EVALUATION OF THE EFFECTS ON “10-YEAR FISHING BAN” IN POYANG LAKE ECOSYSTEM BASED ON ECOPATH MODEL
-
摘要:
基于渔业资源调查数据构建了鄱阳湖禁渔前后(2018和2021年)的生态系统Ecopath模型, 比较了两个时期生态系统规模、食物网及营养结构、能量流动、系统稳定性等特征的变化, 以评估“十年禁渔”措施的效果。结果表明: 在“十年禁渔”政策实施后, 鄱阳湖生态系统规模扩大了8.07%, 总生物量增加了35.7%; 生态系统的能量与物质转换效率由10.7%增长到11.3%, 能够恢复到1998年水平; 生态系统成熟度、稳定性增强; 食物网的高营养指标从28.6%增长到35.7%, 食物链长度从3.63增长到3.86。综上所述, 禁渔之后鄱阳湖生态系统规模扩大, 各功能组间的营养交互关系变强, 生态系统的物质流转速度和物质再循环的比例升高, 复杂性、稳定性和成熟度增加, 表明“十年禁渔”政策已取得明显成效。
Abstract:Based on fishery resource survey data, Ecopath models were constructed before and after the fishing ban in Poyang Lake (2018 and 2021) to evaluate the effectiveness of the “10-Year Fishing Ban” policy on ecosystem. Comparisons were made regarding differences in ecosystem scale, food web and nutrient structure, energy flow characteristics, and system stability between the two periods. The results indicate a notable expansion in the scale of the ecosystem by 8.07%, accompanied by a substantial increase in total biomass by 35.7%. Moreover, the energy and material transfer efficiency of the ecosystem experienced an improvement from 10.7% to 11.3%, which is close to the historical level of 1998 (11%). Furthermore, there was an enhancement in ecosystem maturity and stability. The high nutritional index of the food web increased from 28.6% to 35.7%, while the length of the food chain increased from 3.63 to 3.86. In summary, following the fishing ban, the Poyang Lake ecosystem exhibited increased complexity, stability, and maturity, with stronger nutritional interactions among various functional groups. The speed of material circulation and the proportion of material recycling in the ecosystem also increased, indicating that the “10-Year Fishing Ban” policy has achieved significant positive outcomes.
-
鄱阳湖是我国第一大淡水湖, 也是长江中下游仅存的少数通江湖泊之一。其与长江干流相通, 形成极具特色的江湖复合生态系统。鄱阳湖也是长江流域重要的渔业湖泊, 长期渔业产量为3万吨左右[1]。受过度捕捞及人类活动影响, 鄱阳湖的渔业资源和生物多样性呈衰退趋势。根据农业农村部的通告, 江西省确定鄱阳湖自2020年1月1日起, 实施全面禁捕, 正式进入“十年禁渔”期。已有研究显示, 长江流域重点水域禁渔后鱼类资源恢复[2]、鱼类物种多样性增加[3]、鱼类群落结构改善[4]。这些评估反映了禁渔措施实施后, 水生态系统结构和成分的有益变化。但是如何从生态系统功能指标上评估禁渔效果, 相关工作目前还非常缺乏。
Ecopath生态通道模型是通过营养动力学原理构建生态系统的食物网关系, 模拟生态系统内的能量转移和物质循环, 分析生态系统的能量流动、食物网营养结构和系统总体功能特征等, 对特定时期的生态系统状况进行描述[5]。应用Ecopath模型, 国内外许多学者对水生态系统的渔业管理进行了研究[6-8], 发现该模型在描述水生态系统的特征[9, 10]、评价水生态系统的变化[11, 12]、模拟水生态系统的发展[13, 14]及指导生态系统的管理[15, 16]方面应用广泛。因此, Ecopath模型分析方法可以作为评估禁渔效果的重要工具。
本研究根据历年鄱阳湖的渔业资源调查数据, 利用Ecopath with Ecosim (EwE)模型软件, 构建了禁渔前(2018年)和禁渔后(2021年)的生态通道模型, 分析对比“十年禁渔”政策实施前后鄱阳湖生态系统结构功能与能量流动特征变化, 对“十年禁渔”的阶段性成效进行评估, 从生态系统水平研究渔业资源管理和生态修复可能性, 为恢复鄱阳湖渔业资源和生态系统功能, 实现其生态系统健康可持续发展提供理论依据。
1. 材料与方法
1.1 研究区域概况及渔业资源调查
鄱阳湖(28°24′—29°46′N, 115°49′—116°46′E)是我国最大的淡水通江湖泊[17], 湖体横跨江西省十几个县市。在长期季风气候及江湖交互作用的影响下, 湖区面积形成季节性水位波动模式, 洪、枯水期差异明显[18], 高水位(20 m)面积可超过4125 km2; 低水位(12 m)时仅500 km2, 使其呈现出“高水是湖, 低水似河”的特殊景观[19]。
已有研究表明, 鄱阳湖有鱼类136种, 主要是鲤形目鲤科鱼类, 有71种[1]。作为大型通江湖泊, 鄱阳湖鱼类有湖泊定居型、江湖洄游型、河海洄游型和河流型4种生态类型, 优势物种为鲤、鲫、鲇、黄颡鱼等湖泊定居性鱼类, 其次为草鱼、鲢等江湖洄游性鱼类[1]。鄱阳湖实施禁捕前, 由于过度捕捞等人类活动影响, 鱼类资源呈衰退变化趋势, 鱼类多样性下降[20]、渔业资源量衰减[21]。
考虑到研究区域的水文特征, 分别于2018年、2021年的丰、枯水期开展了相应的鱼类资源调查工作, 具体调查时间为2018年1月16日至26日、2018年7月24日至8月10日、2021年7月7日至23日、2021年12月9日至27日, 主要作业渔具为定置刺网(网长50—100 m, 网高1.5 m, 网目2.0—14 cm)及虾笼(长20 m, 网目0.80—2.0 cm)。依据《生物多样性观测技术导则-内陆水域鱼类》(HJ 710.7-2014)通江湖泊应确保主要入湖支流、主湖区及通江水道均设置采样点的原则, 本研究共在湖区设置了12个采样点, 具体为鄱阳湖汇入长江的湖口, 入江水道的星子、老爷庙, 主要支流汇入的吴城、小鸣咀、三江口, 以及湖区的黄金咀、蛇山、白沙洲、南矶山、金溪湖和青岚湖(图 1)。
1.2 模型构建
Ecopath模型的原理与方法 根据能量守恒定理, Ecopath模型假设生态系统中的功能组是相对稳定的, 即该生态系统的每个功能组(i)的能量输入与输出相等。对于系统中每个功能组, Ecopath都用以下公式进行平衡[22]:
$$ \begin{split} &{B}_{i} \times {(P/B)}_{i} \times {\mathrm{E}\mathrm{E}}_{i} -\sum _{j=1}^{n}{B}_{j} \times {(Q/B)}_{i}\times \\&{\mathrm{D}\mathrm{C}}_{ji} - {\mathrm{Y}}_{i} - {\mathrm{E}}_{i} - {\mathrm{B}\mathrm{A}}_{i} = 0 \end{split}$$ 式中, Bi是i功能组的生物量; (P/B)i表示i功能组的生产量和生物量之比; EEi表示i功能组的生态营养效率; (Q/B)i表示i功能组的消耗量和生物量之比; DCji是被捕食者j占捕食者i的食物组成的比例; Yi为i功能组总捕捞量; Ei为i功能组净迁移; BAi为i功能组生物积累。
功能组设置 通常用一系列具有生态关联的功能组(Functional group)来概括生态系统的发展变化。依据Christensen等[23]提出的划分功能组的原则, 结合禁渔前后两个年份(2018年和2021年)渔获物的生物学特性、食性特点, 将生态系统的各组分统一划分为22个功能组, 保证禁渔前后模型的可比性。除了14个鱼类功能组外, 还包括有机碎屑、浮游生物、底栖动物、虾蟹、水生植物、附着藻类等功能组(表 1)。
表 1 基于Ecopath模型的鄱阳湖生态系统功能组划分及物种组成Table 1. Functional group and component of ecopath model in Poyang Lake编号
No.功能组
Functional group组成
CompositionG1 Piscivorous fishes 鳜Siniperca chuatsi, 斑鳜Siniperca scherzeri, 大眼鳜Siniperca kneri, 鳡Elopichthys bambusa, 鳤Ochetobius elongatus G2 Demersal carnivorous 乌鳢Channa argus, 鲇Silurus asotus, 河川沙塘鳢Odontobutis potamophilus, 日本鳗鲡Anguilla japonica, 大口鲇Silurus meridionalis G3 Culters 蒙古鲌Chanodichthys mongolicus, 达氏鲌Chanodichthys dabryi, 红鳍原鲌 Cultrichthys erythropterus, 翘嘴鲌Culter alburnus, 拟尖头鲌Culter oxycephaloides等 G4 Siluriformes 黄颡鱼Pelteobagrus fulvidrac, 光泽黄颡鱼Pelteobaggrus nitidus , 瓦氏黄颡鱼Pelteobagrus vachelli, 长须黄颡鱼Pelteobagrus eupogon, 白边拟鲿Pseudobagrus albomarginatus , 乌苏拟鲿Pseudobagrus ussuriensis, 长吻鮠Leiocassis longirostris, 粗唇鮠Leiocassis crassilabris, 大鳍鳠Hemibagrus macropterus G5 Black carp 青鱼Mylopharyngodon piceus G6 C-carps 鲤Cyprinus carpio, 鲫Carassius auratus G7 Anchovy 短颌鲚Coilia brachygnathus, 刀鲚Coilia nasus G8 Silver carp 鲢Hypophthalmichthys molitrix G9 Bighead carp 鳙Aristichthys nobilis G10 Grass carp 草鱼Ctenopharyngodon idellus G11 Bream 团头鲂Megalobrama amblycephala, 鲂Megalobrama skolkovii, 鳊Parabramis pekinensis等 G12 Xenocypris 圆吻鲴Distoechodon tumirostris, 银鲴Xenocypris argentea, 细鳞鲴Xenocypris microlepis, 黄尾鲴Xenocypris davidi, 似鳊Pseudobrama simoni等 G13 S-pelagic 贝氏䱗Hemiculter bleekeri , 䱗Hemiculter leucisculus, 飘鱼Pseudolaubuca sinensis, 寡鳞飘鱼Pseudolaubuca engraulis, 圆尾斗鱼Macropodus chinensis, 叉尾斗鱼Macropodus opercularis, 麦穗鱼Pseudorasbora parva, 似鱎Toxabramis swinhonis, 马口鱼Opsariichthys bidens等 G14 S-demersal 蛇鮈Saurogobio dabryi, 光唇蛇鮈Saurogobio gymnocheilus, 长蛇鮈Saurogobio dumerili, 银鮈Squalidus argentatus, 吻鮈Rhinogobio typus, 棒花鱼Abbottina rivularis, 大鳍鱊 Acheilognathus macropterus, 华鳈Sarcocheilichthys sinensis, 黑鳍鳈Sarcocheilichthys nigripinnis, 花䱻Hemibarbus maculatus, 唇䱻Hemibarbus labeo, 似刺鳊鮈Paracanthobrama guichenoti, 紫薄鳅Leptobotia taeniaps等 G15 Shrimps 沼虾(日本沼虾Macrobrachium nipponense) G16 Zoobenthos 底栖动物(摇蚊属Chironomus, 水丝蚓属Limnodrilus) G17 Cladocera-copepoda 枝角、桡足类 G18 Microzooplankton 小型浮游动物(轮虫和原生动物等) G19 Attached algae 附着藻类 G20 Phytoplankton 浮游植物(微囊藻属Microcystis spp.、鱼腥藻属Anabaena spp.、颗粒直链藻Melosira granulata、小环藻属Cyclotella spp.、刚毛藻属Cladophora spp.等) G21 Macrophyte 大型水生植物(苔草Carex spp.、虉草Phalaris arundinacea、南荻Miscanthus lutarioriparius、蓼子草Persicaria criopolitana, 黑藻Hydrilla verticillata, 苦草Vallisneria natans 等) G22 Detritus 碎屑 生物学参数计算 模型中的每个功能组都需要生物量(Biomass, B)、生产与生物量比率(Production/Biomass, P/B)、消耗与生物量比率(Consumption/Biomass, Q/B)、食性组成(Diet composition, DC)作为基本输入参数[24]。对于包含多个物种的功能群, 相关参数是根据每个物种的生物量比例加权平均。
①生物量B
指某一时间空间范围内单位面积或体积所存在的物种的总量, 单位通常是生物湿重(t/km2)。在本研究中, 鱼类功能组的生物量(B)可由鱼类密度(D)乘以个体平均体重[W(—)]来估算[25]; 浮游植物的生物量=叶绿素a含量/0.30%, 叶绿素a含量单位(mg/L), 再根据平均水深换算成(t/km2)[26]; 有机碎屑量按照 Christensen等[27]给出的经验公式进行计算; 浮游动物和底栖动物的生物量来自南昌大学环境评估报告; 大型水生植物、附着藻类的生物量依据其他人在鄱阳湖的调查研究结果进行转换[28—30]。
②P/B系数
P/B系数表示功能组生物量的周转率。基于其在数值上等于瞬时死亡率(Z)的原理, 结合实地的鱼类资源调查数据及fishbase中的鱼类生物学信息, 我们采用以下公式来计算鱼类功能组的P/B系数:
$$ Z = \frac{P}{B} $$ $$ Z = k \cdot \frac{\left(L_{\infty} - L_{\text {mean }}\right)}{\left(L_{\text {mean }} - L^{\prime}\right)} $$ 式中, k为von-Bertalanffy生长方程的系数; L∞为鱼类的渐近体长(cm); Lmean为鱼类种群的平均体长(cm); L′表示最小起捕体长(cm)。
虾蟹P/B系数的计算采取采用模型自带的估算功能得出。其他水生生物P/B系数的计算参考文献[31, 32]提出的方法, 其中底栖动物和浮游动物的P/B系数根据生产力的经验公式进行计算[33], 生产力(P)的计算公式:
$$ \begin{split} &\mathrm{l}\mathrm{g}\left(P\right) = -0.060 + 0.79\times\mathrm{l}\mathrm{o}\mathrm{g}\left(\mathrm{B}\right) -\\&0.16\times\mathrm{l}\mathrm{o}\mathrm{g}\left(\mathrm{M}\right) + 0.050\mathrm{T} \end{split}$$ 式中, M为平均个体干重(mg); B为生物量(g/m2); T为水体表层水温(℃)。浮游动物的生产力由浮游动物的生产量和生物量的回归关系换算而来, 参照公式: P=0.097B1.237。
③Q/B系数
鱼类功能组的Q/B系数根据Pauly和Palomares[34]所提出的经验公式计算得出。未算出的鱼类的P/B、Q/B系数通过Fishbase网站上的Life-history tool工具求出。
④食性组成
模型所有功能组的食性矩阵(Diet composition, DC)来自胃含物分析数据, 并在模型调平过程中有所调整。
