密度对罗氏沼虾种虾存活率、抱卵率、水质、水体和肠道微生物群落的影响

李倩, 孙丽慧, 张海琪, 姜建湖, 陈建明, 彭俊, 杨必成, 高令梅, 郭建林

李倩, 孙丽慧, 张海琪, 姜建湖, 陈建明, 彭俊, 杨必成, 高令梅, 郭建林. 密度对罗氏沼虾种虾存活率、抱卵率、水质、水体和肠道微生物群落的影响[J]. 水生生物学报, 2025, 49(4): 042502. DOI: 10.7541/2025.2024.0237
引用本文: 李倩, 孙丽慧, 张海琪, 姜建湖, 陈建明, 彭俊, 杨必成, 高令梅, 郭建林. 密度对罗氏沼虾种虾存活率、抱卵率、水质、水体和肠道微生物群落的影响[J]. 水生生物学报, 2025, 49(4): 042502. DOI: 10.7541/2025.2024.0237
LI Qian, SUN Li-Hui, ZHANG Hai-Qi, JIANG Jian-Hu, CHEN Jian-Ming, PENG Jun, YANG Bi-Cheng, GAO Ling-Mei, GUO Jian-Lin. DENSITY ON THE SURVIVAL RATE, OVULATION RATE, WATER QUALITY, WATER, AND INTESTINAL MICROBIAL COMMUNITY OF BROODSTOCK MACROBRACHIUM ROSENBERGII[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(4): 042502. DOI: 10.7541/2025.2024.0237
Citation: LI Qian, SUN Li-Hui, ZHANG Hai-Qi, JIANG Jian-Hu, CHEN Jian-Ming, PENG Jun, YANG Bi-Cheng, GAO Ling-Mei, GUO Jian-Lin. DENSITY ON THE SURVIVAL RATE, OVULATION RATE, WATER QUALITY, WATER, AND INTESTINAL MICROBIAL COMMUNITY OF BROODSTOCK MACROBRACHIUM ROSENBERGII[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(4): 042502. DOI: 10.7541/2025.2024.0237
李倩, 孙丽慧, 张海琪, 姜建湖, 陈建明, 彭俊, 杨必成, 高令梅, 郭建林. 密度对罗氏沼虾种虾存活率、抱卵率、水质、水体和肠道微生物群落的影响[J]. 水生生物学报, 2025, 49(4): 042502. CSTR: 32229.14.SSSWXB.2024.0237
引用本文: 李倩, 孙丽慧, 张海琪, 姜建湖, 陈建明, 彭俊, 杨必成, 高令梅, 郭建林. 密度对罗氏沼虾种虾存活率、抱卵率、水质、水体和肠道微生物群落的影响[J]. 水生生物学报, 2025, 49(4): 042502. CSTR: 32229.14.SSSWXB.2024.0237
LI Qian, SUN Li-Hui, ZHANG Hai-Qi, JIANG Jian-Hu, CHEN Jian-Ming, PENG Jun, YANG Bi-Cheng, GAO Ling-Mei, GUO Jian-Lin. DENSITY ON THE SURVIVAL RATE, OVULATION RATE, WATER QUALITY, WATER, AND INTESTINAL MICROBIAL COMMUNITY OF BROODSTOCK MACROBRACHIUM ROSENBERGII[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(4): 042502. CSTR: 32229.14.SSSWXB.2024.0237
Citation: LI Qian, SUN Li-Hui, ZHANG Hai-Qi, JIANG Jian-Hu, CHEN Jian-Ming, PENG Jun, YANG Bi-Cheng, GAO Ling-Mei, GUO Jian-Lin. DENSITY ON THE SURVIVAL RATE, OVULATION RATE, WATER QUALITY, WATER, AND INTESTINAL MICROBIAL COMMUNITY OF BROODSTOCK MACROBRACHIUM ROSENBERGII[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(4): 042502. CSTR: 32229.14.SSSWXB.2024.0237

