无脊椎动物和小型鱼类受限生物量和个体大小等因素, 通过查阅邻近海域文献获取其摄食数据。
1.3 数据分析
数据标准化 根据各站实际拖网时间, 进行标准化处理, 换算为单位时间生物量(g/10min)和尾数(ind./10min)。
优势度 利用Pinkas相对重要性指数(Index of Relative Importance, IRI)确定种类在群落中的重要性[14], 其计算公式为:
$ \text{IRI}=(W\text{%}+N\text{%}) \times F\text{%} \times 1{0}^{4} $
(1) 式中, W%为某种生物的生物量占当月航次渔获物总生物量的百分比, N%为某种生物的丰度当月航次渔获物总丰度的百分比, F%为某种生物的出现频率。将IRI≥1000的种类定义为优势种, 100≤IRI<1000为重要种[15]。
食物网复杂性指数与拓扑结构指数 本研究中用于构建食物网拓扑结构的食性数据主要来自于实际的胃含物分析与相关已公开发表的文献[16—29]。将获得数据整理成摄食矩阵, 物种用编号表示, 纵轴物种编号表示被摄食, 横轴物种编号表示捕食者, 在矩阵中用数字0和1代表摄食关系, 0代表不摄食, 1代表摄食[30]。食物网拓扑网络通过Gephi 0.9.2绘制, 网络图采用ForceAtlas 2方式布局, 节点的大小和颜色根据度的大小绘制, 边的颜色由其连接的两个节点的颜色混合得到。
食物网拓扑结构中用节点(Nodes)来代表食物网中的某一物种, 用带有方向的边(Edges)代表捕食者与被捕食者间的捕食关系。其中, 节点数量(S)代表物种数量, 边的数量(L)代表节点间的连接数量即物种间捕食关系的数量[31]。本研究中用到的食物网复杂性指数和拓扑结构指数主要有点度(Degree, D)、入度(In-degree, Din)、出度(Out-degree, Dout)、节点密度(Density, Dd)、连结密度 L/S、连结复杂性指数SC、种间关联度指数(Connectance, C)、特征路径长度(ChPath)、聚类系数CC、中介中心性(Betweenness Centrality, BC)、紧密中心性(Closeness Centrality, CC)、信息中心性(Information Centrality, IC)、拓扑重要性指数(Topological Importance Index, TI)、关键性指数(Keystone Indices, K)、上行关键指数(Bottom-up Keystone Index, Kb)、下行关键指数(Top-down Keystone, Kt)、KPP运算(Key Player Problem)、离散度(Fragmentation, F)和距离权重离散度(Distance-weighted Fragmentation, DF)。相关指数计算方法参考杨涛等[32]和苏程程等[33]。
本研究使用统计分析软件Excel 2016、Origin pro 2022处理统计数据和数据可视化, 地理作图软件ArcGIS (version 10.2, Esri Inc., RedLands, CA, USA) 绘制站位图, 网络绘图软件Gephi 0.9.2绘制拓扑结构网络图, 网络分析软件Ucinet6 (http://www.analytictech.com/)计算D、Dout、Din、BC、CC和IC, 使用CoSBiLaB Graph 1.0 (http://www.cosbi.eu/) 计算TI1、TI3、TI5、K、Kb 和Kt, Keypalyer 1.44 (http://analytictech.com/)计算F和DF。
2. 结果
2.1 重要种和优势种
在2020—2021年调查期间, 庙岛群岛毗邻海域底层渔业生物群落共包含115个物种, 其中大多数为小型底栖生物, 生物量和丰度较小, 且不易获取摄食关系, 因此选择IRI>100的物种, 删除其他IRI较小的生物, 以去除数量较少的小型冗余种的干扰。IRI>100的重要种和优势种共有37种, 主要类别为鱼类10种, 其中优势种为矛尾虾虎鱼(Chaemrichthys stigmatias)和白姑鱼(Pennahia argentata), 其余种类为重要种; 甲壳类12种, 其中优势种为葛氏长臂虾(Palaemon gravieri)、鹰爪虾(Trachypenaeus curvirostris)、口虾蛄(Oratosquilla oratoria)、日本鼓虾(Alpheus japonicus)、双斑蟳(Charybdis bimaculata)和艾氏活额寄居蟹(Charybdis bimaculata), 其余物种为重要种。软体动物9种, 短蛸(Octopus ocellatus)、扁玉螺(Glossaulax didyma)和脉红螺(Rapana venosa)为优势种, 其余物种为重要种; 棘皮动物6种, 哈氏刻肋海胆(Temnopleurus hardwickii)、海燕(Asterina pectinifera)和马氏刺蛇尾(Ophiothrix marenzelleri)为优势种, 其余物种为重要种。具体种类和IRI详见表 1。由于无法获取腕足动物酸浆贝(Terebratella coreanica)的详细摄食关系, 故未将该物种包含在内。
表 1 IRI>100的重要种和优势种及用于拓扑结构分析的物种编号Table 1. The relative importance index IRI of major species in the waters around Miaodao Archipelago物种Species 编号
Number相对重要性指数IRI 2020 2021 9 11 12 3 4 5 6 7 8 9 10 11 12 鱼类Fishes 白姑鱼Pennahia argentata 1 549 0.22 — — — 29 117 171 1044 976 101 — — 矛尾虾虎鱼Chaemrichthys stigmatias 2 2617 889 842 258 — 13 — 627 2330 1077 2292 2058 2161 六丝矛尾虾虎鱼Amblychaeturichthys hexanema 3 244 482 263 252 1.56 4.37 25 13 395 765 39 737 385 大泷六线鱼Hexagrammos otakii 4 37 13 9 — — 60 55 9 12 241 8.74 6.38 — 细条天竺鲷Jaydia lineata 5 0.12 — — — — — 30 240 20 1.71 — — — 鲬Platycephalus indicus 6 729 4 — — — 12 10 57 116 4.14 191 — — 许氏平鲉Sebastes schlegelii 7 35 18 0.70 0.32 — 6 107 2.77 — 215 184 — 37 焦氏舌鳎Cynoglossus joyneri 8 93 35 79 — — — 53 12 9 — 159 190 6.56 褐牙鲆Paralichthys olivaceus 9 — — 2.50 — — 476 — 0.69 — — — — — 绯䲗Callionymus beniteguri 10 122 7 7 8 — — 40 1.39 0.17 22 2.27 0.39 — 甲壳类Crustaceans 葛氏长臂虾Palaemon gravieri 11 210 21 4 207 73 249 1222 135 84 64 216 158 1111 鹰爪虾Trachypenaeus curvirostris 12 328 1860 — — — 15 7 42 187 1372 1899 12 — 口虾蛄Oratosquilla oratoria 13 438 429 38 72 296 1243 1161 2090 1806 244 1623 471 63 日本鼓虾Alpheus japonicus 14 134 832 9675 6569 1037 611 476 630 237 137 356 6238 4269 鲜明鼓虾Alpheus distinguendus 15 18 20 29 128 15 15 6 13 12 17 16 178 19 双斑蟳Charybdis bimaculata 16 714 1621 2.30 — 0.50 18 191 702 278 51 37 0.75 — 日本蟳Charybdis japonica 17 67 18 15 4 14 — 55 156 221 673 350 56 196 日本拟平家蟹Heikeopsis japonicus 18 10 — — 0.16 — — 11 126 73 — — 1.42 — 隆背黄道蟹Cancer gibbosulus 19 — — — 1.16 — — — — 162 — — — 1.38 泥脚隆背蟹Carcinoplax vestitus 20 0.19 — 0.17 3.12 1.80 9 1.60 77 61 19 54 137 — 三疣梭子蟹Portunus trituberculatus 21 172 — — — — — — 18 56 9.62 389 — — 艾氏活额寄居蟹Diogenes edwardsii 22 0.22 — — 3.34 — — 10 1544 — — — — — 软体动物Mollusk 短蛸Octopus ocellatus 23 1722 508 56 — 4.20 — — 0.73 