模型的调试和优化 Ecopath模型利用Pedigree指数分析数据来源和模型质量。在确定功能组数量和明确各功能组之间的摄食关系后, 对模型进行调试。根据生态营养效率EE值与实际调研状况微调食性矩阵与部分输入参数, 使模型各功能组EE值均<1, 模型即达到平衡。基于能量收支平衡原理, Ecopath方法构建的生态系统模型达到平衡, 需要满足以下原则[35](表 2)。生态营养效率(EE)即物种被消耗利用的部分(被捕食利用、生物量积累、迁移或被捕捞)占其生产量的比例。一个功能组被消耗利用的量必须>0, 并小于其生产量 , 所以需要保证0<EE<1。食物总转换效率(GE)对应于生产量与消耗量的比值(P/Q), 通常P/Q 值在0.0500到0.300之间, 即大多数群体的消耗量大约是其生产量的 3—20倍。食物转换的净效率(NE)要大于总效率(GE), 且每个功能组的呼吸量必须>0。在根据以上步骤来判断模型是否平衡的过程中, 应该先优先判定生态营养效率的范围[35]。
表 2 模型平衡的生态学和热力学原则Table 2. Ecological and thermodynamic principles of model balance指标Index 取值范围
Value range生态营养效率Ecological efficiency (EE) 0<EE≤1.00 食物总转换效率Gross food conversion efficiency (GE=P/Q) 0.100<GE<0.300 净效率Net food conversion efficiency (NE) NE>GE 呼吸量Respiratory (R) R>0 1.3 Ecopath评价指标
为了评估禁渔前后食物网营养结构、能量流动及生态系统总体特征的变化, 对以下几类参数进行计算和比较(表 3):
表 3 禁渔前后鄱阳湖生态系统总体特征参数对比Table 3. Comparison of general characteristic parameters of Poyang Lake ecosystem before and after the 10-Year Fishing Ban参数
Parameter禁渔前
Pre-ban 2018禁渔后
Post-ban 2021与成熟生态系统的关系
Relationship with mature ecosystem单位
Unit生态系统成熟度参数Ecosystem Maturity 净系统生产量 (NSP) 7.77×103 5.62×103 成熟系统≈0 t/(km2·
year)总初级生产量/总呼吸量(TP/TR) 4.77 2.86 成熟系统≈1 总初级生产量/总生物量(TP/TB) 22.9 14.8 负相关 总生物量 (TB) 430 583 正相关 t/km2 生态系统稳定性参数Ecosystem Stability 连接指数 (CI) 0.28 0.34 正相关 系统杂食指数 (SOI) 0.21 0.44 正相关 循环指数 (FCI) 2.43% 9.12% 成熟系统>0.5 % 总路径数 (TP) 725 2.95×103 正相关 Ecopath使用总流量(Total system through put, TST)、总消耗量(Total consumption, TC)、总输出量(Total export, TE)、总呼吸量(Total respiratory, TR)、流向碎屑量(Total flow into detritus, TD)、总生产量(Total production, TP)来反映生态系统规模的变化, 其中系统总生产量即系统总流量的发展趋势, 在一定程度上与系统规模成正比。
能够反映生态系统成熟度的参数指标: 总初级生产/总呼吸(Total primary production/Total respiratory, TP/TR)、食物网系统生产量(Net system production, NSP)、总初级生产/总生物量(Total primary production/Total biomass, TP/TB), 一般来说这几个参数会随着生态系统成熟度增加而降低; 而总生物量(Total biomass, TB)在生态系统的成熟阶段处于较高的水平, 而在发展阶段较低。
能够反映生态系统稳定性的参数指标: 联结指数(Connectance index, CI)表示食物网的网络连接程度, 能够反映食物网结构的复杂性, 系统杂食指数(System omnivory index, SOI)通过食性相互作用反映食物网营养结构的复杂性, Finn’s循环指数(Finn’s cycling index, FCI)来反映食物网内部有机物的流转速度即再循环流量占食物网总流量的比例, 总路径数(Total number of paths, TP)可以反映生态系统食物网内部的网状结构稳定性。
除此以外, 我们使用平均营养级水平(Mean trophic level, MTL)、高营养指标(High trophic index, HTI)、食物链长度(Length of food chain, LFC)来反映食物网结构及营养级水平, 这里所提到的营养级采用分数营养级(Fractional trophic level, FTL)的概念, 也称有效营养级 (Effective trophic level, ETL)[36], 通过简化各个功能组的食物关系和能量流动, 表明各个功能组在生态系统的营养地位, 便于分析营养级的能量流动和转化效率。食物链长度(LFC)通过影响各功能组的相互营养作用, 改变生物的相互营养关系、食物网结构及物质能量流动[37]。高营养指标(HTI)是Pierre Bourdaud等[38]开发的, 代表了生态系统中高营养水平消费者的比例, 可以反映捕捞压力的影响。渔获物的平均营养级水平(MTL)能够描述各功能组的营养级别分布, 是评估生态系统健康状况的重要指标[39]。可以按照以下经验公式计算[40]:
$$ {\rm{MTL}}=\sum_{i}^{n} \frac{{\rm{TL}}^{i} Y^{i}}{Y} $$ 式中, TLi 为第i个物种的营养级。
2. 结果
2.1 食物网营养结构变化
根据Morissette[41]所提出的Pedigree指数良好指数范围(0.160—0.680), 禁渔前后鄱阳湖生态系统的Pedigree指数0.457和0.538均在其良好范围之内。分析得到所有功能类群的输出参数, EE值为0.0420—0.962, P/Q值为0.0590—0.400, 表明模型已达到平衡状态。通过构建Ecopath模型, 得到禁渔前2018年和禁渔后2021年鄱阳湖生态系统的食物网结构(图 2)。图 2显示, 鄱阳湖的初级生产者主要为高等水生植物, 此外, 浮游植物和固着藻类也有较高的生物量。在禁渔后, 杂食性及滤食性鱼类, 中上层小型鱼类和中下层小型鱼类生物量升高, 它们是能量流向顶级消费者的重要中介。
图 2 禁渔前后鄱阳湖生态系统食物网结构不同大小的圆表示不同功能组的生物量(以t/km2为单位); 灰色连线表示能量在生态系统中的流动路径; 各功能组的名称详见表 1。为了满足Ecopath软件的要求, 我们设置了一个渔业捕捞组, 用Fleet1来表示。由于渔业捕捞不属于生态系统内部生物之间的相互作用, 所以在表 1中没有列出该组名称Figure 2. Food web structure of Poyang Lake ecosystem before and after the 10-Year Fishing BanDifferent-sized circles represent the biomass (t/km2) of different functional groups; gray lines indicate the flow of energy within the ecosystem; the names of each functional group can be found in Tab. 1. A fishing fleet, denoted as Fleet1, has been included to represent fishing activities, as per the requirements of the Ecopath software. Since fishing activities do not involve interactions among the internal biota of the ecosystem, they have not been listed in Tab. 1禁渔前后鄱阳湖生态系统食物网营养级结构相似: 分数营养级数值分别为1.00—3.63 (2018年)和1.00—3.86 (2021年), 最高营养级鱼类均为凶猛肉食性鱼类; 处于较高营养级的为肉食性鱼类, 如鳜、鲌类、鲇、乌鳢等, 这些类群物种相对较少。大部分杂食性、草食性和小型鱼类多分布于第二、三营养级, 种类较多。鄱阳湖水生态系统高营养级的生物量和生态营养效率都较低, 整个系统呈“低营养级值大, 高营养级值小”的典型金字塔型。
从营养级分布可以看出, 禁渔前顶级肉食性鱼类营养级较低(3.63), 位于第四营养级之下; 而禁渔后的鱼类功能组的营养级水平上升, 最高营养级鱼类功能组为凶猛肉食性鱼类鳜、鳡等, 接近第四营养级(3.86)。禁渔前各鱼类功能组的平均营养级水平是2.76(2018年), 而禁渔后平均营养级水平增加到2.96 (2021年)。高营养指标由禁渔前2018年的28.6%, 增加到禁渔后2021年的35.7%。从食物链长度(鱼类功能组的最高分数营养级)来看, 禁渔前2018年鄱阳湖生态系统食物链长度为3.63, 而禁渔后2021年增长至3.86。
2.2 能量转换效率及营养关系变化
2018年及2021年鄱阳湖水生态系统各营养级间的能量流动路径如图 3所示。从营养级的能流分布来看, 营养级Ⅰ和Ⅱ的能流在系统中所占比例最大, 相比较而言, 整个系统的能流中高营养级所占比例很少。禁渔前2018年, 初级生产者流入碎屑的比例为78.3%, 远远超过了流入初级生产者的比例21.7%; 禁渔后2021年, 初级生产者流入到碎屑的比例减少到58.1%。禁渔前2018年, 牧食食物链在系统能量流动中占67.4%, 食物网能流以牧食食物链为主; 禁渔后2021年, 碎屑食物链在系统能量流动中占52.0%, 食物网能流变为以碎屑食物链为主。对鄱阳湖水体食物链能量转换效率的比较可看出, 禁渔前2018年, 来自前六个营养级的平均能量传输效率为10.7%; 禁渔后, 2021年鄱阳湖生态系统的平均能量传输效率升高, 由10.7%增长到11.3%。
图 4显示了禁渔前后鄱阳湖生态系统的混合营养效应(Mixed trophic impacts, MTI), 它能够反映生态系统各物种的食性关系和相互作用。一般而言, 被捕食者对其他功能组会产生正面影响(蓝色方块), 而捕食者会对其他功能组产生负面影响(红色方块)。由图 4可以看出, 多数功能组对其主要饵料生物施加了一个直接负影响。大型肉食性鱼类功能组G1(鳡、鳜)、G2 (鲇、乌鳢)、G3 (翘嘴鲌)等对小型鱼类功能组G13、G14、沼虾类功能组G15均有负面影响; 此外, 存在种间竞争关系的大型鱼食性功能组G1、G2、G3等均存在相互负影响; 而作为草食性鱼类、滤食性鱼类和底栖食性鱼类食物源的低营养级初级生产者, 附着藻类、浮游植物、沉水植物、碎屑等功能组对其有显著正向影响。
对比禁渔前后可以发现, 禁渔之前, 渔业捕捞(fleet功能组)对顶级鱼食性鱼类功能组G1、G2、G3及具有一定经济价值的G5、G6、G8、G9、G10功能组有明显的负面效应, 而对于鲴亚科鱼类、中上层及中下层小型鱼类有显著的正面效应。禁渔之后, 多数肉食性鱼类功能组的捕食效应增强, 相应地, 对低营养级小型浮游动物食性鱼类和杂食性鱼类的捕食压力增加。这表明肉食性鱼类受渔业活动干扰的影响明显。
2.3 生态系统规模变化
系统总生产量由禁渔前的1.07×104 t/(km2·a), 增加至禁渔后的1.13×104 t/(km2·a); 系统总流量由禁渔前的2.23×104t/(km2·a)增加至禁渔后的2.41×104 t/(km2·a), 表明生态系统规模扩大了约8.07%。
2.4 生态系统成熟度和稳定性变化
①生态系统成熟度参数
系统总初级生产量与总呼吸量的比值TPP/TR 值越接近1, 表明初级生产力越接近代谢值, 该生态系统无剩余能量冗余, 具有相对高效的能量转化效率, 表明这种情况下的生态系统可能是相对成熟和健康的。禁渔前2018年TPP/TR的比值为4.77, 而禁渔后2021年降低至2.86, 成熟度增加。净系统生产量NSP指系统的净生产量, 反映了生态系统的能量流动效率和生产力水平, 在一个相对稳态的生态环境中, 其结果趋近于0。NSP在禁渔前为7.77×103 t/(km2·a), 禁渔后降低到5.62×103 t/(km2·a), 表明成熟度的增加。除此之外, 较低的总初级生产/总生物量比值TPP/TB也是成熟生态系统的特征之一, 因为对于未成熟的生态系统, 其呼吸作用小于初级生产作用, 而随着系统的成熟, 生物量不断积累, TPP/TB比率随之降低。禁渔后TPP/TB由禁渔前的22.9降低至14.8, 成熟度增加。总生物量TB与以上3个指标相反, 往往在生态系统的成熟阶段处于较高的水平, 而在发展阶段数值较低。禁渔前TB的值为430 t/km2, 禁渔后增加到583 t/km2, 向成熟阶段变化。
②生态系统稳定性参数
连接指数CI、系统杂食指数SOI均能够衡量生态系统中食物网结构和功能组间的食性相互作用, 其数值范围在0—1.00, 是评估生态系统稳定程度的重要指标, 其数值的增减与生态系统稳定程度的高低成正比[42]。Finn’s 循环指数(Finn’s cycling index, FCI)表示食物链中营养物质再循环的比例, 数值越大表明物质能量流转速度越高, 系统越成熟。总路径数TP反映生态系统食物网的网状结构稳定程度, 数值越高表示系统从干扰中恢复过来的时间就越短, 系统也就越稳定。禁渔后2021年, 鄱阳湖生态系统连接指数CI、系统杂食指数SOI由禁渔前2018年的0.28和0.21增加至0.34和0.44; FCI由禁渔前2018年的2.43%, 增加至禁渔后的9.12%; 禁渔前2018年, TP较低为725, 而禁渔后2021年增加至2.95×103。以上指标的增加都反映了生态系统稳定性的增加。
3. 讨论
3.1 食物网营养结构及能流特征变化
从平均营养级水平来看, 禁渔前鄱阳湖生态系统的平均营养级水平较低。这与金显仕和唐启升[43]的发现一致, 原因可能是捕捞压力的增加导致顶级捕食者减少, 营养结构及生态系统维持机制由以高营养级肉食性鱼类为主导的下行控制转变为以低营养级的中上层小型鱼类和无脊椎动物主导的上行控制或“蜂腰型”控制[44]。而禁渔后的2021年平均营养级水平明显增加, 表现出禁渔后的积极效果。
从食物链长度来看, 禁渔前鄱阳湖生态系统的食物链长度较短。有研究估计了全球219个水生生态系统食物链长度, 其中湖泊生态系统的食物链长度平均值约为4.00[45]。禁渔前鄱阳湖生态系统的食物链长度(2018年, 3.63)远不及全球平均水平[45]。禁渔后食物链长度增加至3.86, 接近全球平均水平, 体现了禁渔措施的积极效应。
从能量转化效率来看(图 3): 鄱阳湖生态系统能量流动主要发生在食物网的第Ⅰ、Ⅱ营养级, 被更高营养级利用的效率较低, 可能与生态系统高营养级类群历史捕捞有关。禁渔前, 系统通过碎屑和牧食食物链的能流比D﹕H为0.81, 表明该生态系统以牧食性能流为主导。这与林群等[46]对长江口及毗邻水域生态系统的研究结论相同, 从2000年到2006年, 底栖食物链渔业资源持续衰退, 其主导地位已被牧食食物链渔业资源所代替, 渔业捕捞可能是底栖食物链衰退的主要因素。禁渔后, D﹕H增加到0.99, 食物网通过碎屑食物链传递的能量增加, 碎屑逐渐成为食物网能流的主体。除此以外, 禁渔前鄱阳湖水生态系统的总体能量转换效率较低的原因可能是凶猛鱼类数量的减少, 使较多的低传递效率鱼类存在于较低营养级(如底栖无脊椎动物或浮游生物食性鱼类)[47]。而禁渔后的2021年, 鄱阳湖生态系统的物质与能量转换效率相较于禁渔前提升到11.3%, 恢复到了1998年的历史水平。虽然略小于Ryther提出的温带沿岸生态系统的15.0%, 但是超过Lindeman提出的生态系统的10.0%定律[48]和全球水域生态系统的传递效率估值(10.0%)[49], 反映了禁渔后生态系统在能流传递中的健康趋势。
3.2 生态系统规模变化
与国内其他淡水湖泊生态系统相比, 鄱阳湖生态系统具有相对较高的TST和TP值。历史时期的1998年, 鄱阳湖的TST可达到4.28×104 t/(km2·a), TP值可达到2.07×104 t/(km2·a) (中国科学院水生生物研究所调查资料); 即使禁渔前的20年有所下降, 其系统规模也维持在2.00×104 t/(km2·a)之上。TST远高于滆湖[1986—1989年1.21×104 t/(km2·a); 2010年8.56×103 t/(km2·a)][50]、太湖[1991—1995年1.36×104t/(km2·a) [51]; 2018年7.39×103 t/(km2·a)[52] ]、五里湖[2006年6.27×103 t/(km2·a)][53]等湖泊。与禁渔前(2018年)相比, 禁渔后(2021年)鄱阳湖的生态系统规模有明显提升, 总体表现了禁渔措施的积极效果。
3.3 生态系统成熟度和稳定性变化
生产与呼吸比的估计值TPP/TR是反映系统成熟度的指标, 越是成熟的生态系统该值应越接近于l.00[49]。系统遭受污染或者面临开发时会低于1.00, 例如, 日本北海道的Toya湖生态系统的TPP/TR为0.900[5], 表明系统可能正遭受污染或者面临开发。在对包括湖泊、河流、水库、沿海、海岸系统和海洋模型在内的41个生态系统模型的比较后, Christensen和Pauly[27]发现, 大多数生态系统的生产与呼吸比都在0.800—3.20。禁渔后TPP/TR值由4.77缩小到2.86, 一般来说, TPP/TR下降出现在生态系统向成熟状态发育过程中。