密度对罗氏沼虾种虾存活率、抱卵率、水质、水体和肠道微生物群落的影响

基金项目: 浙江省自然科学基金(LTGN24C190008); 浙江省院所专项(2024YSZX01)资助
详细信息
    作者简介:

    李倩(1984—), 女, 硕士研究生; 主要从事鱼类增养殖学方面的研究。E-mail: 2008feelkaka@sina.com

    通信作者:

    郭建林(1981—), 男, 高级工程师; E-mail: wavegjl@aliyun.com

  • 中图分类号: S966.12

DENSITY ON THE SURVIVAL RATE, OVULATION RATE, WATER QUALITY, WATER, AND INTESTINAL MICROBIAL COMMUNITY OF BROODSTOCK MACROBRACHIUM ROSENBERGII

Funds: Supported by the Zhejiang Province Public Natural Science Foundation of China Under Grant (LTGN24C190008); Institute Special Project of Zhejiang Province (2024YSZX01)
    Corresponding author:
  • 摘要:

    为探讨保种期罗氏沼虾(Macrobrachium rosenbergii)种虾合理的放养密度, 实验以温室保种期的种虾为研究对象, 雌雄比例2﹕1, 雌虾初始体重为(17.95±1.11) g, 雄虾初始体重为(21.39±1.63) g, 设置3个放养密度: LD (1.0 kg/m3)、MD (1.5 kg/m3)、HD (2.0 kg/m3), 研究了密度对罗氏沼虾种虾抱卵率、存活率、水质、水体和肠道微生物群落的影响。结果表明: 水质未稳定前, 水体中氨氮和亚硝态氮的含量随着放养密度的增加而升高, HD组显著高于LD组(P<0.05)。水质稳定后各密度组之间无显著差异(P>0.05)。LD组和MD组雌虾的抱卵率显著大于HD组(P<0.05), LD组和MD组无显著差异(P>0.05)。存活率随着放养密度的增加显著降低(P<0.05)。放养密度显著影响罗氏沼虾的规格, 小规格虾的比例随着放养密度的升高显著增加(P<0.05)。水体微生物群落结果表明, 水体中氨氮含量最高时, 硝化螺旋菌属(Nitrospira)为HD组的指示物种。肠道微生物结果表明, 在相同的采样时间, 放养密度对罗氏沼虾肠道微生物菌群组成无显著影响。但当水体中氨氮含量最高时, 潜在病原菌柠檬酸杆菌(Citrobacter)的占比在MD组和HD组有所升高, 说明密度引起的水质变化显著影响中高密度组的肠道微生物群落组成。综上, 建议保种期罗氏沼虾的放养密度以1.0 kg/m3为宜。

    Abstract:

    This study aims to investigate the appropriate stocking density for broodstock Macrobrachium rosenbergii. The experiment was conducted in a greenhouse setting, using M. rosenbergii broodstock with a sex ratio of 2﹕1 (females to males). The initial weight of the female shrimps was (17.95±1.11) g, and the male shrimp weighed (21.39±1.63) g. Three stocking densities were tested: LD (1.0 kg/m3), MD (1.5 kg/m3), and HD (2.0 kg/m3). The effects of these stocking densities on brooding rate, survival rate, water quality, and microbial communities in both water and the shrimp gut were analyzed. The results showed that before water quality stabilized, ammonia nitrogen and nitrite nitrogen levels increased with higher stocking density, with the HD group exhibiting significantly higher levels than the LD group (P<0.05). After stabilizing the water quality, no significant differences were observed among the density groups (P>0.05). The ovulation rate of female shrimp in the LD and MD groups was significantly higher than that in the HD group (P<0.05), while there was no significant difference between the LD and MD groups (P>0.05). Survival rate decreased significantly as stocking density increased (P<0.05). Meanwhile, stocking density had a notable effect on the size distribution of broodstock M. rosenbergii, with a significantly higher proportion of smaller shrimp in the higher density groups (P<0.05). Gut microflora results showed that stocking density had no significant effect on bacterial community composition at any sampling time. However, at the peak of ammonia nitrogen content, the proportion of potentially pathogenic Citrobacter increased in both MD and HD groups, indicating that water quality changes caused by higher density significantly influenced the gut microbiota composition in these groups. In conclusion, a stocking density of 1.0 kg/m3 was suggested as the most suitable for broodstock M. rosenbergii. The results of this study provide a valuable reference for determining the appropriate stocking density for M. rosenbergii.