85 982 733 37 70 长蛸Octopus variabilis 24 13 11 101 15 158 — 58 84 6.77 105 315 — 495 日本枪乌贼Loligo japonica 25 4 0.12 — — — 1.80 — 186 41 21 1.99 1.80 1.95 扁玉螺Glossaulax didyma 26 5 6 443 304 194 318 404 132 10 2.18 2.93 3010 130 脉红螺Rapana venosa 27 885 926 0.98 167 871 724 730 994 479 842 1376 454 141 长牡蛎Ostrea gigas thunberg 28 1 5 — — 70 11 13 10 — 12 124 — 157 紫贻贝Mytilus edulis 29 0.27 4 0.72 27 11 — 1.52 4 166 2.80 5.78 — 201 栉江珧Atrina pectinata 30 — — 6 106 — — — — 7.60 77 — 3.98 — 经氏壳蛞蝓Philine kinglipini 31 10 — — — — 336 — — — — — — — 棘皮动物Echinoderm 哈氏刻肋海胆Temnopleurus hardwickii 32 433 326 82 678 842 88 2561 386 199 854 620 141 303 海燕Asterina pectinifera 33 164 292 17 243 158 35 1128 66 46 298 322 51 267 多棘海盘车Asterias amurensis 34 34 27 69 92 22 — — 5 6.44 136 9.70 27 — 马氏刺蛇尾Ophiothrix marenzelleri 35 — 257 115 328 3118 5.84 39 — 26 — — — — 金氏真蛇尾Ophiura kinbergi 36 — — — — — 148 — — — — — — 21 虾夷砂海星Luidia yesoensis Goto 37 108 174 18 302 71 110 275 79 27 683 351 433 22 腕足动物Brachiopoda 酸浆贝Terebratella coreanica — 42 5 5 278 78 492 470 56 186 564 41 2.36 2.69 2.2 食物网拓扑结构
2020—2021年庙岛群岛毗邻海域底层渔业生物群落食物网中包含物种(节点数量, S)37个(IRI>100), 摄食关系数量(物种间的捕食关系连接数量, L)为223, 节点密度为(S/L)0.17, 连结密度(L/S)为6.03, 连接复杂性指数为12.21, 种间关联度指数为0.16, 特征路径长度为2.10, 平均聚类系数为0.30, 其具体的复杂性指数见表 2。符合自然条件下的群落种间摄食关系。根据物种间的摄食关系绘制出了庙岛群岛毗邻海域底层渔业生物群落的食物网拓扑结构(图 2)。其中节点大小和节点颜色分别代表标号物种的连接数, 即节点强度(Degree)。其中连接数超过20的物种共有4种, 占研究物种的10.8%, 从大至小依次为日本鼓虾(A. japonicus)、口虾蛄(O. oratoria)、矛尾虾虎鱼(C. stigmatias)和白姑鱼(P. argentata)。连接数最低的为长蛸(Octopus variabilis)、栉江珧(Atrina pectinata)和虾夷砂海星(Luidia yesoensis Goto), 仅为2条。
表 2 庙岛群岛毗邻海域底层渔业生物群落食物网结构与复杂性指数Table 2. Structure and complexity index of the food web of in the sea adjacent to the Miaodao Archipelago食物网指数Index 物种数
S摄食关系数量L 节点密度S/L 连结密度L/S 种间关联度L/S2 连接复杂性指数SC 特征路径长度ChPath 平均聚类系数CC 数值Value 37 223 0.17 6.03 0.16 12.21 2.10 0.30 图 2 庙岛群岛毗邻海域底层生物群落拓扑结构图中颜色由蓝到红代表物种的节点强度越来越大, 即与该物种存在摄食关系的物种数量越来越多。圆圈的大小也代表节点强度的大小。点度排名前四的物种分别为日本鼓虾、口虾蛄、矛尾虾虎鱼和白姑鱼。物种编号详见表 1。食物网拓扑网络通过Gephi 0.9.2绘制, 网络图采用ForceAtlas 2方式布局, 节点的大小和颜色根据度的大小绘制, 边的颜色由其连接的两个节点的颜色混合得到Figure 2. Topological structure of bottom biomes in the sea adjacent to the Miaodao ArchipelagoThe color from blue to red in the figure indicates that the degree of the species is increasing, that is, the number of species feeding with the species is increasing. The size of the circle also represents the size of the degree. The top four species in the degree ranking are Alpheus japonicus, Oratosquilla oratoria, Chaemrichthys stigmatias, and Pennahia argentata. The species numbers are shown in Tab. 1. The topological network of food web is drawn by Gephi 0.9.2. The network graph is laid out in ForceAtlas 2 mode. The size and color of nodes are drawn according to the size of degrees, and the color of edges is obtained by mixing the colors of the two nodes connected在捕食者中, 口虾蛄摄食饵料种类最多, 达到了21种, 占总物种的56.7%。其次为三疣梭子蟹(Portunus trituberculatus)、白姑鱼、大泷六线鱼(Hexagrammos otakii)和鲬(Platycephalus indicus), 其摄食种类均在15个以上。在被捕食者中, 日本鼓虾被最多的物种所捕食, 达到了18种, 占研究物种的48.6%。其次为日本枪乌贼(Loligo japonica)、马氏刺蛇尾、扁玉螺和紫贻贝(Mytilus edulis)。三疣梭子蟹、许氏平鲉和褐牙鲆在庙岛群岛毗邻海域底层渔业生物群落中的顶级捕食者。日本鼓虾、日本枪乌贼、扁玉螺和马氏刺蛇尾等是食物网中主要的饵料种类。
2.3 中心性指数和重要性指数
根据统计的庙岛群岛毗邻海域食物网拓扑结构指标(表 3), 可知日本鼓虾的点度(D)、出度(Dout)、中介中心性(BC)、紧密中心性(CC)和信息中心性(IC)最大, 分别为28、18、19.11、87.81和6.44。这说明在庙岛群岛毗邻海域底层渔业生物群落中与日本鼓虾存在摄食关系的种类最多, 以其作为食物的捕食者数量最多; 日本鼓虾对群落内信息交换的控制能力最强, 在该群落的信息传递中更具有优势, 能够将群落信息以最快的速度传递到其他物种, 对群落中其他物种间的信息交流产生的影响最大。除日本鼓虾外, 口虾蛄的多项指标也排名靠前, 其入度(Din)最大, 表明其捕食的物种数量最多。除此以外, 口虾蛄的点度(D)、中介中心性(BC)、紧密中心性(CC)和信息中心性(IC)排名第二, 表明口虾蛄也是群落中较为重要的中心性和重要性物种, 其余中心性指数和重要性指数较高的物种为白姑鱼和矛尾虾虎鱼, 表明这几种物种对其他物种的影响和群落结构的影响较大。马氏刺蛇尾、经氏壳蛞蝓(Philine kinglipini Tchang)、紫贻贝和日本鼓虾的TI1和TI5较大, 表明它们作为较低营养级的物种, 捕食他们的物种较多, 其信息扩散能力较强。
表 3 庙岛群岛毗邻海域底层渔业生物群落食物网拓扑结构指标Table 3. Topological structure of food web of bottom fishery communities in the sea adjacent to the Miaodao Archipelago点度
D入度
Din出度
Dout中介中心性
BC紧密中心性
CC信息中心性
IC群落离
散变量
∆F’距离权重
离散变量
∆DF’关键性指数
K下行关键
性指数
Kt上行关键
性指数
KbTI1
(n=1)TI5