系统成熟度也可以通过连接指数(CI)和系统杂食度指数(SOI)来进行评价, 当系统接近成熟的时候, 食物链则由线性向网状转化, 系统连接也越紧密[54]。与禁渔前相比, 禁渔后鄱阳湖生态系统食物网结构更为稳固, 功能组间的营养作用相对较强, 食物网结构更加紧密, 成熟度增加。FCI值是反映生态系统稳定性的重要指标。Vasconcellos等[55]研究发现 FCI与系统的恢复时间呈显著负相关, 即FCI的值越高, 系统从干扰中恢复过来的时间就越短, 系统也就越稳定。也有研究发现, 高FCI值也可能出现在低的TPP/TR值系统中, 如在对洱海的研究中, 在TPP/TR值高达9.95的不成熟系统中, 其FCI值可达到18.5%, 说明FCI值与系统成熟度不一定存在必然联系。与国内外其他水生态系统, 如太湖[51](26.6%, 1981—1985)、五里湖[53](25.6%, 2006; 15.5%, 2009)、千岛湖[56](31.0%, 2000)、Tongoy Bay(10.1%)[57]、红海沿岸Eritrean(10.8%)[58]及地中海沿岸(21.7%)[59]等相对高的FCI相比, 鄱阳湖生态系统FCI值相对较低。但与禁渔前相比, 禁渔后的FCI增加至12.4%, 湖泊恢复力、稳定性增强。
3.4 鄱阳湖“十年禁渔”效果及未来保护措施
十年禁渔是长江保护的重要抓手。已有研究显示十年禁渔后, 长江鱼类资源明显恢复。
例如, 长江十年禁渔实施后, 长江下游鱼类物种数、多样性指数和单位捕捞努力量渔获量均有所增加, 禁渔效果初步显现[60]。受益于已实施两年的长江禁渔措施, 禁渔后长江刀鲚数量较禁渔前增长约43倍[61]。对赤水河的监测分析发现, 在全面禁捕前的十余年, 赤水河特有鱼类资源量逐年下降, 圆口铜鱼在2013—2016年期间完全从渔获物中消失[4]。而在赤水河全面禁捕的3年后圆口铜鱼再度出现[62]。同样, 禁渔后东洞庭湖的鱼类平均密度由禁渔前67.9增加到150 尾/1000 m3, 禁渔效果显著[63]。
总体来说, 长江十年禁渔是一项宏伟的鱼类资源保护工程。其作用不仅表现在鱼类多样性方面, 对水生态系统功能恢复也有积极作用。已有的评估指标主要侧重水生态系统的组分或结构特征, 缺乏对生态系统功能的分析。本研究利用Ecopath软件构建鄱阳湖水生态系统模型, 对鄱阳湖禁渔前后水生态系统结构功能的变化进行了比较分析。研究结果显示, 在禁渔实施后, 食物网结构更加复杂, 营养水平上升, 食物链长度增加, 生态系统更加成熟稳定, 鄱阳湖水生态系统的功能明显改善。具体地说, 禁捕后平均营养级水平增加到2.96, 即将恢复到1998年历史水平(3.08); 食物链长度(3.86)接近1998年历史水平(3.95); 物质与能量转换效率增长到11.3%, 能够恢复到1998年历史水平(11%); 禁捕前1998年到2018年, 系统成熟度和稳定性指标TP/TR递增、TB、CI、FCI、SOI、TP递减, 说明鄱阳湖生态系统正处于不稳定不成熟的发育期。在禁渔后, TP/TR指标接近1998年水平; TB、CI、FCI、SOI、TP数值均达到甚至超越1998年水平, 生态系统成熟度稳定性增加, 处于稳态的成熟发育阶段。鄱阳湖从2020年1月开始禁渔, 本研究显示仅仅实施一年, 禁渔效果即非常明显。但是应该看到, 尽管许多生态系统指标得到恢复, 但是与稳定成熟的生态系统相比, 鄱阳湖现阶段的状况还需要进一步改善。回顾过去70余年长江渔业资源的变化, 经历了一个早期产量增加-资源波动下降-资源整体枯竭的过程, 特别20世纪80—90年代资源急剧衰退, 到1990s末渔业产量下降至1950s的25%, 从此, 长江渔业产量长期处于较低水平波动且缓慢衰退的趋势[64]。本研究显示, 虽然在禁渔措施实施后, 鄱阳湖的鱼类资源明显恢复, 但是也仅仅恢复到1998年的水平, 相当于资源衰退到资源枯竭之间的连接点, 远未达到资源的良好恢复。因此, 建议在鄱阳湖继续实施十年禁渔措施, 全面恢复鄱阳湖生态系统的结构功能。
(作者声明本文符合出版伦理要求)
致谢:
衷心感谢南昌大学吴小平老师提供的禁捕前浮游动植物及底栖动物相关数据, 课题组高嘉昕、蒋祥龙、鲁文楷、邵涵文、袁媛、崔韵文等在鄱阳湖野外资源调查中的帮助。
附表 S1 2018年和2021年鄱阳湖生态系统基本信息Appendix S1. Basic information of Poyang Lake ecosystem in 2018 and 2021年份
Year密度Density
(tail/m3)水位
Water level (m)鱼平均体重
Average weight of fish (g)面积
Area (km2)捕捞量
(t)生物量Catch
biomass (t/km2)2018 35.6 17.64 9.1 3000 28000 6.48 2021 65.0 16.68 10.0 2800 0 13.00 注: 鱼的密度来自于内部鱼探仪测量数据; 鱼类个体平均体重和捕捞量数据来自内部资料; 其他水文信息参考鄱阳湖水文资源监测中心、江西水利厅Note: The fish density is derived from internal fish finder measurement data; average individual weight and catch data of fish come from internal sources; other hydrological information is referenced from the Poyang Lake Hydrological Resources Monitoring Center and the Jiangxi Water Resources Department 附表 S2 2018年和2021年鄱阳湖鱼类物种重量及数量百分比Appendix S2. Weight and number percentage of fish species in Poyang Lake in 2018 and 2021名称
Common name拉丁名
Latin name编号
Group No.2018年总重量占比
2018 total weight
percentage2018年总数量占比
2018 total number
percentage2021年总重量占比
2021 total weight
percentage2021年总数量占比
2021 total number
percentage鳗鲡 Anguilla japonica 2 0.01 — — — 间下鱵 Hyporamphus intermedius 0 0.10 1.89 — 0.09 短颌鲚 Coilia brachygnathus 7 0.71 4.13 2.11 14.84 刀鲚 Coilia nasus 7 0.03 0.03 0.95 2.14 大斑花鳅 Cobitis macrostigma 14 0.01 0.07 — — 中华花鳅 Cobitis sinensis 14 — 0.12 — 0.01 紫薄鳅 Leptobotia taeniops 14 0.01 0.16 — — 泥鳅 Misgurnus anguillicaudatus 14 0.01 0.07 — — 花斑副沙鳅 Parabotia fasciata 14 0.02 0.19 — 0.03 大鳞副泥鳅 Paramisgurnus dabryanus 14 — 0.01 — — 武昌副沙鳅 Parabotia banarescui 14 — — — — 江西副沙鳅 Parabotia kiangsiensis 14 — 0.01 — — 棒花鱼 Abbottina rivularis 14 0.08 1.63 — — 大鳍鱊 Acheilognathus macropterus 14 0.54 3.72 0.13 1.49 兴凯鱊 Acheilognathus chankaensis 14 0.08 1.32 — — 越南鱊 Acheilognathus tonkinensis 14 0.01 0.08 — — 无须鱊 Acheilognathus gracilis 14 — 0.04 — — 大口鱊 Acheilognathus macromandibularis 14 — 0.01 0.00 0.05 寡鳞鱊 Acheilognathus hypselonotus 14 — — 0.47 7.17 鲫 Carassius auratus 6 5.00 13.96 5.92 13.17 达氏鲌 Chanodichthys dabryi 3 1.92 1.28 2.24 2.39 红鳍原鲌 Chanodichthys erythropterus 3 1.64 2.34 0.50 0.92 蒙古鲌 Chanodichthys mongolicus 3 3.98 1.64 1.55 1.23 尖头鲌 Chanodichthys oxycephalus 3 — — — 麦瑞加拉鲮 Cirrhinus mrigala 12 0.17 0.03 0.94 1.23 鲮 Cirrhinus molitorella 12 — — 0.68 0.44 铜鱼 Coreius heterodon 14 0.01 0.01 — — 草鱼 Ctenopharyngodon idellus 10 7.87 0.51 14.60 3.41 翘嘴鲌 Culter alburnus 3 9.93 3.35 6.93 3.09 拟尖头鲌 Culter oxycephaloides 3 — — 0.00 0.01 鲤 Cyprinus carpio 6 26.53 5.69 3.10 0.99 圆吻鲴 Distoechodon tumirostris 12 — — — — 细鳞鲴 Plagiognathops microlepis 12 — — 0.02 0.03 鳡 Elopichthys bambusa 1 0.72 0.03 0.13 0.01 短须颌须鮈 Gnathopogon imberbis 14 — — — — 花䱻 Hemibarbus maculatus 14 0.71 1.23 0.31 0.47 唇䱻 Hemibarbus labeo 14 — 0.01 0.00 0.01 贝氏䱗 Hemiculter bleekeri 13 0.30 1.93 0.42 5.56 䱗 Hemiculter leucisculus 13 0.90 4.30 0.06 0.43 鲢 Hypophthalmichthys molitrix 8 6.77 0.58 24.28 5.50 鳙 Hypophthalmichthys nobilis 9 5.39 0.21 17.18 1.15 鲂 Megalobrama skolkovii 11 1.98 1.57 6.40 8.02 团头鲂 Megalobrama amblycephala 11 0.45 0.08 0.99 0.52 福建小鳔鮈 Microphysogobio fukiensis 14 — 0.06 — — 青鱼 Mylopharyngodon piceus 5 0.46 0.13 0.22 0.16 鳤 Ochetobius elongatus 1 — — 0.01 0.02 稀有白甲鱼 Onychostoma rarum 12 0.01 0.01 — — 马口鱼 Opsariichthys bidens 13 0.1 0.18 — 0.00 鳊 Parabramis pekinensis 11 2.18 1.14 0.75 1.45 似刺鳊鮈 Paracanthobrama guichenoti 14 0.23 0.14 0.10 0.07 彩副鱊 Paracheilognathus imberbis 14 — 0.01 0.01 0.35 长须片唇鮈 Platysmacheilus longibarbatus 14 — 0.03 — — 似鳊 Pseudobrama simoni 12 2.7 20.49 0.75 8.06 似鮈 Pseudogobio vaillanti 14 0.01 0.02 — — 寡鳞飘鱼 Pseudolaubuca engraulis 13 0.04 0.1 0.04 0.38 飘鱼 Pseudolaubuca sinensis 13 0.26 0.51 0.06 0.23 斑点蛇鮈 Saurogobio punctatus 14 — — 0.00 0.01 光唇蛇鮈 Saurogobio gymnocheilus 14 0.04 0.51 0.02 0.45 长蛇鮈 Saurogobio dumerili 14 0.01 — 0.00 0.01 银鮈 Squalidus argentatus 14 0.09 2.03 0.00 0.62 点纹银鮈 Squalidus wolterstorffi 14 — 0.01 — — 赤眼鳟 Squaliobarbus curriculus 11 0.92 0.39 0.20 0.16 似鱎 Toxabramis swinhonis 13 0.07 0.10 0.00 0.02 银鲴 Xenocypris macrolepis 12 0.39 1.23 0.42 1.23 黄尾鲴 Xenocypris davidi 12 0.14 0.08 0.01 0.02 大口黑鲈 Micropterus salmoides 1 0.02 — — — 乌鳢 Channa argus 2 1.78 0.31 0.43 0.12 粘皮鲻虾虎鱼 Mugilogobius myxodermus 14 — — — — 子陵吻虾虎鱼 Rhinogobius giurinus 14 0.02 0.65 0.00 1.08 波氏吻虾虎鱼 Rhinogobius cliffordpopei 14 — — — — 小黄䱂鱼 Micropercops swinhonis 14 — 0.01 — — 河川沙塘鳢 Odontobutis potamophila 2 0.01 0.06 — — 叉尾斗鱼 Macropodus opercularis 13 0 0.01 — — 圆尾斗鱼 Macropodus chinensis 13 0 0.01 — — 鳜 Siniperca chuatsi 1 2.61 1.34 3.45 1.41 斑鳜 Siniperca scherzeri 1 0.02 0.01 — — 长身鳜 Siniperca roulei 1 — — — — 大眼鳜 Siniperca kneri 1 0.01 — — — 大鳍半鲿 Mystus macropterus 4 0.01 — — — 长吻鮠 Leiocassis longirostris 4 0.01 0.01 0.00 0.01 瓦氏黄颡鱼 Pelteobagrus vachelli 4 0.3 0.25 0.12 0.07 长须黄颡鱼 Pelteobagrus eupogon 4 0.13 0.34 0.32 3.68 白边拟鲿 Pseudobagrus albomarginatus 4 0.06 0.19 0.02 0.05 粗唇鮠 Pseudobagrus crassilabris 4 0.18 0.24 0.01 0.02 圆尾拟鲿 Pseudobagrus tenuis 4 — — — — 细体拟鲿 Pseudobagrus pratti 4 — — 0.00 0.02 乌苏拟鲿 Pelteobagrus ussuriensis 4 — — 0.00 0.01 光泽疯鲿 Tachysurus nitidus 4 0.2 1.31 0.10 0.92 黄颡鱼 Tachysurus fulvidraco 4 1.91 4.17 0.35 1.07 纵带疯鲿 Tachysurus argentivittatus 4 0 0.05 0.00 0.01 黑尾䱀 Liobagrus nigricauda 4 — — — — 革胡子鲇 Clarias gariepinus 2 — — — — 鲇 Silurus asotus 2 7.47 4.38 1.73 1.78 南方鲇 Silurus meridionalis 2 0.53 0.03 0.59 0.03 中华刺鳅 Sinobdella sinensis 14 0.01 0.09 0.00 0.03 黄鳝 Monopterus albus 14 0.02 0.04 — — 附表 S3 2018年和2021年鄱阳湖各鱼类功能组的重量百分比及生物量Appendix S3. Weight percentage and biomass of all fish groups in Poyang Lake in 2018 and 2021编号Group No. 重量比Weight ratio of group (%) 栖息地生物量占比Biomass in habitat area (t/km2) 2018 2021 2018 2021 G1 3.38 3.59 0.22 0.47 G2 9.80 2.74 0.63 0.36 G3 17.47 11.24 1.13 1.46 G4 2.80 0.92 0.18 0.12 G5 0.46 0.22 0.03 0.03 G6 31.53 9.02 2.04 1.17 G7 0.74 3.06 0.05 0.40 G8 6.77 24.28 0.44 3.16 G9 5.39 17.18 0.35 2.23 G10 7.87 14.60 0.51 1.90 G11 5.53 8.35 0.36 1.09 G12 3.41 2.83 0.22 0.37 G13 1.67 0.58 0.11 0.08 G14 1.91 1.05 0.12 0.14 附表 S4 P/B和Q/B系数计算所需参数汇总Appendix S4. Summary of required parameters for calculation of P/B and Q/B coefficient编号Group No. 组成Composition Lmean (cm) Lmin (cm) Lmax (cm) Linf (cm) K Mest P/B Q/B 7 短颌鲚Coilia brachygnathus,