  • 图  1   不同密度组的氨氮浓度

    Figure  1.   Ammonia nitrogen concentration in different density groups

    图  2   不同密度组的亚硝态氮浓度

    Figure  2.   Nitrite concentration in different density groups

    图  3   不同密度组罗氏沼虾的抱卵率和存活率

    Figure  3.   Ovigerous and survival rate of M. rosenbergii in different density groups

    图  4   放养密度对罗氏沼虾规格分布的影响

    A为雌性罗氏沼虾, B为雄性罗氏沼虾

    Figure  4.   The effects of different densities on size distribution of M. rosenbergii

    A represents female M. rosenbergii, B represents male M. rosenbergii

    图  5   不同密度组水体的细菌群落组成

    A表示门水平; B表示属水平; W9、W17、W41表示保种9d、14d和41d的水样; LD、MD、HD表示1.0、1.5和2.0 kg/m3组; 下同

    Figure  5.   Community composition of microbes in different density groups of M. rosenbergii

    A represents phylum level, B represents genus level; W9, W17, and W41 mean water samples of the 9th, 14th, and 41st days of preservation; LD, MD, and HD indicate the 1.0, 1.5 and 2.0 kg/m3 group respectively; the same applies below

    图  6   不同密度组养殖水体细菌群落的差异物种分析

    A为LEFSe分析; B为线性判别分析(LDA)

    Figure  6.   Analysis of different bacterial genera identified among different density groups of M. rosenbergii

    A represents LEFSe analysis; B represents Linear discriminant analysis (LDA)

    图  7   不同密度组罗氏沼虾肠道菌群在属水平的组成图

    F表示雌虾, M表示雄虾; 9、17、41表示养殖时间; F9—LD表示保种9d时1.0 kg/m3组的雌虾; 下同

    Figure  7.   Community composition of intestine microbes in different density groups of M. rosenbergii on genus level

    F represents female shrimp, M represents male shrimp, the number of 9, 17, and 41 represent culturing time. F9—LD means female shrimp in 1.0 kg/m3, culturing 9d; the same applies below

    图  8   基于OTU水平的雌雄罗氏沼虾肠道微生物群落PCoA图

    A代表雄性罗氏沼虾; B代表雌性罗氏沼虾

    Figure  8.   PCoA analysis of male and female M. rosenbergii on OTU level

    A represents male M. rosenbergii; B represents female M. rosenbergii

    图  9   罗氏沼虾雌虾肠道微生物群落组间差异性检验

    Figure  9.   The significant differences of intestinal microbial communities among female M. rosenbergii