(n=5)14 28 13 21 14 18 14 19.11 14 87.81 14 6.44 13 0.17 14 0.07 21 8.68 31 5.23 21 8.68 35 2.82 31 1.05 13 27 21 18 25 17 13 8.16 13 78.26 13 6.15 14 0.12 13 0.07 13 8.44 35 5 13 7.92 31 2.81 35 1 2 25 1 16 35 15 25 6.41 1 75.00 1 6.02 25 0.12 25 0.05 1 5.69 29 4.15 9 5.04 29 2.67 29 0.83 1 21 4 15 26 14 1 5.83 2 73.47 2 5.94 1 0.04 2 0.05 31 5.23 26 3.59 7 4.97 14 2.3 26 0.72 21 18 6 15 29 14 26 5.44 25 69.23 25 5.75 2 0.04 1 0.03 9 5.04 14 3.02 4 4.48 26 2.18 14 0.60 25 17 9 14 2 13 2 3.77 26 67.93 26 5.66 3 0.04 16 0.03 14 5.03 25 2.82 1 4.42 25 2.13 25 0.56 3 15 2 12 5 12 29 3.63 21 66.67 21 5.55 5 0.04 3 0.03 35 5.00 5 2.26 6 3.86 5 1.36 5 0.45 4 15 7 11 15 11 31 2.56 16 65.46 16 5.46 8 0.04 5 0.03 7 4.97 10 1.98 14 2.01 1 1.22 10 0.40 6 15 14 10 10 10 21 2.22 4 64.29 35 5.44 10 0.04 21 0.03 4 4.48 15 1.49 2 1.96 15 1.11 15 0.30 15 15 16 7 31 10 35 2.09 29 64.29 5 5.43 12 0.04 15 0.02 29 4.15 1 1.27 24 1.35 10 0.98 1 0.25 35 15 20 7 3 9 4 1.81 6 63.16 29 5.35 15 0.04 17 0.02 6 3.86 11 1.05 20 1.05 11 0.72 11 0.21 9 14 34 7 11 9 6 1.63 5 62.07 4 5.34 16 0.04 19 0.02 26 3.59 3 0.88 34 0.99 3 0.7 3 0.18 26 14 3 6 13 6 16 1.47 35 62.07 6 5.23 17 0.04 10 0.02 25 2.82 2 0.80 16 0.89 2 0.61 2 0.16 29 14 18 6 16 6 5 1.37 15 61.02 3 5.07 18 0.04 22 0.02 2 2.76 36 0.74 33 0.80 22 0.48 36 0.15 16 13 19 6 17 6 22 0.77 17 61.02 27 5.07 19 0.04 20 0.02 5 2.26 28 0.71 19 0.77 13 0.42 28 0.14 5 12 33 6 1 5 17 0.75 22 61.02 15 4.98 20 0.04 23 0.02 10 2.15 27 0.65 8 0.71 28 0.41 27 0.13 10 12 8 5 12 5 3 0.71 10 60.00 17 4.98 21 0.04 18 0.02 15 1.85 17 0.58 3 0.70 16 0.4 17 0.12 11 12 17 5 22 5 27 0.71 19 60.00 22 4.97 22 0.04 12 0.02 3 1.57 22 0.55 18 0.67 17 0.4 22 0.11 7 11 12 4 8 4 20 0.70 20 60.00 19 4.82 23 0.04 8 0.02 16 1.41 16 0.52 17 0.44 36 0.37 12 0.10 17 11 15 4 19 4 11 0.57 3 59.02 20 4.82 24 0.04 24 0.02 24 1.41 12 0.51 32 0.43 12 0.32 13 0.10 注: 表中加粗数字为物种编号; 表中列出排名前20的物种Note: The bold numbers in the table are the species numbers; List the top 20 species in the table 2.4 关键性指数
根据食物网拓扑结构分析发现, 37种主要物种中三疣梭子蟹的K和Kb最高, 且K=Kb=8.68, K全部来自于Kb; 排名第二的是口虾蛄(K=8.44, Kb=7.92), 且K主要来自于Kb, 表明三疣梭子蟹和口虾蛄受上行效应的影响更大, 即受其饵料生物的影响较大。经氏壳蛞蝓和马氏刺蛇尾的Kt最大, 分别为5.23和5, 表明其受下行效应的影响更大, 即受其捕食者的影响较大。关键性指数说明, 这些物种可能对群落中能量流动和信息传递发挥着关键性作用。
2.5 KPP运算
选取KPP-1运算来验证庙岛群岛毗邻海域底层渔业生物群落中的关键种。当K=1时, 即只筛选出一种物种, 使该物种的消失对群落结构的离散度影响最大。依据群落离散变量F和距离权重离散变量DF, 筛选出来的种类为13和14, 即为口虾蛄和日本鼓虾。F和DF分别为0.17和0.07, 表明当口虾蛄和日本鼓虾从该群落中消失时, 群落结构会受到最大程度的影响。口虾蛄和日本鼓虾可能对庙岛群岛毗邻海域底层渔业生物群落稳定性起着决定性作用。
2.6 不同拓扑指数相关性分析
为了进一步探讨不同食物网拓扑结构指数所表达的信息间的相关性, 对其进行了Spearman相关性分析(图 3)。大部分的拓扑结构指标相互之间都表现出极显著的正相关(P≤0.01), 表明这些指标间传递信息的一致性, 即通过不同指标排序得到的各物种对食物网的重要性存在一致性。少数几个指标间存在极其显著的负相关(P≤0.01), 如Din和Kt、TI1、TI5之间, Kt和Kb之间, Kb和TI1、TI5之间。通常这些指标表示对为相反的生态含义, 例如上行效应和下行效应。
图 3 庙岛群岛毗邻海域底层渔业生物群落食物网拓扑结构指数间的相关性左下部分为相关系数, 右上部分圆形大小和颜色深浅对应相关系数大小, 红色代表正相关, 蓝色代表负相关Figure 3. Correlation between topological index of food web of bottom fishery community in the sea adjacent to the Miaodao ArchipelagoThe lower left part of the figure is divided into correlation coefficient, the upper right part of the circle size and color depth correspond to the correlation coefficient, red represents positive correlation, blue represents negative correlation3. 讨论
3.1 庙岛群岛毗邻海域食物网的复杂性
随着近年来人类活动和环境变化带来的压力, 海洋酸化、海洋生物多样性降低和过度捕捞等海洋生态环境问题越来越多地显现[34]。自从关键种概念提出以来, 海洋生态系统中关键种的筛选一直以来是科学家面对的重要工作之一[35]。作为对生态系统结构起着决定性作用的关键种, 相关研究无疑对进一步认识生态系统食物网的复杂性和保护生物多样性发挥着重要的作用[36]。本研究中庙岛群岛毗邻海域底层渔业生物群落食物网的复杂性主要通过物种数(S)和摄食关系(L), 以及产生的一系列复杂性指数来衡量。有研究表明, 随着这些复杂性指数的增大, 食物网的复杂性随之增加[37]。本研究选取了国内和国际上一些热点区域食物网的研究结果与庙岛群岛毗邻海域进行了复杂性指数对比(表 4)。庙岛群岛毗邻海域底层生物群落食物网相比较邻近的莱州湾和黄海, 其复杂性相对偏高, 体现在较高的连接密度、种间关联度和连接复杂性指数上。造成此现象的原因可能是本研究中的目标物种多为小型的底层杂食性生物, 他们的捕食与被捕食对象较多, 捕食关系也较为复杂, 生物的杂食性对维持食物网的动态和稳定性十分重要[38], 相比于莱州湾和黄海的大面积海域, 其食物网的复杂性和抗干扰的能力可能相对更强。此外, 庙岛群岛毗邻水域属于近岸岛礁生态系统, 具有海陆二相性, 易受陆源物质输入和人类活动影响, 具有复杂的初级生产来源, 如浮游植物、大型藻类、碎屑、悬浮颗粒有机物POM和沉积颗粒有机物SOM等, 复杂的初级碳来源也在一定程度通过上行控制影响着食物网的复杂性[39]。庙岛群岛毗邻海域地处渤海、黄海两大生态系统的交错地带, 受到渤海沿岸水团和黄海水团的共同影响, 四季分明, 是黄渤海渔业生物的洄游通道和摄食生境。除了岛礁性本地种外, 还有许多洄游种, 存在渔业生物群落结构季节性变动, 这在一定程度上也影响着庙岛群岛毗邻海域底层食物网复杂性[40—42]。庙岛群岛水域的食物网复杂性低于山东半岛南部的海州湾水域复杂性, 并且低于国际上的一些热点区域, 如加勒比海地区。这可能是由于庙岛群岛相比上述地区, 其物种数量明显较低, 食物网拓扑结构中节点数量会在一定程度上影响食物网的复杂性[43]。然而食物网的复杂性是多方面的结果, 其与群落结构、生物多样性特征以及生态环境特征息息相关, 仅靠简单的指数可能难以全面地衡量其复杂性, 未来仍需对庙岛群岛毗邻水域的食物网展开长期的研究, 以期更深入地解决食物网的复杂性问题。