刀鲚Coilia nasus15.08 3.00 30.00 31.58 0.44 0.76 0.60 8.50 9 鳙Aristichthys nobilis 36.76 9.20 91.00 95.79 0.53 0.36 1.14 9.60 8 鲢Hypophthalmichthys molitrix 23.84 4.60 92.00 96.84 0.33 0.47 1.25 7.30 5 青鱼Mylopharyngodon piceus 14.42 8.10 57.00 60.00 0.22 0.39 1.59 4.00 10 草鱼Ctenopharyngodon idellus 29.27 6.70 92.00 96.84 0.21 0.33 0.63 7.40 11 团头鲂Megalobrama amblycephala 11.72 5.80 66.80 70.32 0.22 0.37 2.18 8.30 11 鲂Megalobrama skolkovii 12.50 3.70 40.00 42.11 0.30 0.53 1.01 17.20 11 鳊Parabramis pekinensis 15.03 3.50 31.50 33.16 0.31 0.58 0.49 16.20 11 赤眼鳟Squaliobarbus curriculus 20.02 6.00 32.70 34.42 0.37 0.66 0.38 12.40 13 贝氏䱗Hemiculter bleekeri 8.48 3.20 14.30 15.05 0.70 1.20 0.87 15.10 13 䱗Hemiculter leucisculus 9.93 3.10 44.00 46.32 0.15 0.31 0.80 12.10 13 飘鱼Pseudolaubuca sinensis 14.54 6.40 21.20 22.32 0.79 1.23 0.75 16.60 14 光唇蛇鮈Saurogobio
gymnocheilus7.22 4.00 10.50 11.05 0.44 0.81 0.52 14.30 14 蛇鮈Saurogobio dabryi 10.82 5.50 19.60 20.63 0.62 1.09 1.14 18.90 14 银鮈Squalidus argentatus 6.32 3.40 13.20 13.89 0.85 1.52 2.20 17.60 14 棒花鱼Abbottina rivularis 5.83 2.70 17.90 18.84 0.23 0.54 0.96 20.40 14 华鳈Sarcocheilichthys
sinensis,
黑鳍鳈Sarcocheilichthys
nigripinnis8.27 4.60 13.40 14.11 0.86 1.53 1.37 22.50 14 花䱻Hemibarbus maculatus,
唇䱻Hemibarbus labeo13.23 7.00 29.00 30.53 0.19 0.41 0.53 6.80 14 铜鱼Coreius heterodon 15.58 10.50 19.80 20.84 0.4 0.79 0.41 9.60 14 紫薄鳅Leptobotia taeniaps 6.28 4.60 11.00 11.58 0.44 0.97 1.39 16.90 14 花斑副沙鳅Parabotia fasciata 6.99 3.50 15.00 15.79 0.41 0.86 1.03 18.70 14 中华刺鳅Sinobdella sinensis 11.67 7.00 16.20 17.05 0.41 0.84 0.47 22.80 14 中华花鳅Cobitis sinensis 5.80 3.80 12.90 13.58 0.43 0.89 1.67 21.10 14 黄鳝Monopterus albus 26.8 10.00 37.30 39.26 0.41 0.69 0.30 9.50 14 子陵吻虾虎鱼Rhinogobius giurinus,
小黄䱂鱼Micropercops swinhonis4.12 1.90 8.00 8.42 0.65 1.41 1.26 14.60 1 鳡Elopichthys bambusa 40.35 19.50 96.50 101.58 0.24 0.36 0.70 8.20 3 达氏鲌Chanodichthys dabryi 16.41 6.40 44.20 46.53 0.36 0.60 1.08 5.50 3 红鳍原鲌Chanodichthys erythropterus 13.59 3.50 29.70 31.26 1.17 1.58 2.05 6.60 3 蒙古鲌Chanodichthys mongolicus 19.26 2.70 46.70 49.16 0.41 0.65 0.74 4.80 3 翘嘴鲌Culter alburnus 21.52 3.00 74.00 77.89 0.26 0.41 0.79 4.20 1 鳜Siniperca chuatsi,
斑鳜Siniperca scherzeri,
长身鳜Siniperca roulei,
大眼鳜Siniperca kneri,14.83 5.80 56.60 59.58 0.45 0.66 2.23 4.10 2 鲇Silurus asotus,
大口鲇Silurus meridionalis22.45 5.40 90.90 95.68 0.22 0.35 0.94 3.70 2 河川沙塘鳢Odontobutis potamophila 7.77 4.30 12.80 13.47 0.86 1.27 1.41 5.90 2 乌鳢Channa argus 23.38 7.40 51.00 53.68 0.59 0.83 1.12 4.90 4 粗唇鮠Pseudobagrus crassilabris,
长吻鮠Leiocassis longirostris,
细体拟鲿Pseudobagrus pratti12.03 4.40 27.80 29.26 0.25 0.51 0.56 15.00 4 光泽黄颡鱼Pelteobaggrus nitidus,
长须黄颡鱼Pelteobagrus eupogon9.65 3.00 21.00 22.11 0.40 0.77 0.75 12.90 4 黄颡鱼Tachysurus fulvidraco 10.92 2.40 33.20 34.94 0.21 0.43 0.59 6.20 4 瓦氏黄颡鱼Pelteobagrus vachelli 16.10 7.90 28.30 29.79 0.38 0.69 0.63 11.10 6 鲫Carassius auratus 8.20 2.70 55.90 58.84 0.57 0.80 5.25 6.50 6 鲤Cyprinus carpio 17.95 1.00 84.70 89.16 0.25 0.39 1.05 9.10 12 黄尾鲴Xenocypris davidi,
圆吻鲴Distoechodon tumirostris16.52 8.30 30.00 31.58 0.37 0.67 0.68 10.40 12 银鲴Xenocypris macrolepis 10.77 5.50 26.00 27.37 0.33 0.64 1.04 16.40 12 似鳊Pseudobrama simoni 8.35 3.00 99.20 104.429 0.64 0.75 11.49 16.10 14 大鳍鱊Acheilognathus macropterus,
兴凯鱊Acheilognathus chankaensis,
无须鱊Acheilognathus gracilis,
大口鱊Acheilognathus macromandibularis6.25 2.50 7.40 7.79 0.92 1.85 0.38 32.70 14 高体鳑鲏Rhodeus ocellatus ,
中华鳑鲏Rhodeus sinensis3.99 2.70 6.20 6.53 1.43 2.70 2.82 35.80 附表 S5 各鱼类功能组的P/B、Q/B系数Appendix S5. P/B and Q/B coefficients of each fish functional group编号Group No. P/B Q/B G1 2.93 12.30 G2 3.48 14.50 G3 4.66 21.10 G4 2.54 45.20 G5 1.59 4.00 G6 6.30 15.60 G7 0.60 8.50 G8 1.25 7.30 G9 1.14 9.60 G10 0.63 7.40 G11 4.05 54.10 G12 13.21 42.90 G13 2.43 43.80 G14 16.46 282.20 附表 S6 2018年鄱阳湖生态系统的渔业捕捞数据(Fleet1表示唯一的渔业捕捞功能组)Appendix S6. Fishery data of the Poyang Lake ecosystem in 2018 (Fleet1 represents the only-one fishing function group)编号Group No. 功能组Group name Fleet1 合计Total 1 Piscivorous fishes 0.38 0.38 2 Demersal carnivorous 1.10 1.10 3 Culters 1.96 1.96 4 Siluriformes 0.31 0.31 5 Black carp 0.05 0.05 6 C-carps 3.53 3.53 7 Anchovy 0.08 0.08 8 Silver carp 0.76 0.76 9 Bighead carp 0.60 0.60 10 Grass carp 0.88 0.88 11 Bream 0.62 0.62 12 Xenocypris 0.38 0.38 13 S-pelagic 0.20 0.20 14 S-demersal 0.33 0.33 15 Shrimps 0 0 16 Zoobenthos 0 0 17 Cladocera-copepoda 0 0 18 Microzooplankton 0 0 19 Attached algae 0 0 20 Phytoplankton 0 0 21 Macrophyte 0 0 22 Detritus 0 0 23 Sum 11.19 11.19 附表 S7 鄱阳湖生态系统模型的食物组成矩阵(上: 2018; 下2021)Appendix S7. Matrix of diet composition for the Poyang Lake ecosystem model (Up: 2018; down: 2021)被捕食者Predator 捕食者Prey G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G1 0.01 G2 0.01 G3 0.15 0.02 G4 0.05 G5 0.01 G6 0.183 0.14 0.181 G7 0.11 G8 0.02 0.01 G9 0.01 0.02 0.01 G10 0.01 0.02 0.05 G11 0.016 0.03 0.05 G12 0.12 0.1 0.144 0.016 G13 0.101 0.01 0.07 0.02 0.05 G14 0.18 0.24 0.32 0.303 0.01 0.05 0.06 G15 0.05 0.083 0.02 0.252 0.25 0.09 0.3 0.041 0.065 G16 0.06 0.11 0.03 0.352 0.65 0.667 0.26 0.32 0.409 0.25 0.3 G17 0.1 0.02 0.101 0.2 0.08 0.6 0.05 0.05 0.09 0.2 0.06 0.06 0.2 0.3 0.2 G18 0.008 0.003 0.04 0.08 0.02 0.19 0.006 0.09 0.005 0.01 0.05 0.15 0.05 G19 0.05 0.8 0.1 0.03 0.03 0.144 0.02 0.14 0.03 0.05 0.3 0.4 G20 0.01 0.11 0.15 0.2 0.024 0.204 0.08 0.09 0.02 0.12 0.12 G21 0.049 0.012 0.75 0.7 0.073 0.09 0.17 G22 0.095 0.022 0.1 0.092 0.1 0.014 0.02 0.349 0.036 0.25 0.51 0.51 0.13 0.23 总计Sum 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 被捕食者Predator 捕食者Prey G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G1 0.01 G2 0.002 0.1 G3 0.15 0.02 G4 0.01 0.05 0.02 0.03 G5 0.01 0.01 G6 0.181 0.05 0.23 0.013 G7 0.11 0.02 0.001 G8 0.06 0.03 G9 0.06 0.1 G10 0.026 0.06 0.05 G11 0.03 0.06 0.04 G12 0.04 0.06 0.14 0.036 0.16 G13 0.101 0.02 0.09 0.051 0.2 G14 0.04 0.02 0.23 0.25 0.25 0.065 G15 0.01 0.12 0.148 0.15 0.15 0.24 0.05 0.2 0.141 G16 0.11 0.11 0.12 0.2 0.09 0.2 0.22 0.309 0.15 0.3 0.07 G17 0.04 0.02 0.05 0.05 0.103 0.05 0.06 0.06 0.22 0.15 0.05 G18 0.06 0.11 0.06 0.293 0.1 0.13 0.13 0.15 0.3 0.106 0.17 0.19 0.096 0.135 0.11 0.15 0.05 0.05 G19 0.1 0 0.3 0.2 0.1 0.05 0.33 0.03 0.194 0.16 0.13 0.11 0.12 0.3 G20 0.1 0.2 0.24 0.2 0.04 0.14 0.21 0.09 0.174 0.1 0.144 0.104 0.16 0.1 0.05 0.05 0.27 G21 0.066 0.1 0.15 0.05 0.05 0.15 G22 0.09 0.03 0.072 0.08 0.23 0 0.15 0.2 0.04 0.3 0.149 0.14 0.38 0.3 0.35 0.48 0.33 总计Sum 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 附表 S8 2018年鄱阳湖生态系统模型基本输入与输出参数Appendix S8. Basic input and estimated parameters of Poyang Lake ecosystem model during 2018编号
No.功能组
Group营养级
TL生物量
B (t/km2)生产量/
生物量P/B消耗量/
生物量 Q/B生态营养
效率EE生产量/
消耗量 P/Q1 Fierce carnivorous 3.63 0.194 2.94 12.3 0.664 0.239 2 Demersal carnivorous 3.48 0.564 3.48 14.5 0.581 0.240 3 Culters 3.31 1.01 4.66 16.1 0.443 0.290 4 Siluriformes 3.03 0.161 4.80 16.3 0.945 0.294 5 Black carp 2.98 0.0500 2.85 12.0 0.935 0.238 6 C-carps 2.93 1.81 5.20 15.6 0.856 0.333 7 Anchovy 2.96 0.426 2.20 8.50 0.369 0.259 8 Silver carp 2.12 0.620 1.80 7.30 0.898 0.247 9 Bigheadcarp 2.46 0.580 2.50 9.60 0.880 0.260 10 Grasscarp 2.07 0.530 4.40 12.0 0.875 0.367 11 Bream 2.06 0.480 4.50 22.1 0.867 0.204 12 Xenocyprididae 2.46 0.330 12.0 32.9 0.693 0.365 13 S-pelagic 2.68 0.310 8.00 20.3 0.962 0.394 14 S-demersal 2.54 0.700 20.0 50.0 0.960 0.400 15 Shrimps 2.41 1.91 7.50 36.0 0.374 0.208 16 Zoobenthos 2.08 30.5 2.00 34.0 0.903 0.059 17 Cladocera-copepoda 2.29 24.0 13.0 42.0 0.434 0.310 18 Microzooplankton 2.05 20.4 22.0 70.0 0.621 0.314 19 Attachedalgae 1.00 20.0 99.0 — 0.510 — 20 Phytoplankton 1.00 55.0 110 — 0.154 — 21 Macrophyte 1.00 270 6.70 — 0.107 — 22 Detritus 1.00 470 — — 0.119 — 注: 粗体为模型计算; “—”表示无数据输出Note: Bolds represent results calculated by the model; “—” represents no output data 附表 S9 2021年鄱阳湖生态系统模型基本输入与输出参数Appendix S9. Basic input and estimated parameters of Poyang Lake ecosystem model during 2021编号