    表  1   罗氏沼虾肠道微生物α多样性指数表

    Table  1   The α diversity indices of intestinal microbial of M. rosenbergii

    指数-组别
    Index-Group
    OTUs
    OTU number
    Ace指数
    Ace index
    Chao1指数
    Chao index
    PD指数
    PD index
    F9-LD 368.67±153.96ab 453.85±122.55ab 446.26±129.97ab 76.45±27.66abc
    F9-MD 459.00±110.57ab 561.45±100.92abc 569.25±86.70abc 77.78±5.78abc
    F9-HD 414.00±190.49ab 512.30±196.26abc 502.71±198.44abc 64.21±22.75a
    F17-LD 308.33±39.27a 380.91±49.97a 379.37±57.21a 61.43±17.61a
    F17-MD 463.00±111.64ab 572.12±142.93abc 575.42±150.66abc 88.71±18.33abc
    F17-HD 416.33±52.27ab 501.06±78.10abc 500.37±61.86abc 82.29±22.19abc
    F41-LD 698.00±167.68cde 829.47±154.82d 825.67±179.17de 122.33±18.13d
    F41-MD 809.33±86.32ef 875.56±61.31de 888.23±60.96def 123.05±15.66d
    F41-HD 961.00±138.39f 1055.05±140.63e 1055.87±131.80f 160.52±5.75e
    M9-LD 397.33±87.92ab 490.50±96.76ab 486.13±98.48abc 70.68±5.87ab
    M9-MD 496.67±139.00ab 584.66±148.84abc 593.49±168.64abc 82.88±10.25abc
    M9-HD 516.33±64.79abc 626.14±22.31bc 611.09±33.49bc 85.17±10.74abc
    M17-LD 357.67±19.35ab 442.89±41.13ab 430.79±56.97ab 74.93±11.59ab
    M17-MD 407.00±74.99ab 472.55±125.97ab 471.20±112.77abc 72.96±20.33ab
    M17-HD 435.67±34.79ab 510.36±29.06abc 514.13±20.32abc 72.84±11.97ab
    M41-LD 556.67±87.13bcd 712.98±58.34cd 688.98±71.86cd 91.02±12.32abc
    M41-MD 799.33±132.76ef 917.02±167.07de 917.18±141.86ef 106.47±16.34cd
    M41-HD 731.00±103.87de 834.31±110.76d 842.62±108.03de 101.00±13.58bcd
    注: 同列数据肩标相同小写字母表示差异不显著(P>0.05), 不同小写字母表示差异显著(P<0.05)Note: In the same column, values with the same lowercase letter mean no significant difference (P>0.05), while with different lowercase superscript mean significant difference (P<0.05)
    下载: 导出CSV
  • [1]

    Ani J S, Manyala J O, Masese F O, et al. Effect of stocking density on growth performance of monosex nile tilapia (Oreochromis niloticus) in the aquaponic system integrated with lettuce (Lactuca sativa) [J]. Aquaculture and Fisheries, 2022, 7(3): 328-335. doi: 10.1016/j.aaf.2021.03.002

    [2]

    Hossain M A, Hossain M A, Haque M A, et al. Determination of suitable stocking density for good aquaculture practice-based carp fattening in ponds under drought-prone areas of Bangladesh [J]. Aquaculture, 2022(547): 737485. doi: 10.1016/j.aquaculture.2021.737485

    [3]

    Liu B L, Fei F, Li X T, et al. Effects of stocking density on stress response, innate immune parameters, and welfare of turbot (Scophthalmus maximus) [J]. Aquaculture International, 2019, 27(6): 1599-1612. doi: 10.1007/s10499-019-00413-2

    [4]

    Zafar A, Roni M A, Rana M, et al. Growth, digestive enzyme activities, proximate composition and hemato-biochemcial responses of juvenile nile tilapia (Oreochromis niloticus) reared at various stocking densities in a recirculatory aquaculture system [J]. Journal of Applied Aquaculture, 2023, 35(4): 1179-1201. doi: 10.1080/10454438.2022.2102957

    [5]

    Zahedi S, Akbarzadeh A, Mehrzad J, et al. Effect of stocking density on growth performance, plasma biochemistry and muscle gene expression in rainbow trout (Oncorhynchus mykiss) [J]. Aquaculture, 2019(498): 271-278. doi: 10.1016/j.aquaculture.2018.07.044

    [6]

    Aidos L, Vasconi M, Abbate F, et al. Effects of stocking density on reared Siberian sturgeon (Acipenser baerii) larval growth, muscle development and fatty acids composition in a recirculating aquaculture system [J]. Aquaculture Research, 2019, 50(2): 588-598. doi: 10.1111/are.13936

    [7]

    Zheng J S, Wang Z X, Pu D C, et al. Effects of stocking density on intestinal health of juvenile Micropterus salmoides in industrial aquaponics [J]. Fishes, 2023, 8(11): 555. doi: 10.3390/fishes8110555