表 4 庙岛群岛毗邻海域底层渔业生物群落食物网复杂性指数与其他典型海域对比Table 4. Comparison of food web complexity index of bottom fishery community in the sea adjacent to the Miaodao Archipelago and other typical waters3.2 关键种的识别
通过对庙岛群岛毗邻海域底层渔业生物群落食物网拓扑结构的研究, 综合各拓扑学指数, 发现口虾蛄、日本鼓虾、白姑鱼、矛尾虾虎鱼和扁玉螺等是主要关键种, 这些物种作为基础的饵料物种、中间物种和捕食者在食物网的物质循环和能量传递中发挥着关键作用, 并维持着食物网结构的稳定性(表 5)。李忠义等[48]对渤海鱼类群落关键种的研究发现, 鳀和黄鲫(Setipinna tenuifilis)是渤海鱼类群落关键种; 杨涛等[45]对莱州湾鱼类食物网拓扑结构的研究发现, 细纹狮子鱼(Liparis tanakae)是群落中的关键捕食者, 六丝矛尾虾虎鱼(Amblychaeturichthys hexanema)是群落中关键的被捕食者。苏程程等[46]对山东半岛南部海域食物网拓扑结构的研究发现, 鳀(Engraulis japonicus)是群落中关键的被捕食者, 黄鮟鱇(Lophius litulon)是群落中的关键捕食者。苏程程等[33]对秋季黄海鱼类群落关键种的年代变化研究发现, 鳀、黄鮟鱇和小黄鱼(Larimichthys polyactis)是群落关键种。王士聪等[49]对浙江南部近海鱼类关键种的研究发现, 带鱼(Trichiurus lepturus)是群落的关键捕食者, 七星底灯鱼(Benthosema pterotum)是群落的关键被捕食者。相比于这些区域的研究结果, 本研究的关键种具有多样化、小型化的特点, 这可能是由于庙岛群岛毗邻水域的环境和采样方式所致。由于采用阿氏网的调查方式可能较难获取中上层的鱼类, 再加上庙岛群岛海域岛礁性地理环境, 水深较浅, 聚集了许多的小型底栖无脊椎动物, 水生生物多为近岸沿礁性物种, 如虾虎鱼类和日本鼓虾等, 这就可能导致了该区域的底层渔业生物关键种相较于其他区域在一定程度上表现出小型化的特点。此外, 由于该区域底层渔业生物多数为杂食性动物, 摄食关系较多, 如矛尾虾虎鱼。除了本地种类外, 还包含许多的洄游种类, 如白姑鱼每年5月份洄游至此, 至当年11月离开, 这在一定程度上导致了渔业生物群落结构改变, 从而造成关键种的多样化特征。
表 5 庙岛群岛毗邻海域底层渔业生物群落关键种在食物网中所扮演的角色Table 5. The role of keystone species in the food web of bottom fisheries communities in the sea adjacent to the Miaodao Archipelago角色Role 关键种Keystone species 入度Din 出度Dout 关键捕食者
Keystone predator口虾蛄 O.oratoria 21 6 白姑鱼 P.argentata 16 5 关键中间种
Keystone intermediate species矛尾虾虎鱼C.stigmatias 12 13 关键饵料种
Keystone prey species日本鼓虾 A.japonicus 10 18 扁玉螺 G.didyma 0 14 3.3 关键种作用和食物网结构
关键种由于其强大的连接与信息传递作用, 在维持食物网结构的稳定上发挥着重要的作用。而不同的关键种由于其摄食关系的差异往往在食物网中扮演着不同的角色。我们根据入度Din、出度Dout和拓扑学指标将关键种分为了关键捕食者(入度Din远大于出度Dout), 关键中间种(入度Din接近于出度Dout)和关键饵料种(入度Din远小于出度Dout)三类。在主要的关键种中, 口虾蛄和白姑鱼是关键捕食者, 矛尾虾虎鱼由于其入度和出度接近, 是关键中间种, 扁玉螺的被捕食者最多且远大于其捕食对象数量, 为关键饵料种。而日本鼓虾则介于关键饵料种和关键中间种之间。
庙岛群岛毗邻海域底层渔业生物群落食物网的平均特征路径长度(ChPath)为2.101(表 2), 与其他类型的食物网相比, 该区域食物网内物种之间的平均最短路径长度偏低, 其他类型的食物网的平均特征路径长度从1.3到3.7不等[50], 呈现出高连接性和低路径长度的特点。这表明, 该区域食物网中的大多数物种可能是非常亲密的“邻居”, 不同扰动的影响可能会更快地传播到邻近的物种[51], 这也符合其底层消费者多为杂食性物种的特点。例如, 过度捕捞等扰动的影响可能在该海洋生态系统中传播得更加迅速且广泛。然而, 正是由于其高连接性和低路径长度的特点, 强烈干扰的影响可以迅速地扩散到整个食物网, 邻近的物种可以在生态位上相互补充, 从而缓冲或者抵消扰动对单一物种的强烈影响。由高连接性和低路径长度量化的丰富的相互作用网络可能表明, 强烈的影响可以迅速扩散到整个海洋食物网, 从而减少任何特定波动的总体影响[52]。
4. 结论
本研究以庙岛群岛毗邻海域底层渔业生物中的重要种和优势种(IRI>100)间的摄食关系为基础, 基于食物网拓扑结构和网络分析法计算该结构的拓扑学指标, 筛选关键种。 研究结果表明, 该研究区域共包含重要种和优势种37个(IRI>100), 摄食关系数量223个, 节点密度为0.17, 连结密度为6.03, 连结复杂性指数为12.21, 种间关联度指数为0.16, 特征路径长度为2.101, 平均聚类系数为0.301。综合各拓扑学指数排序(D、Dout、Din、BC、CC、IC、TI1、TI3、TI5、K、Kb、Kt、F和DF), 筛选出口虾蛄(Oratosquilla oratoria)、日本鼓虾(Alpheus japonicus)、白姑鱼(Pennahia argentata)、矛尾虾虎鱼(Chaemrichthys stigmatias)和扁玉螺(Glossaulax didyma)为庙岛群岛毗邻海域主要关键种。其中口虾蛄和白姑鱼是关键捕食者, 矛尾虾虎鱼是关键中间种, 扁玉螺是关键饵料种, 而日本鼓虾则介于关键中间种和关键饵料种之间。本研究结果可为解析庙岛群岛毗邻海域食物网结构与保护海洋生物多样性提供基础, 然而食物网结构、内在与外在变化机制是一个复杂的耦合过程, 在变化的环境中, 生物群落关键种及其角色往往是变化的, 今后应结合更多方法对该区域关键种的季节和年际变化展开更为系统研究, 以期为我国近岸典型岛屿毗邻海域海洋生态系统动力学相关研究提供更为科学和有价值的参考。
-
图 2 庙岛群岛毗邻海域底层生物群落拓扑结构
图中颜色由蓝到红代表物种的节点强度越来越大, 即与该物种存在摄食关系的物种数量越来越多。圆圈的大小也代表节点强度的大小。点度排名前四的物种分别为日本鼓虾、口虾蛄、矛尾虾虎鱼和白姑鱼。物种编号详见表 1。食物网拓扑网络通过Gephi 0.9.2绘制, 网络图采用ForceAtlas 2方式布局, 节点的大小和颜色根据度的大小绘制, 边的颜色由其连接的两个节点的颜色混合得到
Figure 2. Topological structure of bottom biomes in the sea adjacent to the Miaodao Archipelago
The color from blue to red in the figure indicates that the degree of the species is increasing, that is, the number of species feeding with the species is increasing. The size of the circle also represents the size of the degree. The top four species in the degree ranking are Alpheus japonicus, Oratosquilla oratoria, Chaemrichthys stigmatias, and Pennahia argentata. The species numbers are shown in Tab. 1. The topological network of food web is drawn by Gephi 0.9.2. The network graph is laid out in ForceAtlas 2 mode. The size and color of nodes are drawn according to the size of degrees, and the color of edges is obtained by mixing the colors of the two nodes connected
图 3 庙岛群岛毗邻海域底层渔业生物群落食物网拓扑结构指数间的相关性
左下部分为相关系数, 右上部分圆形大小和颜色深浅对应相关系数大小, 红色代表正相关, 蓝色代表负相关
Figure 3. Correlation between topological index of food web of bottom fishery community in the sea adjacent to the Miaodao Archipelago
The lower left part of the figure is divided into correlation coefficient, the upper right part of the circle size and color depth correspond to the correlation coefficient, red represents positive correlation, blue represents negative correlation