No.功能组
Group营养级
TL生物量
B (t/km2)生产量/
生物量P/B消耗量/
生物量 Q/B生态营养
效率EE生产量/
消耗量 P/Q1 Fierce carnivorous 3.86 0.668 2.94 12.3 0.0420 0.239 2 Demersal carnivorous 3.45 0.650 3.48 14.5 0.424 0.240 3 Culters 3.17 1.46 3.66 16.1 0.318 0.228 4 Siluriformes 2.88 1.20 5.00 16.3 0.685 0.307 5 Black carp 2.64 0.0300 4.00 12.0 0.815 0.333 6 C-carps 2.80 1.73 5.20 15.6 0.895 0.333 7 Anchovy 3.26 1.00 2.20 8.50 0.589 0.259 8 Silver carp 2.92 3.16 0.800 7.30 0.307 0.110 9 Bigheadcarp 3.19 2.23 3.00 9.60 0.534 0.313 10 Grasscarp 2.51 1.90 2.20 7.40 0.468 0.297 11 Bream 2.74 1.08 5.00 22.1 0.765 0.226 12 Xenocyprididae 2.87 0.830 13.1 42.9 0.912 0.305 13 S-pelagic 2.88 0.810 7.00 23.0 0.856 0.304 14 S-demersal 2.56 1.60 15.8 45.0 0.875 0.351 15 Shrimps 2.66 4.00 8.50 35.0 0.496 0.243 16 Zoobenthos 2.55 76.0 10.0 26.0 0.287 0.385 17 Cladocera-copepoda 2.24 50.0 21.0 56.0 0.921 0.375 18 Microzooplankton 2.12 24.0 29.0 77.0 0.848 0.377 19 Attachedalgae 1.00 15.7 110 — 0.667 — 20 Phytoplankton 1.00 45.0 101 — 0.175 — 21 Macrophyte 1.00 350 6.80 — 0.222 — 22 Detritus 1.00 180 — — 0.328 — 注: 粗体为模型计算; “—”表示无数据输出Note: Bolds represent results calculated by the model; “—” represents no output data -
图 2 禁渔前后鄱阳湖生态系统食物网结构
不同大小的圆表示不同功能组的生物量(以t/km2为单位); 灰色连线表示能量在生态系统中的流动路径; 各功能组的名称详见表 1。为了满足Ecopath软件的要求, 我们设置了一个渔业捕捞组, 用Fleet1来表示。由于渔业捕捞不属于生态系统内部生物之间的相互作用, 所以在表 1中没有列出该组名称
Figure 2. Food web structure of Poyang Lake ecosystem before and after the 10-Year Fishing Ban
Different-sized circles represent the biomass (t/km2) of different functional groups; gray lines indicate the flow of energy within the ecosystem; the names of each functional group can be found in Tab. 1. A fishing fleet, denoted as Fleet1, has been included to represent fishing activities, as per the requirements of the Ecopath software. Since fishing activities do not involve interactions among the internal biota of the ecosystem, they have not been listed in Tab. 1
表 1 基于Ecopath模型的鄱阳湖生态系统功能组划分及物种组成
Table 1 Functional group and component of ecopath model in Poyang Lake
编号
No.功能组
Functional group组成
CompositionG1 Piscivorous fishes 鳜Siniperca chuatsi, 斑鳜Siniperca scherzeri, 大眼鳜Siniperca kneri, 鳡Elopichthys bambusa, 鳤Ochetobius elongatus G2 Demersal carnivorous 乌鳢Channa argus, 鲇Silurus asotus, 河川沙塘鳢Odontobutis potamophilus, 日本鳗鲡Anguilla japonica, 大口鲇Silurus meridionalis G3 Culters 蒙古鲌Chanodichthys mongolicus, 达氏鲌Chanodichthys dabryi, 红鳍原鲌 Cultrichthys erythropterus, 翘嘴鲌Culter alburnus, 拟尖头鲌Culter oxycephaloides等 G4 Siluriformes 黄颡鱼Pelteobagrus fulvidrac, 光泽黄颡鱼Pelteobaggrus nitidus , 瓦氏黄颡鱼Pelteobagrus vachelli, 长须黄颡鱼Pelteobagrus eupogon, 白边拟鲿Pseudobagrus albomarginatus , 乌苏拟鲿Pseudobagrus ussuriensis, 长吻鮠Leiocassis longirostris, 粗唇鮠Leiocassis crassilabris, 大鳍鳠Hemibagrus macropterus G5 Black carp 青鱼Mylopharyngodon piceus G6 C-carps 鲤Cyprinus carpio, 鲫Carassius auratus G7 Anchovy 短颌鲚Coilia brachygnathus, 刀鲚Coilia nasus G8 Silver carp 鲢Hypophthalmichthys molitrix G9 Bighead carp 鳙Aristichthys nobilis G10 Grass carp 草鱼Ctenopharyngodon idellus G11 Bream 团头鲂Megalobrama amblycephala, 鲂Megalobrama skolkovii, 鳊Parabramis pekinensis等 G12 Xenocypris 圆吻鲴Distoechodon tumirostris, 银鲴Xenocypris argentea, 细鳞鲴Xenocypris microlepis, 黄尾鲴Xenocypris davidi, 似鳊Pseudobrama simoni等 G13 S-pelagic 贝氏䱗Hemiculter bleekeri , 䱗Hemiculter leucisculus, 飘鱼Pseudolaubuca sinensis, 寡鳞飘鱼Pseudolaubuca engraulis, 圆尾斗鱼Macropodus chinensis, 叉尾斗鱼Macropodus opercularis, 麦穗鱼Pseudorasbora parva, 似鱎Toxabramis swinhonis, 马口鱼Opsariichthys bidens等 G14 S-demersal 蛇鮈Saurogobio dabryi, 光唇蛇鮈Saurogobio gymnocheilus, 长蛇鮈Saurogobio dumerili, 银鮈Squalidus argentatus, 吻鮈Rhinogobio typus, 棒花鱼Abbottina rivularis, 大鳍鱊 Acheilognathus macropterus, 华鳈Sarcocheilichthys sinensis, 黑鳍鳈Sarcocheilichthys nigripinnis, 花䱻Hemibarbus maculatus, 唇䱻Hemibarbus labeo, 似刺鳊鮈Paracanthobrama guichenoti, 紫薄鳅Leptobotia taeniaps等 G15 Shrimps 沼虾(日本沼虾Macrobrachium nipponense) G16 Zoobenthos 底栖动物(摇蚊属Chironomus, 水丝蚓属Limnodrilus) G17 Cladocera-copepoda 枝角、桡足类 G18 Microzooplankton 小型浮游动物(轮虫和原生动物等) G19 Attached algae 附着藻类 G20 Phytoplankton 浮游植物(微囊藻属Microcystis spp.、鱼腥藻属Anabaena spp.、颗粒直链藻Melosira granulata、小环藻属Cyclotella spp.、刚毛藻属Cladophora spp.等) G21 Macrophyte 大型水生植物(苔草Carex spp.、虉草Phalaris arundinacea、南荻Miscanthus lutarioriparius、蓼子草Persicaria criopolitana, 黑藻Hydrilla verticillata, 苦草Vallisneria natans 等) G22 Detritus 碎屑 表 2 模型平衡的生态学和热力学原则
Table 2 Ecological and thermodynamic principles of model balance
指标Index 取值范围
Value range生态营养效率Ecological efficiency (EE) 0<EE≤1.00 食物总转换效率Gross food conversion efficiency (GE=P/Q) 0.100<GE<0.300 净效率Net food conversion efficiency (NE) NE>GE 呼吸量Respiratory (R) R>0 表 3 禁渔前后鄱阳湖生态系统总体特征参数对比
Table 3 Comparison of general characteristic parameters of Poyang Lake ecosystem before and after the 10-Year Fishing Ban
参数
Parameter禁渔前
Pre-ban 2018禁渔后
Post-ban 2021与成熟生态系统的关系
Relationship with mature ecosystem单位
Unit生态系统成熟度参数Ecosystem Maturity 净系统生产量 (NSP) 7.77×103 5.62×103 成熟系统≈0 t/(km2·
year)总初级生产量/总呼吸量(TP/TR) 4.77 2.86 成熟系统≈1 总初级生产量/总生物量(TP/TB) 22.9 14.8 负相关 总生物量 (TB) 430 583 正相关 t/km2 生态系统稳定性参数Ecosystem Stability 连接指数 (CI) 0.28 0.34 正相关 系统杂食指数 (SOI) 0.21 0.44 正相关 循环指数 (FCI) 2.43% 9.12% 成熟系统>0.5 % 总路径数 (TP) 725 2.95×103 正相关 附表 S1 2018年和2021年鄱阳湖生态系统基本信息
Appendix S1 Basic information of Poyang Lake ecosystem in 2018 and 2021
年份
Year密度Density
(tail/m3)水位
Water level (m)鱼平均体重
Average weight of fish (g)面积
Area (km2)捕捞量
(t)生物量Catch
biomass (t/km2)2018 35.6 17.64 9.1 3000 28000 6.48 2021 65.0 16.68 10.0 2800 0 13.00 注: 鱼的密度来自于内部鱼探仪测量数据; 鱼类个体平均体重和捕捞量数据来自内部资料; 其他水文信息参考鄱阳湖水文资源监测中心、江西水利厅Note: The fish density is derived from internal fish finder measurement data; average individual weight and catch data of fish come from internal sources; other hydrological information is referenced from the Poyang Lake Hydrological Resources Monitoring Center and the Jiangxi Water Resources Department 附表 S2 2018年和2021年鄱阳湖鱼类物种重量及数量百分比
Appendix S2 Weight and number percentage of fish species in Poyang Lake in 2018 and 2021
名称
Common name拉丁名
Latin name编号
Group No.2018年总重量占比
2018 total weight
percentage2018年总数量占比
2018 total number
percentage2021年总重量占比
2021 total weight
percentage2021年总数量占比
2021 total number
percentage鳗鲡 Anguilla japonica 2 0.01 — — — 间下鱵 Hyporamphus intermedius 0 0.10 1.89 — 0.09 短颌鲚 Coilia brachygnathus 7 0.71 4.13 2.11 14.84 刀鲚 Coilia nasus 7 0.03 0.03 0.95 2.14 大斑花鳅 Cobitis macrostigma 14 0.01 0.07 — — 中华花鳅 Cobitis sinensis 14 — 0.12 — 0.01 紫薄鳅 Leptobotia taeniops 14 0.01 0.16 — — 泥鳅 Misgurnus anguillicaudatus 14 0.01 0.07 — — 花斑副沙鳅 Parabotia fasciata 14 0.02 0.19 — 0.03 大鳞副泥鳅 Paramisgurnus dabryanus 14 — 0.01 — — 武昌副沙鳅 Parabotia banarescui 14 — — — — 江西副沙鳅 Parabotia kiangsiensis 14 — 0.01 — — 棒花鱼 Abbottina rivularis 14 0.08 1.63 — — 大鳍鱊 Acheilognathus macropterus 14 0.54 3.72 0.13 1.49 兴凯鱊 Acheilognathus chankaensis 14 0.08 1.32 — — 越南鱊 Acheilognathus tonkinensis 14 0.01 0.08 — — 无须鱊 Acheilognathus gracilis 14 — 0.04 — — 大口鱊 Acheilognathus macromandibularis 14 — 0.01 0.00 0.05 寡鳞鱊 Acheilognathus hypselonotus 14 — — 0.47 7.17 鲫 Carassius auratus 6 5.00 13.96 5.92 13.17 达氏鲌 Chanodichthys dabryi 3 1.92 1.28 2.24 2.39 红鳍原鲌 Chanodichthys erythropterus 3 1.64 2.34 0.50 0.92 蒙古鲌 Chanodichthys mongolicus 3 3.98 1.64 1.55 1.23 尖头鲌 Chanodichthys oxycephalus 3 — — — 麦瑞加拉鲮 Cirrhinus mrigala 12 0.17 0.03 0.94 1.23 鲮 Cirrhinus molitorella 12 — — 0.68 0.44 铜鱼 Coreius heterodon 14 0.01 0.01 — — 草鱼 Ctenopharyngodon idellus 10 7.87 0.51 14.60 3.41 翘嘴鲌 Culter alburnus 3 9.93 3.35 6.93 3.09 拟尖头鲌 Culter oxycephaloides 3 — — 0.00 0.01 鲤 Cyprinus carpio 6 26.53 5.69 3.10 0.99 圆吻鲴 Distoechodon tumirostris 12 — — — — 细鳞鲴 Plagiognathops microlepis 12 — — 0.02 0.03 鳡 Elopichthys bambusa 1 0.72 0.03 0.13 0.01 短须颌须鮈 Gnathopogon imberbis 14 — — — — 花䱻 Hemibarbus maculatus 14 0.71 1.23 0.31 0.47 唇䱻 Hemibarbus labeo 14 — 0.01 0.00 0.01 贝氏䱗 Hemiculter bleekeri 13 0.30 1.93 0.42 5.56 䱗 Hemiculter leucisculus 13 0.90 4.30 