    [8]

    Dong Y, Jia R, Hou Y, et al. Effects of stocking density on the growth performance, mitophagy, endocytosis and metabolism of Cherax quadricarinatus in integrated rice-crayfish farming systems [J]. Frontiers in Physiology, 2022(13): 1040712. doi: 10.3389/fphys.2022.1040712

    [9]

    Naranjo-Páramo J, Hernández-Llamas A, Vargas-Mendieta M, et al. Stochastic dynamic model analysis of the effect of stocking density on the monosex production of male redclaw crayfish Cherax quadricarinatus reared in commercial gravel-lined ponds [J]. Aquaculture, 2021(535): 736351. doi: 10.1016/j.aquaculture.2021.736351

    [10]

    Jia R, Dong Y, Hou Y R, et al. Transcriptome analysis reveals the effect of stocking density on energy metabolism in the gills of Cherax quadricarinatus under rice-crayfish co-culture [J]. International Journal of Molecular Sciences, 2023, 24(14): 11345. doi: 10.3390/ijms241411345

    [11]

    Deng Y, Xu X, Yin X, et al. Effect of stock density on the microbial community in biofloc water and Pacific white shrimp (Litopenaeus vannamei) gut microbiota [J]. Applied Microbiology and Biotechnology, 2019, 103(10): 4241-4252. doi: 10.1007/s00253-019-09773-4

    [12]

    Yuan H, Xie M H, Hu N J, et al. Growth, immunity and transcriptome response to different stocking densities in Litopenaeus vannamei [J]. Fish & Shellfish Immunology, 2023(139): 108924.

    [13]

    Irani M, Rajabi Islami H, Nafisi Bahabadi M, et al. Production of Pacific white shrimp under different stocking density in a zero-water exchange biofloc system: Effects on water quality, zootechnical performance, and body composition [J]. Aquacultural Engineering, 2023(100): 102313. doi: 10.1016/j.aquaeng.2022.102313

    [14]

    Liu G, Zhu S, Liu D, et al. Effects of stocking density of the white shrimp Litopenaeus vannamei (Boone) on immunities, antioxidant status, and resistance against Vibrio harveyi in a biofloc system [J]. Fish & Shellfish Immunology, 2017(67): 19-26.

    [15]

    Li J H, Qian C, Li C L, et al. Exploration of the optimal stocking density of red swamp crayfish (Procambarus clarkii) larvae by using the biofloc technology [J]. Aquaculture International, 2023, 31(3): 1569-1582. doi: 10.1007/s10499-022-01042-y

    [16]

    Yu J X, Xiong M T, Ye S W, et al. Effects of stocking density and artificial macrophyte shelter on survival, growth and molting of juvenile red swamp crayfish (Procambarus clarkii) under experimental conditions [J]. Aquaculture, 2020(521): 735001. doi: 10.1016/j.aquaculture.2020.735001

    [17]

    Shyne Anand P S, Balasubramanian C P, Christina L, et al. Substrate based black tiger shrimp, Penaeus monodon culture: Stocking density, aeration and their effect on growth performance, water quality and periphyton development [J]. Aquaculture, 2019(507): 411-418. doi: 10.1016/j.aquaculture.2019.04.031

    [18]

    AftabUddin S, Siddique M A M, Sein A, et al. First use of biofloc technology for Penaeus monodon culture in Bangladesh: Effects of stocking density on growth performance of shrimp, water quality and bacterial growth [J]. Aquaculture Reports, 2020(18): 100518. doi: 10.1016/j.aqrep.2020.100518

    [19]

    Araneda M, Pérez E P, Gasca-Leyva E. White shrimp Penaeus vannamei culture in freshwater at three densities: Condition state based on length and weight [J]. Aquaculture, 2008, 283(1/2/3/4): 13-18.