表 1 IRI>100的重要种和优势种及用于拓扑结构分析的物种编号
Table 1 The relative importance index IRI of major species in the waters around Miaodao Archipelago
物种Species 编号
Number相对重要性指数IRI 2020 2021 9 11 12 3 4 5 6 7 8 9 10 11 12 鱼类Fishes 白姑鱼Pennahia argentata 1 549 0.22 — — — 29 117 171 1044 976 101 — — 矛尾虾虎鱼Chaemrichthys stigmatias 2 2617 889 842 258 — 13 — 627 2330 1077 2292 2058 2161 六丝矛尾虾虎鱼Amblychaeturichthys hexanema 3 244 482 263 252 1.56 4.37 25 13 395 765 39 737 385 大泷六线鱼Hexagrammos otakii 4 37 13 9 — — 60 55 9 12 241 8.74 6.38 — 细条天竺鲷Jaydia lineata 5 0.12 — — — — — 30 240 20 1.71 — — — 鲬Platycephalus indicus 6 729 4 — — — 12 10 57 116 4.14 191 — — 许氏平鲉Sebastes schlegelii 7 35 18 0.70 0.32 — 6 107 2.77 — 215 184 — 37 焦氏舌鳎Cynoglossus joyneri 8 93 35 79 — — — 53 12 9 — 159 190 6.56 褐牙鲆Paralichthys olivaceus 9 — — 2.50 — — 476 — 0.69 — — — — — 绯䲗Callionymus beniteguri 10 122 7 7 8 — — 40 1.39 0.17 22 2.27 0.39 — 甲壳类Crustaceans 葛氏长臂虾Palaemon gravieri 11 210 21 4 207 73 249 1222 135 84 64 216 158 1111 鹰爪虾Trachypenaeus curvirostris 12 328 1860 — — — 15 7 42 187 1372 1899 12 — 口虾蛄Oratosquilla oratoria 13 438 429 38 72 296 1243 1161 2090 1806 244 1623 471 63 日本鼓虾Alpheus japonicus 14 134 832 9675 6569 1037 611 476 630 237 137 356 6238 4269 鲜明鼓虾Alpheus distinguendus 15 18 20 29 128 15 15 6 13 12 17 16 178 19 双斑蟳Charybdis bimaculata 16 714 1621 2.30 — 0.50 18 191 702 278 51 37 0.75 — 日本蟳Charybdis japonica 17 67 18 15 4 14 — 55 156 221 673 350 56 196 日本拟平家蟹Heikeopsis japonicus 18 10 — — 0.16 — — 11 126 73 — — 1.42 — 隆背黄道蟹Cancer gibbosulus 19 — — — 1.16 — — — — 162 — — — 1.38 泥脚隆背蟹Carcinoplax vestitus 20 0.19 — 0.17 3.12 1.80 9 1.60 77 61 19 54 137 — 三疣梭子蟹Portunus trituberculatus 21 172 — — — — — — 18 56 9.62 389 — — 艾氏活额寄居蟹Diogenes edwardsii 22 0.22 — — 3.34 — — 10 1544 — — — — — 软体动物Mollusk 短蛸Octopus ocellatus 23 1722 508 56 — 4.20 — — 0.73 85 982 733 37 70 长蛸Octopus variabilis 24 13 11 101 15 158 — 58 84 6.77 105 315 — 495 日本枪乌贼Loligo japonica 25 4 0.12 — — — 1.80 — 186 41 21 1.99 1.80 1.95 扁玉螺Glossaulax didyma 26 5 6 443 304 194 318 404 132 10 2.18 2.93 3010 130 脉红螺Rapana venosa 27 885 926 0.98 167 871 724 730 994 479 842 1376 454 141 长牡蛎Ostrea gigas thunberg 28 1 5 — — 70 11 13 10 — 12 124 — 157 紫贻贝Mytilus edulis 29 0.27 4 0.72 27 11 — 1.52 4 166 2.80 5.78 — 201 栉江珧Atrina pectinata 30 — — 6 106 — — — — 7.60 77 — 3.98 — 经氏壳蛞蝓Philine kinglipini 31 10 — — — — 336 — — — — — — — 棘皮动物Echinoderm 哈氏刻肋海胆Temnopleurus hardwickii 32 433 326 82 678 842 88 2561 386 199 854 620 141 303 海燕Asterina pectinifera 33 164 292 17 243 158 35 1128 66 46 298 322 51 267 多棘海盘车Asterias amurensis 34 34 27 69 92 22 — — 5 6.44 136 9.70 27 — 马氏刺蛇尾Ophiothrix marenzelleri 35 — 257 115 328 3118 5.84 39 — 26 — — — — 金氏真蛇尾Ophiura kinbergi 36 — — — — — 148 — — — — — — 21 虾夷砂海星Luidia yesoensis Goto 37 108 174 18 302 71 110 275 79 27 683 351 433 22 腕足动物Brachiopoda 酸浆贝Terebratella coreanica — 42 5 5 278 78 492 470 56 186 564 41 2.36 2.69 表 2 庙岛群岛毗邻海域底层渔业生物群落食物网结构与复杂性指数
Table 2 Structure and complexity index of the food web of in the sea adjacent to the Miaodao Archipelago
食物网指数Index 物种数
S摄食关系数量L 节点密度S/L 连结密度L/S 种间关联度L/S2 连接复杂性指数SC 特征路径长度ChPath 平均聚类系数CC 数值Value 37 223 0.17 6.03 0.16 12.21 2.10 0.30 表 3 庙岛群岛毗邻海域底层渔业生物群落食物网拓扑结构指标
Table 3 Topological structure of food web of bottom fishery communities in the sea adjacent to the Miaodao Archipelago
点度
D入度
Din出度
Dout中介中心性
BC紧密中心性
CC信息中心性
IC群落离
散变量
∆F’距离权重
离散变量
∆DF’关键性指数
K下行关键
性指数
Kt上行关键
性指数
KbTI1
(n=1)TI5