0.06 0.43 鲢 Hypophthalmichthys molitrix 8 6.77 0.58 24.28 5.50 鳙 Hypophthalmichthys nobilis 9 5.39 0.21 17.18 1.15 鲂 Megalobrama skolkovii 11 1.98 1.57 6.40 8.02 团头鲂 Megalobrama amblycephala 11 0.45 0.08 0.99 0.52 福建小鳔鮈 Microphysogobio fukiensis 14 — 0.06 — — 青鱼 Mylopharyngodon piceus 5 0.46 0.13 0.22 0.16 鳤 Ochetobius elongatus 1 — — 0.01 0.02 稀有白甲鱼 Onychostoma rarum 12 0.01 0.01 — — 马口鱼 Opsariichthys bidens 13 0.1 0.18 — 0.00 鳊 Parabramis pekinensis 11 2.18 1.14 0.75 1.45 似刺鳊鮈 Paracanthobrama guichenoti 14 0.23 0.14 0.10 0.07 彩副鱊 Paracheilognathus imberbis 14 — 0.01 0.01 0.35 长须片唇鮈 Platysmacheilus longibarbatus 14 — 0.03 — — 似鳊 Pseudobrama simoni 12 2.7 20.49 0.75 8.06 似鮈 Pseudogobio vaillanti 14 0.01 0.02 — — 寡鳞飘鱼 Pseudolaubuca engraulis 13 0.04 0.1 0.04 0.38 飘鱼 Pseudolaubuca sinensis 13 0.26 0.51 0.06 0.23 斑点蛇鮈 Saurogobio punctatus 14 — — 0.00 0.01 光唇蛇鮈 Saurogobio gymnocheilus 14 0.04 0.51 0.02 0.45 长蛇鮈 Saurogobio dumerili 14 0.01 — 0.00 0.01 银鮈 Squalidus argentatus 14 0.09 2.03 0.00 0.62 点纹银鮈 Squalidus wolterstorffi 14 — 0.01 — — 赤眼鳟 Squaliobarbus curriculus 11 0.92 0.39 0.20 0.16 似鱎 Toxabramis swinhonis 13 0.07 0.10 0.00 0.02 银鲴 Xenocypris macrolepis 12 0.39 1.23 0.42 1.23 黄尾鲴 Xenocypris davidi 12 0.14 0.08 0.01 0.02 大口黑鲈 Micropterus salmoides 1 0.02 — — — 乌鳢 Channa argus 2 1.78 0.31 0.43 0.12 粘皮鲻虾虎鱼 Mugilogobius myxodermus 14 — — — — 子陵吻虾虎鱼 Rhinogobius giurinus 14 0.02 0.65 0.00 1.08 波氏吻虾虎鱼 Rhinogobius cliffordpopei 14 — — — — 小黄䱂鱼 Micropercops swinhonis 14 — 0.01 — — 河川沙塘鳢 Odontobutis potamophila 2 0.01 0.06 — — 叉尾斗鱼 Macropodus opercularis 13 0 0.01 — — 圆尾斗鱼 Macropodus chinensis 13 0 0.01 — — 鳜 Siniperca chuatsi 1 2.61 1.34 3.45 1.41 斑鳜 Siniperca scherzeri 1 0.02 0.01 — — 长身鳜 Siniperca roulei 1 — — — — 大眼鳜 Siniperca kneri 1 0.01 — — — 大鳍半鲿 Mystus macropterus 4 0.01 — — — 长吻鮠 Leiocassis longirostris 4 0.01 0.01 0.00 0.01 瓦氏黄颡鱼 Pelteobagrus vachelli 4 0.3 0.25 0.12 0.07 长须黄颡鱼 Pelteobagrus eupogon 4 0.13 0.34 0.32 3.68 白边拟鲿 Pseudobagrus albomarginatus 4 0.06 0.19 0.02 0.05 粗唇鮠 Pseudobagrus crassilabris 4 0.18 0.24 0.01 0.02 圆尾拟鲿 Pseudobagrus tenuis 4 — — — — 细体拟鲿 Pseudobagrus pratti 4 — — 0.00 0.02 乌苏拟鲿 Pelteobagrus ussuriensis 4 — — 0.00 0.01 光泽疯鲿 Tachysurus nitidus 4 0.2 1.31 0.10 0.92 黄颡鱼 Tachysurus fulvidraco 4 1.91 4.17 0.35 1.07 纵带疯鲿 Tachysurus argentivittatus 4 0 0.05 0.00 0.01 黑尾䱀 Liobagrus nigricauda 4 — — — — 革胡子鲇 Clarias gariepinus 2 — — — — 鲇 Silurus asotus 2 7.47 4.38 1.73 1.78 南方鲇 Silurus meridionalis 2 0.53 0.03 0.59 0.03 中华刺鳅 Sinobdella sinensis 14 0.01 0.09 0.00 0.03 黄鳝 Monopterus albus 14 0.02 0.04 — — 附表 S3 2018年和2021年鄱阳湖各鱼类功能组的重量百分比及生物量
Appendix S3 Weight percentage and biomass of all fish groups in Poyang Lake in 2018 and 2021
编号Group No. 重量比Weight ratio of group (%) 栖息地生物量占比Biomass in habitat area (t/km2) 2018 2021 2018 2021 G1 3.38 3.59 0.22 0.47 G2 9.80 2.74 0.63 0.36 G3 17.47 11.24 1.13 1.46 G4 2.80 0.92 0.18 0.12 G5 0.46 0.22 0.03 0.03 G6 31.53 9.02 2.04 1.17 G7 0.74 3.06 0.05 0.40 G8 6.77 24.28 0.44 3.16 G9 5.39 17.18 0.35 2.23 G10 7.87 14.60 0.51 1.90 G11 5.53 8.35 0.36 1.09 G12 3.41 2.83 0.22 0.37 G13 1.67 0.58 0.11 0.08 G14 1.91 1.05 0.12 0.14 附表 S4 P/B和Q/B系数计算所需参数汇总
Appendix S4 Summary of required parameters for calculation of P/B and Q/B coefficient
编号Group No. 组成Composition Lmean (cm) Lmin (cm) Lmax (cm) Linf (cm) K Mest P/B Q/B 7 短颌鲚Coilia brachygnathus,
刀鲚Coilia nasus15.08 3.00 30.00 31.58 0.44 0.76 0.60 8.50 9 鳙Aristichthys nobilis 36.76 9.20 91.00 95.79 0.53 0.36 1.14 9.60 8 鲢Hypophthalmichthys molitrix 23.84 4.60 92.00 96.84 0.33 0.47 1.25 7.30 5 青鱼Mylopharyngodon piceus 14.42 8.10 57.00 60.00 0.22 0.39 1.59 4.00 10 草鱼Ctenopharyngodon idellus 29.27 6.70 92.00 96.84 0.21 0.33 0.63 7.40 11 团头鲂Megalobrama amblycephala 11.72 5.80 66.80 70.32 0.22 0.37 2.18 8.30 11 鲂Megalobrama skolkovii 12.50 3.70 40.00 42.11 0.30 0.53 1.01 17.20 11 鳊Parabramis pekinensis 15.03 3.50 31.50 33.16 0.31 0.58 0.49 16.20 11 赤眼鳟Squaliobarbus curriculus 20.02 6.00 32.70 34.42 0.37 0.66 0.38 12.40 13 贝氏䱗Hemiculter bleekeri 8.48 3.20 14.30 15.05 0.70 1.20 0.87 15.10 13 䱗Hemiculter leucisculus 9.93 3.10 44.00 46.32 0.15 0.31 0.80 12.10 13 飘鱼Pseudolaubuca sinensis 14.54 6.40 21.20 22.32 0.79 1.23 0.75 16.60 14 光唇蛇鮈Saurogobio
gymnocheilus7.22 4.00 10.50 11.05 0.44 0.81 0.52 14.30 14 蛇鮈Saurogobio dabryi 10.82 5.50 19.60 20.63 0.62 1.09 1.14 18.90 14 银鮈Squalidus argentatus 6.32 3.40 13.20 13.89 0.85 1.52 2.20 17.60 14 棒花鱼Abbottina rivularis 5.83 2.70 17.90 18.84 0.23 0.54 0.96 20.40 14 华鳈Sarcocheilichthys
sinensis,
黑鳍鳈Sarcocheilichthys
nigripinnis8.27 4.60 13.40 14.11 0.86 1.53 1.37 22.50 14 花䱻Hemibarbus maculatus,
唇䱻Hemibarbus labeo13.23 7.00 29.00 30.53 0.19 0.41 0.53 6.80 14 铜鱼Coreius heterodon 15.58 10.50 19.80 20.84 0.4 0.79 0.41 9.60 14 紫薄鳅Leptobotia taeniaps 6.28 4.60 11.00 11.58 0.44 0.97 1.39 16.90 14 花斑副沙鳅Parabotia fasciata 6.99 3.50 15.00 15.79 0.41 0.86 1.03 18.70 14 中华刺鳅Sinobdella sinensis 11.67 7.00 16.20 17.05 0.41 0.84 0.47 22.80 14 中华花鳅Cobitis sinensis 5.80 3.80 12.90 13.58 0.43 0.89 1.67 21.10 14 黄鳝Monopterus albus 26.8 10.00 37.30 39.26 0.41 0.69 0.30 9.50 14 子陵吻虾虎鱼Rhinogobius giurinus,
小黄䱂鱼Micropercops swinhonis4.12 1.90 8.00 8.42 0.65 1.41 1.26 14.60 1 鳡Elopichthys bambusa 40.35 19.50 96.50 101.58 0.24 0.36 0.70 8.20 3 达氏鲌Chanodichthys dabryi 16.41 6.40 44.20 46.53 0.36 0.60 1.08 5.50 3 红鳍原鲌Chanodichthys erythropterus 13.59 3.50 29.70 31.26 1.17 1.58 2.05 6.60 3 蒙古鲌Chanodichthys mongolicus 19.26 2.70 46.70 49.16 0.41 0.65 0.74 4.80 3 翘嘴鲌Culter alburnus 21.52 3.00 74.00 77.89 0.26 0.41 0.79 4.20 1 鳜Siniperca chuatsi,
斑鳜Siniperca scherzeri,
长身鳜Siniperca roulei,
大眼鳜Siniperca kneri,14.83 5.80 56.60 59.58 0.45 0.66 2.23 4.10 2 鲇Silurus asotus,
大口鲇Silurus meridionalis22.45 5.40 90.90 95.68 0.22 0.35 0.94 3.70 2 河川沙塘鳢Odontobutis potamophila 7.77 4.30 12.80 13.47 0.86 1.27 1.41 5.90 2 乌鳢Channa argus 23.38 7.40 51.00 53.68 0.59 0.83 1.12 4.90 4 粗唇鮠Pseudobagrus crassilabris,
长吻鮠Leiocassis longirostris,
细体拟鲿Pseudobagrus pratti12.03 4.40 27.80 29.26 0.25 0.51 0.56 15.00 4 光泽黄颡鱼Pelteobaggrus nitidus,
长须黄颡鱼Pelteobagrus eupogon9.65 3.00 21.00 22.11 0.40 0.77 0.75 12.90 4 黄颡鱼Tachysurus fulvidraco 10.92 2.40 33.20 34.94 0.21 0.43 0.59 6.20 4 瓦氏黄颡鱼Pelteobagrus vachelli 16.10 7.90 28.30 29.79 0.38 0.69 0.63 11.10 6 鲫Carassius auratus 8.20 2.70 55.90 58.84 0.57 0.80 5.25 6.50 6 鲤Cyprinus carpio 17.95 1.00 84.70 89.16 0.25 0.39 1.05 9.10 12 黄尾鲴Xenocypris davidi,
圆吻鲴Distoechodon tumirostris16.52 8.30 30.00 31.58 0.37 0.67 0.68 10.40 12 银鲴Xenocypris macrolepis 10.77 5.50 26.00 27.37 0.33 0.64 1.04 16.40 12 似鳊Pseudobrama simoni 8.35 3.00 99.20 104.429 0.64 0.75 11.49 16.10 14 大鳍鱊Acheilognathus macropterus,
兴凯鱊Acheilognathus chankaensis,
无须鱊Acheilognathus gracilis,
大口鱊Acheilognathus macromandibularis6.25 2.50 7.40 7.79 0.92 1.85 0.38 32.70 14 高体鳑鲏Rhodeus ocellatus ,
中华鳑鲏Rhodeus sinensis3.99 2.70 6.20 6.53 1.43 2.70 2.82 35.80 附表 S5 各鱼类功能组的P/B、Q/B系数
Appendix S5 P/B and Q/B coefficients of each fish functional group
编号Group No. P/B Q/B G1 2.93 12.30 G2 3.48 14.50 G3 4.66 21.10 G4 2.54 45.20 G5 1.59 4.00 G6 6.30 15.60 G7 0.60 8.50 G8 1.25 7.30 G9 1.14 9.60 G10 0.63 7.40 G11 4.05 54.10 G12 13.21 42.90 G13 2.43 43.80 G14 16.46 282.20 附表 S6 2018年鄱阳湖生态系统的渔业捕捞数据(Fleet1表示唯一的渔业捕捞功能组)
Appendix S6 Fishery data of the Poyang Lake ecosystem in 2018 (Fleet1 represents the only-one fishing function group)
编号Group No. 功能组Group name Fleet1 合计Total 1 Piscivorous fishes 0.38 0.38 2 Demersal carnivorous 1.10 1.10 3 Culters 1.96 1.96 4 Siluriformes 0.31 0.31 5 Black carp 0.05 0.05 6 C-carps 3.53 3.53 7 Anchovy 0.08 0.08 8 Silver carp 0.76 0.76 9 Bighead carp 0.60 0.60 10 Grass carp 0.88 0.88 11 Bream 0.62 0.62 12 Xenocypris 0.38 0.38 13 S-pelagic 0.20 0.20 14 S-demersal 0.33 0.33 15 Shrimps 0 0 16 Zoobenthos 0 0 17 Cladocera-copepoda 0 0 18 Microzooplankton 0 0 19 Attached algae 0 0 20 Phytoplankton 0 0 21 Macrophyte 0 0 22 Detritus 0 0 23 Sum 11.19 11.19 附表 S7 鄱阳湖生态系统模型的食物组成矩阵(上: 2018; 下2021)