(n=5)14 28 13 21 14 18 14 19.11 14 87.81 14 6.44 13 0.17 14 0.07 21 8.68 31 5.23 21 8.68 35 2.82 31 1.05 13 27 21 18 25 17 13 8.16 13 78.26 13 6.15 14 0.12 13 0.07 13 8.44 35 5 13 7.92 31 2.81 35 1 2 25 1 16 35 15 25 6.41 1 75.00 1 6.02 25 0.12 25 0.05 1 5.69 29 4.15 9 5.04 29 2.67 29 0.83 1 21 4 15 26 14 1 5.83 2 73.47 2 5.94 1 0.04 2 0.05 31 5.23 26 3.59 7 4.97 14 2.3 26 0.72 21 18 6 15 29 14 26 5.44 25 69.23 25 5.75 2 0.04 1 0.03 9 5.04 14 3.02 4 4.48 26 2.18 14 0.60 25 17 9 14 2 13 2 3.77 26 67.93 26 5.66 3 0.04 16 0.03 14 5.03 25 2.82 1 4.42 25 2.13 25 0.56 3 15 2 12 5 12 29 3.63 21 66.67 21 5.55 5 0.04 3 0.03 35 5.00 5 2.26 6 3.86 5 1.36 5 0.45 4 15 7 11 15 11 31 2.56 16 65.46 16 5.46 8 0.04 5 0.03 7 4.97 10 1.98 14 2.01 1 1.22 10 0.40 6 15 14 10 10 10 21 2.22 4 64.29 35 5.44 10 0.04 21 0.03 4 4.48 15 1.49 2 1.96 15 1.11 15 0.30 15 15 16 7 31 10 35 2.09 29 64.29 5 5.43 12 0.04 15 0.02 29 4.15 1 1.27 24 1.35 10 0.98 1 0.25 35 15 20 7 3 9 4 1.81 6 63.16 29 5.35 15 0.04 17 0.02 6 3.86 11 1.05 20 1.05 11 0.72 11 0.21 9 14 34 7 11 9 6 1.63 5 62.07 4 5.34 16 0.04 19 0.02 26 3.59 3 0.88 34 0.99 3 0.7 3 0.18 26 14 3 6 13 6 16 1.47 35 62.07 6 5.23 17 0.04 10 0.02 25 2.82 2 0.80 16 0.89 2 0.61 2 0.16 29 14 18 6 16 6 5 1.37 15 61.02 3 5.07 18 0.04 22 0.02 2 2.76 36 0.74 33 0.80 22 0.48 36 0.15 16 13 19 6 17 6 22 0.77 17 61.02 27 5.07 19 0.04 20 0.02 5 2.26 28 0.71 19 0.77 13 0.42 28 0.14 5 12 33 6 1 5 17 0.75 22 61.02 15 4.98 20 0.04 23 0.02 10 2.15 27 0.65 8 0.71 28 0.41 27 0.13 10 12 8 5 12 5 3 0.71 10 60.00 17 4.98 21 0.04 18 0.02 15 1.85 17 0.58 3 0.70 16 0.4 17 0.12 11 12 17 5 22 5 27 0.71 19 60.00 22 4.97 22 0.04 12 0.02 3 1.57 22 0.55 18 0.67 17 0.4 22 0.11 7 11 12 4 8 4 20 0.70 20 60.00 19 4.82 23 0.04 8 0.02 16 1.41 16 0.52 17 0.44 36 0.37 12 0.10 17 11 15 4 19 4 11 0.57 3 59.02 20 4.82 24 0.04 24 0.02 24 1.41 12 0.51 32 0.43 12 0.32 13 0.10 注: 表中加粗数字为物种编号; 表中列出排名前20的物种Note: The bold numbers in the table are the species numbers; List the top 20 species in the table 表 4 庙岛群岛毗邻海域底层渔业生物群落食物网复杂性指数与其他典型海域对比
Table 4 Comparison of food web complexity index of bottom fishery community in the sea adjacent to the Miaodao Archipelago and other typical waters
表 5 庙岛群岛毗邻海域底层渔业生物群落关键种在食物网中所扮演的角色
Table 5 The role of keystone species in the food web of bottom fisheries communities in the sea adjacent to the Miaodao Archipelago
角色Role 关键种Keystone species 入度Din 出度Dout 关键捕食者
Keystone predator口虾蛄 O.oratoria 21 6 白姑鱼 P.argentata 16 5 关键中间种
Keystone intermediate species矛尾虾虎鱼C.stigmatias 12 13 关键饵料种
Keystone prey species日本鼓虾 A.japonicus 10 18 扁玉螺 G.didyma 0 14 -
[1] Paine R T. Food web complexity and species diversity [J]. The American Naturalist, 1966, 100(910): 65-75. doi: 10.1086/282400
[2] Mills L S, Doak D F. The keystone-species concept in ecology and conservation [J]. BioScience, 1993, 43(4): 219-224. doi: 10.2307/1312122
[3] Paine R T. A note on trophic complexity and community stability [J]. The American Naturalist, 1969, 103(929): 91-93. doi: 10.1086/282586
[4] 黄建辉, 韩兴国, 娄治平. 关键种概念在生物多样性保护中的意义与存在问题 [J]. 植物学通报, 1995, 30(S2): 168-184. Han X G, Huang J H, Lou Z P. The significance and problems associated with the keystone species concept in biodiversity conservation [J]. Chinese Bulletin of Botany, 1995, 30(S2): 168-184.
[5] Mcgowan J, Beaumont L J, Smith R J, et al. Conservation prioritization can resolve the flagship species conundrum [J]. Nature Communication, 2020, 11(1): 994. doi: 10.1038/s41467-020-14554-z
[6] 长岛海洋生态文明综合试验区管理委员会, 国家林业和草原局调查规划设计院, 自然资源部第一海洋研究所, 山东省海洋资源与环境研究院. 长岛综合科考报告. 2020: 9, 19. Changdao Marine Ecological Civilization Comprehensive Pilot Area Management Committee, National Forestry and Grassland Administration survey Planning and Design Institute, The First Institute of Oceanology, Ministry of Natural Resources, Shandong Institute of Marine Resources and Environment. Changdao Comprehensive Scientific Survey Report. 2020: 9, 19.
[7] 石洪华, 郑伟, 王晓丽. 我国北方典型海岛生态系统固碳生物资源调查与承载力评估 [M]. 北京: 海洋出版社, 2017: 12. Shi H H, Zheng W, Wang X L. Investigation and Carrying Capacity Evaluation of Carbon Fixing Biological Resources in Typical Island Ecosystems in North China [M]. Beijing: Ocean Press, 2017: 12.
[8] 单秀娟, 陈云龙, 戴芳群, 等. 黄海中南部不同断面鱼类群落结构及其多样性 [J]. 生态学报, 2014, 34(2): 377-389. Shan X J, Chen Y L, Dai F Q, et al. Variations in fish community structure and diversity in the sections of the central and southern Yellow Sea [J]. Acta Ecologica Sinica, 2014, 34(2): 377-389.
[9] GB/T 12763.6–2007 海洋调查规范: 海洋生物调查 [S]. 2007. GB/T 12763.6-2007 Specifications for Oceanographic Survey: Specifications for Marine Biological Survey [S]. 2007.
[10] 刘瑞玉. 中国海洋生物名录 [M]. 北京: 科学出版社, 2008: 903-1066. Liu R Y. Checklist of Marine Biota of China Seas [M]. Beijing: Science Press, 2008: 903-1066.
[11] 王茂剑, 宋秀凯. 渤海山东海域海洋保护区生物多样性图集 [M]. 北京: 海洋出版社, 2017: 8. Wang M J, Song X K. Atlas of Biodiversity of Marine Protected Areas in Bohai Sea, Shandong Province [M]. Marine Press, 2017: 8.
[12] 郑晓春, 戴小杰, 朱江峰, 等. 太平洋中东部海域大眼金枪鱼胃含物分析 [J]. 南方水产科学, 2015, 11(1): 75-80. doi: 10.3969/j.issn.2095-0780.2015.01.011 Zheng X C, Dai X J, Zhu J F, et al. Analysis on stomach content of bigeye tuna (Thunnus obesus) in the eastern-central Pacific Ocean [J]. South China Fisheries Science, 2015, 11(1): 75-80. doi: 10.3969/j.issn.2095-0780.2015.01.011
[13] 王荣夫, 张崇良, 徐宾铎, 等. 海州湾秋季小眼绿鳍鱼的摄食策略及食物选择性 [J]. 中国水产科学, 2018, 25(5): 1059-1070. doi: 10.3724/SP.J.1118.2018.17350 Wang R F, Zhang C L, Xu B D, et al. Feeding strategy and prey selectivity of Chelidonichthys spinosus during autumn in Haizhou Bay [J]. Journal of Fishery Sciences of China, 2018, 25(5): 1059-1070. doi: 10.3724/SP.J.1118.2018.17350
[14] Pinkas L, Oliphamt M S, Iverson I L K. Food habits of albacore, bluefin tuna, and bonito in California waters [J]. CalifDep Fish Game Fish Bull, 1971, 152: 1-105.
[15] 单秀娟, 金显仕. 长江口近海春季鱼类群落结构的多样性研究 [J]. 海洋与湖沼, 2011, 42(1): 32-40. doi: 10.11693/hyhz201101005005 Shan X J, Jin X S. Diversity of fish community structure in the spring-time offshore waters at the Yangtze River Estuary [J]. Oceanologia et Limnologia Sinica, 2011, 42(1): 32-40. doi: 10.11693/hyhz201101005005
[16] 窦硕增, 杨纪明, 陈大刚. 渤海石鲽、星鲽、高眼鲽及焦氏舌鳎的食性 [J]. 水产学报, 1992, 16(2): 162-166. Dou S Z, Yang J M, Chen D G. Food habits of stone flounder, spotted flounder, high-eyed flounder and red tongue sole in the Bohai Sea [J]. Journal of Fisheries of China, 1992, 16(2): 162-166.
[17] 金海卫, 薛利建, 朱增军, 等. 东海和黄海南部细条天竺鲷的摄食习性 [J]. 海洋渔业, 2012, 34(4): 361-370. doi: 10.3969/j.issn.1004-2490.2012.04.001 Jin H W, Xue L J, Zhu Z J, et al. Feeding habits of Apogon lineatus in the East China Sea and southern Yellow Sea [J]. Marine Fisheries, 2012, 34(4): 361-370. doi: 10.3969/j.issn.1004-2490.2012.04.001
[18] 朱江峰, 戴小杰, 王学昉, 等. 海洋食物网拓扑学方法研究进展 [J]. 渔业科学进展, 2016, 37(2): 153-159. doi: 10.11758/yykxjz.20150322001 Zhu J F, Dai X J, Wang X F, et al. A review of methodology in Marie food-web topology [J]. Progress in Fishery Sciences, 2016, 37(2): 153-159. doi: 10.11758/yykxjz.20150322001
[19] 许莉莉, 薛莹, 徐宾铎, 等. 海州湾大泷六线鱼摄食生态研究 [J]. 中国水产科学, 2018, 25(3): 608-620. doi: 10.3724/SP.J.1118.2018.17322 Xu L L, Xue Y, Xu B D, et al. Feeding ecology of Hexagrammos otakii in Haizhou Bay [J]. Journal of Fishery Sciences of China, 2018, 25(3): 608-620. doi: 10.3724/SP.J.1118.2018.17322
[20] 张波, 李忠义, 金显仕. 许氏平鲉的食物组成及其食物选择性 [J]. 中国水产科学, 2014, 21(1): 134-141. Zhang B, Li Z Y, Jin X S. Food composition and prey selectivity of Sebastes schlegeli [J]. Journal of Fishery Sciences of China, 2014, 21(1): 134-141.
[21] 陈颖涵. 北部湾主要鱼类食性的初步研究 [D]. 厦门: 厦门大学, 2013. Chen Y H. Preliminary study on the feeding habit of dominant fish species in beibu gulf [D]. Xiamen: Xiamen University, 2013.
[22] 张波. 渤海鱼类的食物关系 [J]. 渔业科学进展, 2018, 39(3): 11-22. Zhang B. Feeding ecology of fishes in the Bohai Sea [J]. Progress in Fishery Sciences, 2018, 39(3): 11-22.
[23] 杨纪明. 渤海鱼类的食性和营养级研究 [J]. 现代渔业信息, 2001, 16(10): 10-19. Yang J M. A study on food and trophic levels of Baohai Sea fish [J]. Modern Fisheries Information, 2001, 16(10): 10-19.
[24] 李明德. 渤海鱼类的竞食关系 [J]. 河北渔业, 1996(5): 14-16. Li M D. The relationship of food competition of fishes in Bohai Sea [J]. Hebei Fisheries, 1996(5): 14-16.
[25] 邓景耀, 孟田湘, 任胜民. 渤海鱼类食物关系的初步研究 [J]. 生态学报, 1986, 6(4): 356-364. Deng J Y, Meng T X, Ren S M. Food web of fishes in Bohai Sea [J]. Acta Ecologica Sinica, 1986, 6(4): 356-364.
[26] 邓景耀, 姜卫民, 杨纪明, 李军. 渤海主要生物种间关系及食物网的研究 [J]. 中国水产科学, 1997, 4(4): 1-7. doi: 10.3321/j.issn:1005-8737.1997.04.001 Deng J Y, Jiang W M, Yang J M, et al. Species interaction and food web of major predatory species in the Bohai Sea [J]. Journal of Fishery Sciences of China, 1997, 4(4): 1-7. doi: 10.3321/j.issn:1005-8737.1997.04.001
[27] 林群. 黄渤海典型水域生态系统能量传递与功能研究 [D]. 青岛: 中国海洋大学, 2012. Lin Q. Studies on the ecosystem energy transfer and function in the typical waters of yellow and Bohai Sea [D]. Qingdao: Ocean University of China, 2012.
[28] 张波. 中国近海食物网及鱼类营养动力学关键过程的初步研究 [D]. 青岛: 中国海洋大学, 2005. Zhang B. Preliminary studies on marine food web and trophodynamics in China coastal seas [D]. Qingdao: Ocean University of China, 2005.
[29] 薛莹. 黄海中南部主要鱼种摄食生态和鱼类食物网研究 [D]. 青岛: 中国海洋大学, 2005. Xue Y. Studies on the feeding ecology of dominant fishes and food web of fishes in the central and southern Yellow Sea [D]. Qingdao: Ocean University of China, 2005.
[30] 程济生, 朱金声. 黄海主要经济无脊椎动物摄食特征及其营养层次的研究 [J]. 海洋学报, 1997, 19(6): 102-108. Cheng J S, Zhu J S. Study on feeding characteristics and nutritional levels of main economic invertebrates in the Yellow Sea [J]. Acta Oceanologica Sinica, 1997, 19(6): 102-108.
[31] Marina T I, et al. The Food Web of Potter Cove (Antarctica): complexity, structure and function [J]. Estuarine, Coastal and Shelf Science, 2018(200): 141-151. doi: 10.1016/j.ecss.2017.10.015
[32] 杨涛. 莱州湾鱼类群落关键种及其年际变化 [D]. 上海: 上海海洋大学, 2016. Yang T. Interannual variation in the keystones species of fish community in the Laizhou Bay [D]. Shanghai: Shanghai Ocean University, 2016.