Appendix S7 Matrix of diet composition for the Poyang Lake ecosystem model (Up: 2018; down: 2021)
被捕食者Predator 捕食者Prey G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G1 0.01 G2 0.01 G3 0.15 0.02 G4 0.05 G5 0.01 G6 0.183 0.14 0.181 G7 0.11 G8 0.02 0.01 G9 0.01 0.02 0.01 G10 0.01 0.02 0.05 G11 0.016 0.03 0.05 G12 0.12 0.1 0.144 0.016 G13 0.101 0.01 0.07 0.02 0.05 G14 0.18 0.24 0.32 0.303 0.01 0.05 0.06 G15 0.05 0.083 0.02 0.252 0.25 0.09 0.3 0.041 0.065 G16 0.06 0.11 0.03 0.352 0.65 0.667 0.26 0.32 0.409 0.25 0.3 G17 0.1 0.02 0.101 0.2 0.08 0.6 0.05 0.05 0.09 0.2 0.06 0.06 0.2 0.3 0.2 G18 0.008 0.003 0.04 0.08 0.02 0.19 0.006 0.09 0.005 0.01 0.05 0.15 0.05 G19 0.05 0.8 0.1 0.03 0.03 0.144 0.02 0.14 0.03 0.05 0.3 0.4 G20 0.01 0.11 0.15 0.2 0.024 0.204 0.08 0.09 0.02 0.12 0.12 G21 0.049 0.012 0.75 0.7 0.073 0.09 0.17 G22 0.095 0.022 0.1 0.092 0.1 0.014 0.02 0.349 0.036 0.25 0.51 0.51 0.13 0.23 总计Sum 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 被捕食者Predator 捕食者Prey G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G1 0.01 G2 0.002 0.1 G3 0.15 0.02 G4 0.01 0.05 0.02 0.03 G5 0.01 0.01 G6 0.181 0.05 0.23 0.013 G7 0.11 0.02 0.001 G8 0.06 0.03 G9 0.06 0.1 G10 0.026 0.06 0.05 G11 0.03 0.06 0.04 G12 0.04 0.06 0.14 0.036 0.16 G13 0.101 0.02 0.09 0.051 0.2 G14 0.04 0.02 0.23 0.25 0.25 0.065 G15 0.01 0.12 0.148 0.15 0.15 0.24 0.05 0.2 0.141 G16 0.11 0.11 0.12 0.2 0.09 0.2 0.22 0.309 0.15 0.3 0.07 G17 0.04 0.02 0.05 0.05 0.103 0.05 0.06 0.06 0.22 0.15 0.05 G18 0.06 0.11 0.06 0.293 0.1 0.13 0.13 0.15 0.3 0.106 0.17 0.19 0.096 0.135 0.11 0.15 0.05 0.05 G19 0.1 0 0.3 0.2 0.1 0.05 0.33 0.03 0.194 0.16 0.13 0.11 0.12 0.3 G20 0.1 0.2 0.24 0.2 0.04 0.14 0.21 0.09 0.174 0.1 0.144 0.104 0.16 0.1 0.05 0.05 0.27 G21 0.066 0.1 0.15 0.05 0.05 0.15 G22 0.09 0.03 0.072 0.08 0.23 0 0.15 0.2 0.04 0.3 0.149 0.14 0.38 0.3 0.35 0.48 0.33 总计Sum 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 附表 S8 2018年鄱阳湖生态系统模型基本输入与输出参数
Appendix S8 Basic input and estimated parameters of Poyang Lake ecosystem model during 2018
编号
No.功能组
Group营养级
TL生物量
B (t/km2)生产量/
生物量P/B消耗量/
生物量 Q/B生态营养
效率EE生产量/
消耗量 P/Q1 Fierce carnivorous 3.63 0.194 2.94 12.3 0.664 0.239 2 Demersal carnivorous 3.48 0.564 3.48 14.5 0.581 0.240 3 Culters 3.31 1.01 4.66 16.1 0.443 0.290 4 Siluriformes 3.03 0.161 4.80 16.3 0.945 0.294 5 Black carp 2.98 0.0500 2.85 12.0 0.935 0.238 6 C-carps 2.93 1.81 5.20 15.6 0.856 0.333 7 Anchovy 2.96 0.426 2.20 8.50 0.369 0.259 8 Silver carp 2.12 0.620 1.80 7.30 0.898 0.247 9 Bigheadcarp 2.46 0.580 2.50 9.60 0.880 0.260 10 Grasscarp 2.07 0.530 4.40 12.0 0.875 0.367 11 Bream 2.06 0.480 4.50 22.1 0.867 0.204 12 Xenocyprididae 2.46 0.330 12.0 32.9 0.693 0.365 13 S-pelagic 2.68 0.310 8.00 20.3 0.962 0.394 14 S-demersal 2.54 0.700 20.0 50.0 0.960 0.400 15 Shrimps 2.41 1.91 7.50 36.0 0.374 0.208 16 Zoobenthos 2.08 30.5 2.00 34.0 0.903 0.059 17 Cladocera-copepoda 2.29 24.0 13.0 42.0 0.434 0.310 18 Microzooplankton 2.05 20.4 22.0 70.0 0.621 0.314 19 Attachedalgae 1.00 20.0 99.0 — 0.510 — 20 Phytoplankton 1.00 55.0 110 — 0.154 — 21 Macrophyte 1.00 270 6.70 — 0.107 — 22 Detritus 1.00 470 — — 0.119 — 注: 粗体为模型计算; “—”表示无数据输出Note: Bolds represent results calculated by the model; “—” represents no output data 附表 S9 2021年鄱阳湖生态系统模型基本输入与输出参数
Appendix S9 Basic input and estimated parameters of Poyang Lake ecosystem model during 2021
编号
No.功能组
Group营养级
TL生物量
B (t/km2)生产量/
生物量P/B消耗量/
生物量 Q/B生态营养
效率EE生产量/
消耗量 P/Q1 Fierce carnivorous 3.86 0.668 2.94 12.3 0.0420 0.239 2 Demersal carnivorous 3.45 0.650 3.48 14.5 0.424 0.240 3 Culters 3.17 1.46 3.66 16.1 0.318 0.228 4 Siluriformes 2.88 1.20 5.00 16.3 0.685 0.307 5 Black carp 2.64 0.0300 4.00 12.0 0.815 0.333 6 C-carps 2.80 1.73 5.20 15.6 0.895 0.333 7 Anchovy 3.26 1.00 2.20 8.50 0.589 0.259 8 Silver carp 2.92 3.16 0.800 7.30 0.307 0.110 9 Bigheadcarp 3.19 2.23 3.00 9.60 0.534 0.313 10 Grasscarp 2.51 1.90 2.20 7.40 0.468 0.297 11 Bream 2.74 1.08 5.00 22.1 0.765 0.226 12 Xenocyprididae 2.87 0.830 13.1 42.9 0.912 0.305 13 S-pelagic 2.88 0.810 7.00 23.0 0.856 0.304 14 S-demersal 2.56 1.60 15.8 45.0 0.875 0.351 15 Shrimps 2.66 4.00 8.50 35.0 0.496 0.243 16 Zoobenthos 2.55 76.0 10.0 26.0 0.287 0.385 17 Cladocera-copepoda 2.24 50.0 21.0 56.0 0.921 0.375 18 Microzooplankton 2.12 24.0 29.0 77.0 0.848 0.377 19 Attachedalgae 1.00 15.7 110 — 0.667 — 20 Phytoplankton 1.00 45.0 101 — 0.175 — 21 Macrophyte 1.00 350 6.80 — 0.222 — 22 Detritus 1.00 180 — — 0.328 — 注: 粗体为模型计算; “—”表示无数据输出Note: Bolds represent results calculated by the model; “—” represents no output data -
[1] 张堂林, 李钟杰. 鄱阳湖鱼类资源及渔业利用 [J]. 湖泊科学, 2007, 19(4): 434-444. Zhang T L, Li Z J. Fish resources and fishery utilization of Lake Poyang [J]. Journal of Lake Sciences, 2007, 19(4): 434-444.
[2] 韩耀全, 何安尤, 施军, 等. 珠江水域(广西段)三年禁渔期效果评估 [J]. 水产科技情报, 2015, 42(3): 135-139. Han Y Q, He A Y, Shi J, et al. Effect evaluation of three-year fishing ban in Pearl River waters (Guangxi section) [J]. Fisheries Science & Technology Information, 2015, 42(3): 135-139.
[3] 施炜纲, 刘凯, 张敏莹, 等. 春季禁渔期间长江下游鱼虾蟹类物种多样性变动(2001—2004年) [J]. 湖泊科学, 2005, 17(2): 169-175. Shi W G, Liu K, Zhang M Y, et al. Changes of biodiversity of fishery species in the lower reaches of the Yangtze River during the spring closed season [J]. Journal of Lake Science, 2005, 17(2): 169-175.
[4] 夏治俊, 刘飞, 余梵冬, 等. 赤水河流域鱼类物种、功能和分类多样性研究 [J]. 水生态学杂志, 2022, 43(5): 89-98. Xia Z J, Liu F, Yu F D, et al. Species, functional and taxonomic diversity of fish in the Chishui River Basin [J]. Journal of Hydroecology, 2022, 43(5): 89-98.
[5] Hossain M M, Matsuishi T, Arhonditsis G. Elucidation of ecosystem attributes of an oligotrophic lake in Hokkaido, Japan, using Ecopath with Ecosim (EwE) [J]. Ecological Modelling, 2010, 221(13/14): 1717-1730.
[6] Matsuishi T, Muhoozi L, Mkumbo O, et al. Are the exploitation pressures on the Nile perch fisheries resources of Lake Victoria a cause for concern [J]? Fisheries Management and Ecology, 2006, 13(1): 53-71.
[7] Christensen V. Ecological networks in fisheries: predicting the future [J]? Fisheries, 2013, 38(2): 76-81.
[8] Guo C, Ye S, Lek S, et al. The need for improved fishery management in a shallow macrophytic lake in the Yangtze River Basin: evidence from the food web structure and ecosystem analysis [J]. Ecological Modelling, 2013(267): 138-147.
[9] Fetahi T, Mengistou S. Trophic analysis of Lake Awassa (Ethiopia) using mass-balance Ecopath model [J]. Ecological Modelling, 2007, 201(3/4): 398-408.
[10] 冯德祥, 陈亮, 李云凯, 等. 基于营养通道模型的淀山湖生态系统结构与能量流动特征 [J]. 中国水产科学, 2011, 18(4): 867-876. Feng D X, Chen L, Li Y K, et al. Structure and energy flow of Dianshan Lake ecosystem based on the Ecopath model [J]. Journal Fishery Sciences of China, 2011, 18(4): 867-876.
[11] 王晓红, 李适宇, 彭人勇. 南海北部大陆架海洋生态系统演变的Ecopath模型比较分析 [J]. 海洋环境科学, 2009, 28(3): 288-292. Wang X H, Li S Y, Peng R Y. Establishment and comparative analysis of Ecopath model of ecosystem evolvement in northern continental shelf of the South China Sea [J]. Marine Environmental Science, 2009, 28(3): 288-292.
[12] Díaz López B, Bunke M, Bernal Shirai J A. Marine aquaculture off Sardinia Island (Italy): Ecosystem effects evaluated through a trophic mass-balance model [J]. Ecological Modelling, 2008, 212(3/4): 292-303.
[13] Yunkai-Li, Chen Y, Song B, et al. Ecosystem structure and functioning of Lake Taihu (China) and the impacts of fishing [J]. Fisheries Research, 2009, 95(2/3): 309-324.
[14] Coll M, Palomera I, Tudela S, et al. Food web dynamics in the South Catanla Sea ecosystem (NW Mediterrannean) for 1978-2003 [J]. Ecological Modelling, 2008, 217(1/2): 95116.
[15] 江红, 程和琴, Francisco Arreguín-Sánchez. 多准则渔业管理政策优选研究——以东海为例 [J]. 资源科学, 2010, 32(4): 612-619. Jiang H, Cheng H Q, ArreguínSánchez F. Exploring fisheries strategies for multi-criteria decision making: a case study of the East China Sea [J]. Resources Science, 2010, 32(4): 612-619.
[16] 陈作志, 邱永松, 贾晓平. 基于生态通道模型的北部湾渔业管理策略的评价 [J]. 生态学报, 2007, 27(6): 2334-2341. Chen Z Z, Qiu Y S, Jia X P. An evaluation of the fisheries management strategies in the Beibu Gulf: using Ecopath with Ecosim [J]. Acta Ecologica Sinica, 2007, 27(6): 2334-2341.
[17] 杨巧言. 江西省自然地理志 [M]. 北京: 方志出版社, 2003. Yang Q Y. Physical Geography of Jiangxi Province [M]. Beijing: Fangzhi Publishing House, 2003.
[18] 戴雪, 何征, 万荣荣, 等. 近35a长江中游大型通江湖泊季节性水情变化规律研究 [J]. 长江流域资源与环境, 2017, 26(1): 118-125. Dai X, He Z, Wan R R, et al. Variation of seasonal water-level fluctuations in riverconnected lakes in the middle reaches of Yangtze River in the recent three decades [J]. Resources and Environment in the Yangtze Basin, 2017, 26(1): 118-125.
[19] 李华栋. 鄱阳湖文化志 [M]. 南昌: 江西人民出版社, 2014. Li H D. The Poyang Lake Cultural Annals [M]. Nanchang: Jiangxi People’s Publishing House, 2014.
[20] Liu X, Qin J, Xu Y, et al. Biodiversity pattern of fish assemblages in Poyang Lake Basin: threat and conservation [J]. Ecology and Evolution, 2019, 9(20): 11672-11683.
[21] Li M, Liu C, Liu F, et al. Decrease in fishery yields in response to hydrological alterations in the largest floodplain lake (Poyang Lake) in China [J]. Frontiers in Earth Science, 2022(10): 878439.
[22] Christensen V, Pauly D. ECOPATH II-a software for balancing steady-state ecosystem models and calculating network characteristics [J]. Ecological Modelling, 1992, 61(3/4): 169-185.
[23] Christensen V, Waltersc J, Pauly D. Ecopath with Ecosim: A User’s Guide [M]. Vancouver: Fisheries Centre, University of British Columbia, 2005: 12-13.
[24] Tesfaye G, Wolff M. Modeling trophic interactions and the impact of an introduced exotic carp species in the Rift Valley Lake Koka, Ethiopia [J]. Ecological Modelling, 2018(378): 26-36.
[25] 叶少文, 冯广朋, 张彬, 等. 牛山湖小型鱼类群落结构特征及生物量估算 [J]. 中国水产科学, 2012, 19(5): 854-862. Ye S W, Feng G P, Zhang B, et al. Characteristics of community structure and biomass estimates of small-size fishes in Niushan Lake, Hubei Province, China [J]. Journal of Fishery Sciences of China, 2012, 19(5): 854-862.
[26] 尹然. 城市湖泊富营养化状况评价及应对策略——以武汉市南湖为例 [J]. 安徽农业科学, 2020, 48(24): 66-70. Yin R. Evaluation of eutrophication of urban lakes and coping strategies-a case study of Nanhu Lake of Wuhan city [J]. Journal of Anhui Agricultural Sciences, 2020, 48(24): 66-70.
[27] Pauly D, Christensen V, Ofsea I. Trophic Models of Aquatic Ecosystems [M]. International Center for Living Aquatic Resources Management, International Council for the Exploration of the Sea, Danish International Developmant Agency, 1993: 1-13.
[28] 简敏菲, 简美锋, 李玲玉, 等. 鄱阳湖典型湿地沉水植物的分布格局及其水环境影响因子 [J]. 长江流域资源与环境, 2015, 24(5): 765-772. Jian M F, Jian M F, Li L Y, et al. Distribution pattern of submerged plants in typical wetlands of Poyang Lake and its influencing factors of water environment [J]. Resources and Environment in the Yangtze Basin, 2015, 24(5): 765-772.
[29] 杨富亿, 刘兴土, 赵魁义, 等. 鄱阳湖的自然渔业功能 [J]. 湿地科学, 2011, 9(1): 82-89. Yang F Y, Liu X T, Zhao K Y, et al. Natural fishery function of Poyang Lake [J]. Wetland Science, 2011, 9(1): 82-89.
[30] 杨潇, 马吉顺, 张欢, 等. 鄱阳湖不同水文期浮游生物群落结构特征和影响因素及水质评价 [J]. 水生生物学报, 2021, 45(5): 1093-1103. doi: 10.7541/2021.2020.148 Yang X, Ma J S, Zhang H, et al. Community structure and the water quality during different hydrological periods in Poyang Lake [J]. Acta Hydrobiologica Sinica, 2021, 45(5): 1093-1103. doi: 10.7541/2021.2020.148
[31] Gulland J A. Fish Stock Assessment: Amanual of Basic Methods [M]. New York, Johan Wiley and Sons, 1983: 56-76.
[32] Pauly D. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks [J]. ICES Journal of Marine Science, 1980, 39(2): 175-192. doi: 10.1093/icesjms/39.2.175
[33] Brey T. A collection of empirical relations for use in ecological modelling [J]. Naga, 1999(22): 24-28.
[34] Palomares M L, Pauly D. A multiple regression model for prediction the food consumption of marine fish populations [J]. Marine and Freshwater Research, 1989, 40(3): 259. doi: 10.1071/MF9890259
[35] Christensen V, Walters C J. Ecopath with Ecosim: methods, capabilities and limitations [J]. Ecological Modelling, 2004, 172(2/3/4): 109-139.
[36] Odum E P. Fundamentals of Ecology [M]. 3d ed. Philadelphia: Saunders, 1971.
[37] 张欢, 何亮, 张培育, 等. 食物链长度理论研究进展 [J]. 生态学报, 2013, 33(24): 7630-7643. Zhang H, He L, Zhang P Y, et al. Food chain length theory: a review [J]. Acta Ecologica Sinica, 2013, 33(24): 7630-7643.
[38] Bourdaud P, Gascuel D, Bentorcha A, et al. New trophic indicators and target values for an ecosystem-based management of fisheries [J]. Ecological Indicators, 2016(61): 588-601. doi: 10.1016/j.ecolind.2015.10.010
[39] Pauly D, Christensen V, Guénette S, et al. Towards sustainability in world fisheries [J]. Nature, 2002, 418(6898): 689-695. doi: 10.1038/nature01017
[40] Pauly D, Palomares M L, Froese R, et al. Fishing down Canadian aquatic food webs [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58(1): 51-62. doi: 10.1139/f00-193
[41] Morissette L, Hammill M O, Savenkoff C. The trophic role of marine mammals in the northern gulf of St. Lawrence [J]. Marine Mammal Science, 2006, 22(1): 74-103. doi: 10.1111/j.1748-7692.2006.00007.x
[42] Christensen V, Walters C J, Pauly D, et al. Ecopath with Ecosim Version 6 User Guide [M]. 2008: 35-36.
[43] 金显仕, 唐启升. 渤海渔业资源结构、数量分布及其变化 [J]. 中国水产科学, 1998, 5(3): 18-24. doi: 10.3321/j.issn:1005-8737.1998.03.004 Jin X S, Tang Q S. Structure, quantitative distribution and changes of fishery resources in Bohai Sea [J]. Journal of Fishery Sciences of China, 1998, 5(3): 18-24. doi: 10.3321/j.issn:1005-8737.1998.03.004
[44] Zhang Y, Chen Y. Modeling and evaluating ecosystem in 1980s and 1990s for American lobster (Homarus americanus) in the Gulf of Maine [J]. Ecological Modelling, 2007, 203(3/4): 475-489.
[45] Jake Vander Zanden M, Fetzer W W. Global patterns of aquatic food chain length [J]. Oikos, 2007, 116(8): 1378-1388. doi: 10.1111/j.0030-1299.2007.16036.x
[46] 林群, 金显仕, 郭学武, 等. 基于Ecopath模型的长江口及毗邻水域生态系统结构和能量流动研究 [J]. 水生态学杂志, 2009, 30(2): 28-36. Lin Q, Jin X S, Guo X W, et al. Study on the structure and energy flow of the Yangtze River Estuary and adjacent waters ecosystem based on Ecopath model [J]. Journal of Hydroecology, 2009, 30(2): 28-36.
[47] Heymans J J, Coll M, Libralato S, et al. Global patterns in ecological indicators of marine food webs: a modelling approach [J]. PLoS One, 2014, 9(4): e95845. doi: 10.1371/journal.pone.0095845
[48] Lindeman R L. The trophic-dynamic aspect of ecology [J]. Bulletin of Mathematical Biology, 1991, 53(1): 167-191.
[49] Christensen V. Ecosystem maturity-towards quantification [J]. Ecological Modelling, 1995, 77(1): 3-32. doi: 10.1016/0304-3800(93)E0073-C
[50] 贾佩峤, 胡忠军, 武震, 等. 基于ecopath模型对滆湖生态系统结构与功能的定量分析 [J]. 长江流域资源与环境, 2013, 22(2): 189-197. Jia P Q, Hu Z J, Wu Z, et al. Quantitative analysis on the structure and function of the Gehu Lake ecosystem based on ecopath modeling [J]. Resources and Environment in the Yangtze River Basin, 2013, 22(2): 189-197.
[51] 宋兵. 太湖渔业和环境的生态系统模型研究 [D]. 上海: 华东师范大学, 2004: 38-55. Song B. Ecosystem Modeling Study on the Fishery and Environment of Taihu Lake [D]. Shanghai: East China Normal University, 2004: 38-55.
[52] 赵旭昊, 徐东坡, 任泷, 等. 基于Ecopath模型的太湖鲢鳙生态容量评估 [J]. 中国水产科学, 2021, 28(6): 785-795. doi: 10.12264/JFSC2020-0306 Zhao X H, Xu D P, Ren L, et al. Assessment of the ecological carrying capacity of silver and bighead carp in the Taihu Lake based on Ecopath model [J]. Journal of Fishery Sciences of China, 2021, 28(6): 785-795. doi: 10.12264/JFSC2020-0306
[53] 黄孝锋, 邴旭文, 陈家长. 基于Ecopath模型的五里湖生态系统营养结构和能量流动研究 [J]. 中国水产科学, 2012, 19(3): 471-481. Huang X F, Bing X W, Chen J C. Energy flow and trophic structure of the Wuli Lake ecosystem based on an Ecopath model [J]. Journal of Fishery Sciences of China, 2012, 19(3): 471-481.
[54] Nielsen C O, Odum E P, Odum H T. Fundamentals of ecology [J]. Ecology, 1960, 41(2): 400.
[55] Vasconcellos M, Mackinson S, Sloman K, et al. The stability of trophic mass-balance models of marine ecosystems: a comparative analysis [J]. Ecological Modelling, 1997, 100(1/2/3): 125-134.
[56] 于佳, 刘佳睿, 王利, 等. 基于Ecopath模型的千岛湖生态系统结构和功能分析 [J]. 水生生物学报, 2021, 45(2): 308-317. doi: 10.7541/2021.2019.128 Yu J, Liu J R, Wang L, et al. Analysis on the ecosystem structure and function of Lake Qiandao based on the Ecopath model [J]. Acta Hydrobiologica Sinica, 2021, 45(2): 308-317. doi: 10.7541/2021.2019.128
[57] Wolff M. A trophic model for Tongoy Bay-a system exposed to suspended scallop culture (Northern Chile) [J]. Journal of Experimental Marine Biology and Ecology, 1994, 182(2): 149-168. doi: 10.1016/0022-0981(94)90048-5
[58] Tsehaye I, Nagelkerke L A J. Exploring optimal fishing scenarios for the multispecies artisanal fisheries of Eritrea using a trophic model [J]. Ecological Modelling, 2008, 212(3/4): 319-333.
[59] Pinnegar J K, Polunin N V C. Predicting indirect effects of fishing in Mediterranean rocky littoral communities using a dynamic simulation model [J]. Ecological Modelling, 2004, 172(2/3/4): 249-267.
[60] 王银平, 邓艳敏, 刘思磊, 等. 禁捕初期长江下游鱼类群落现状分析及禁渔效果初步评估 [J]. 水产学报, 2023, 47(2): 206-218. Wang Y P, Deng Y M, Liu S L, et al. Status analysis of fish community in the lower reaches of the Yangtze River at the beginning of 10-year fishing ban and assessment of fishing ban effect [J]. Journal of Fisheries of China, 2023, 47(2): 206-218.
[61] 姜涛, 杨健, 轩中亚, 等. 长江禁渔对鄱阳湖溯河洄游型刀鲚资源恢复效果初报 [J]. 渔业科学进展, 2022, 43(1): 24-30. Jiang T, Yang J, Xuan Z Y, et al. Preliminary report on the effects of resource recovery on anadromous Coilia nasus in Poyang Lake under the national 10-year fishing ban [J]. Progress in Fishery Sciences, 2022, 43(1): 24-30.
[62] 刘飞, 刘定明, 袁大春, 等. 近十年来赤水河不同江段鱼类群落年际变化特征 [J]. 水生生物学报, 2020, 44(1): 122-132. doi: 10.7541/2020.015 Liu F, Liu D M, Yuan D C, et al. Interannual variations of fish assemblage in the Chishui River over the last decade [J]. Acta Hydrobiologica Sinica, 2020, 44(1): 122-132. doi: 10.7541/2020.015
[63] 贾春艳, 王珂, 李慧峰, 等. 禁渔初期东洞庭湖鱼类资源的空间分布与密度变化 [J]. 南方水产科学, 2022, 18(3): 48-56. doi: 10.12131/20210148 Jia C Y, Wang K, Li H F, et al. Spatial distribution and density changes of fish resources in East Dongting Lake during early fishing ban period [J]. South China Fisheries Science, 2022, 18(3): 48-56. doi: 10.12131/20210148
[64] Zhang H, Kang M, Shen L, et al. Rapid change in Yangtze fisheries and its implications for global freshwater ecosystem management [J]. Fish and Fisheries, 2020, 21(3): 601-620. doi: 10.1111/faf.12449
-
期刊类型引用(1)
1. 吴子君,刘文鼎,章海鑫,阙祥尧,余建芳,侯明勇,丁国栋,王昌来,张燕萍. 基于水声学方法的鄱阳湖通江水道鱼类空间分布特征研究. 江西水产科技. 2024(05): 1-7 . 百度学术
其他类型引用(0)