[33] 苏程程, 单秀娟, 杨涛, 等. 黄海秋季鱼类群落关键种的年代际变化 [J]. 渔业科学进展, 2021, 42(6): 1-14. Su C C, Shan X J, Yang T, et al. Interdecadal changes in keystone species of fish community during autumn in the Yellow Sea [J]. Progress in Fishery Sciences, 2021, 42(6): 1-14.
[34] 刘勇, 程家骅. 东海、黄海秋季渔业生物群落结构及其平均营养级变化特征初步分析 [J]. 水产学报, 2015, 39(5): 691-702. Liu Y, Cheng J H. A preliminary analysis of variation characteristics of structure and average trophic level of the main fishery species caught by paired bottom trawl in the East China Sea and the Yellow Sea during the fall season [J]. Journal of Fisheries of China, 2015, 39(5): 691-702.
[35] 孙刚, 盛连喜. 生态系统关键种理论的研究进展 [J]. 动物学杂志, 2000, 35(4): 53-57. doi: 10.3969/j.issn.0250-3263.2000.04.016 Sun G, Sheng L X. Developments of the studies on the theory of keystone species in ecosystems [J]. Chinese Journal of Zoology, 2000, 35(4): 53-57. doi: 10.3969/j.issn.0250-3263.2000.04.016
[36] Allesina S, Alonso D, Pascual M. A general model for food web structure [J]. Science, 2008, 320(5876): 658-661. doi: 10.1126/science.1156269
[37] Montoya J M, Solé R V. Topological properties of food webs: from real data to community assembly models [J]. Oikos, 2003, 102(3): 614-622. doi: 10.1034/j.1600-0706.2003.12031.x
[38] Booth A J II, et al. Maximum likelihood and Bayesian approaches to stock assessment when data are questionable [J]. Fisheries Research, 2006, 80(2/3): 169-181.
[39] 赵永松, 单秀娟, 杨涛, 等. 庙岛群岛毗邻海域秋季底栖食物网潜在碳来源贡献及对碳汇渔业的思考 [J]. 渔业科学进展, 2022, 43(5): 132-141. Zhao Y S, Shan X J, Yang T, et al. Contributions of carbon sources to food webs adjacent to the Miaodao archipelago and their implications for carbon sink fisheries [J]. Progress in Fishery Sciences, 2022, 43(5): 132-141.
[40] 赵永松, 单秀娟, 杨涛, 等. 庙岛群岛毗邻海域底层渔业生物群落多样性特征 [J]. 渔业科学进展, 2022, 43(6): 132-147. doi: 10.19663/j.issn2095-9869.20220213001 Zhao Y S, Shan X J, Yang T, et al. Biodiversity characteristics of bottom fishery communities in the sea adjacent to the Miaodao archipelago [J]. Progress in Fishery Sciences, 2022, 43(6): 132-147. doi: 10.19663/j.issn2095-9869.20220213001
[41] 邹建宇, 张崇良, 王希明, 等. 长山列岛邻近海域春、秋季鱼类群落结构 [J]. 中国水产科学, 2022, 29(9): 1349-1357. Zou J Y, Zhang C L, Wang X M, et al. Fish community structure in spring and autumn in the adjacent waters of the Changshan Islands [J]. Journal of Fishery Sciences of China, 2022, 29(9): 1349-1357.
[42] 邹建宇, 薛莹, 徐宾铎, 等. 长山列岛邻近海域鱼类群落种类组成和多样性时空变化 [J]. 应用生态学报, 2022, 33(8): 2237-2243. doi: 10.13287/j.1001-9332.202209.029 Zou J Y, Xue Y, Ji Y P, et al. Spatio-temporal changes in species composition and diversity of fish communities in the adjacent waters of Changshan Islands, China [J]. Chinese Journal of Applied Ecology, 2022, 33(8): 2237-2243. doi: 10.13287/j.1001-9332.202209.029
[43] Dunne J A, Williams R J, Martinez N D. Food-web structure and network theory: the role of connectance and size [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(20): 12917-12922. doi: 10.1073/pnas.192407699
[44] 徐从军, 刘阳, 程远, 等. 基于拓扑网络研究海州湾食物网结构与复杂性 [J]. 海洋学报, 2020, 42(4): 47-54. Xu C J, Liu Y, Cheng Y, et al. Structure and complexity of Haizhou Bay food web based on topological network analysis [J]. Haiyang Xuebao, 2020, 42(4): 47-54.
[45] 杨涛, 单秀娟, 金显仕, 等. 莱州湾春季鱼类群落关键种的长期变化 [J]. 渔业科学进展, 2018, 39(1): 1-11. doi: 10.11758/yykxjz.20170912001 Yang T, Shan X J, Jin X S, et al. Long-term changes in keystone species in fish community in spring in Laizhou Bay [J]. Progress in Fishery Sciences, 2018, 39(1): 1-11. doi: 10.11758/yykxjz.20170912001
[46] 苏程程, 单秀娟, 杨涛. 山东半岛南部海域渔业资源结构及关键种的年际变化 [J]. 水产学报, 2021, 45(12): 1983-1992. Su C C, Shan X J, Yang T. Interannual changes of fish community structure and keystone species in the waters off southern Shandong Peninsula from 2016 to 2018 [J]. Journal of Fisheries of China, 2021, 45(12): 1983-1992.
[47] Opitz S C B. Trophic Interactions in Caribbean Coral Reefs [M]. Makati City, Philippines: International Center for Living Aquatic Resources Management, 1996.
[48] 李忠义, 吴强, 单秀娟, 等. 渤海鱼类群落结构关键种 [J]. 中国水产科学, 2018, 25(2): 229-236. doi: 10.3724/SP.J.1118.2018.17374 Li Z Y, Wu Q, Shan X J, et al. Keystone species of fish community structure in the Bohai Sea [J]. Journal of Fishery Sciences of China, 2018, 25(2): 229-236. doi: 10.3724/SP.J.1118.2018.17374
[49] 王士聪, 杨蕊, 高春霞, 等. 基于生态网络结构的浙江南部近海鱼类群落关键种识别 [J]. 中国水产科学, 2022, 29(1): 118-129. doi: 10.12264/JFSC2021-0140 Wang S C, Yang R, Gao C X, et al. Keystone species of fish community in the offshore waters of southern Zhejiang: insight from ecological network [J]. Journal of Fishery Sciences of China, 2022, 29(1): 118-129. doi: 10.12264/JFSC2021-0140
[50] Dunne J A, Williams R J, Martinez N D. Network structure and robustness of marine food webs [J]. Marine Ecology Progress Series, 2004(273): 291-302. doi: 10.3354/meps273291
[51] Williams R J, Berlow E L, Dunne J A, et al. Two degrees of separation in complex food webs [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(20): 12913-12916. doi: 10.1073/pnas.192448799
[52] Link J. Does food web theory work for marine ecosystems [J]? Marine Ecology Progress Series, 2002(230): 1-9. doi: 10.3354/meps230001
-
期刊类型引用(3)
1. 高春霞,王寅,杨蕊. 海洋食物网结构稳定性及干扰响应研究综述. 上海海洋大学学报. 2024(02): 493-508 . 百度学术
2. 陈雯,苏程程,滕广亮,田洪林,赵永松,单秀娟. 夏、冬季青岛近岸海域渔业生物群落结构特征. 渔业科学进展. 2024(06): 13-23 . 百度学术
3. 周学红,王强,李星醇. 关键种、伞护种、旗舰种在保护生物学领域的研究与应用. 陆地生态系统与保护学报. 2023(06): 88-96 . 百度学术
其他类型引用(2)