    [20]

    Rahman M M, Salin K R, Tsusaka T W, et al. Effect of stocking density on growth performance and gonadal maturity of all-female giant freshwater prawn, Macrobrachium rosenbergii [J]. Journal of the World Aquaculture Society, 2022, 53(6): 1120-1133. doi: 10.1111/jwas.12888

    [21]

    Siddiqui A Q, Al-Hafedh Y S, Al-Harbi A H, et al. Effects of stocking density and monosex culture of freshwater prawn Macrobrachium rosenbergii on growth and production in concrete tanks in Saudi Arabia [J]. Journal of the World Aquaculture Society, 1997, 28(1): 106-112. doi: 10.1111/j.1749-7345.1997.tb00968.x

    [22]

    Cuvin-Aralar M L A, Aralar E V, Laron M, et al. Culture of Macrobrachium rosenbergii (De Man 1879) in experimental cages in a freshwater eutrophic lake at different stocking densities [J]. Aquaculture Research, 2007, 38(3): 288-294. doi: 10.1111/j.1365-2109.2007.01667.x

    [23]

    Kunda M, Azim M E, Wahab M A, et al. Potential of mixed culture of freshwater prawn (Macrobrachium rosenbergii) and self-recruiting small species mola (Amblypharyngodon mola) in rotational rice–fish/prawn culture systems in Bangladesh [J]. Aquaculture Research, 2008, 39(5): 506-517. doi: 10.1111/j.1365-2109.2008.01905.x

    [24]

    Zhang L, Pan L, Xu L, et al. Effects of ammonia-N exposure on the concentrations of neurotransmitters, hemocyte intracellular signaling pathways and immune responses in white shrimp Litopenaeus vannamei [J]. Fish & Shellfish Immunology, 2018(75): 48-57.

    [25] 魏孟申, 郑涛, 路思琪, 等. 氨氮胁迫对大口黑鲈幼鱼组织结构、酶活及肠道微生物的影响 [J]. 水生生物学报, 2024, 48(1): 10-22.] doi: 10.7541/2023.2023.0054

    Wei M S, Zheng T, Lu S Q, et al. Ammonia-N stress on tissue structure, enzyme activity and intestinal microbiota of Macropterus Salmoides [J]. Acta Hydrobiologica Sinica, 2024, 48(1): 10-22. [ doi: 10.7541/2023.2023.0054

    [26]

    Edwards T M, Puglis H J, Kent D B, et al. Ammonia and aquatic ecosystems–A review of global sources, biogeochemical cycling, and effects on fish [J]. Science of the Total Environment, 2024(907): 167911. doi: 10.1016/j.scitotenv.2023.167911

    [27] 倪蒙, 陈雪峰, 高强, 等. 放养密度对温棚养殖罗氏沼虾生长、生化指标、水质及养殖效益的影响 [J]. 大连海洋大学学报, 2021, 36(3): 423-429.]

    Ni M, Chen X F, Gao Q, et al. Effects of stocking density on growth performance, biochemical indices, water quality and economic benefits of giant freshwater prawn Macrobrachium rosenbergii in a greenhouse [J]. Journal of Dalian Ocean University, 2021, 36(3): 423-429. [

    [28] 陈亚坤, 郭冉, 夏辉, 等. 密度胁迫对凡纳滨对虾生长、水质因子及免疫力的影响 [J]. 江苏农业科学, 2011, 39(3): 292-294.] doi: 10.3969/j.issn.1002-1302.2011.03.117

    Chen Y K, Guo R, Xia H, et al. Effects of density stress on growth, water quality factors and immunity of Litopenaeus vannamei [J]. Jiangsu Agricultural Sciences, 2011, 39(3): 292-294. [ doi: 10.3969/j.issn.1002-1302.2011.03.117

    [29] 杨佳雯, 高敏, 陈森, 等. 放养密度对日本鳗鲡夏秋两季养殖水质及营养品质的影响 [J]. 水生生物学报, 2024, 48(6): 979-990.] doi: 10.7541/2024.2023.0336

    Yang J W, Gao M, Chen S, et al. Stocking density on water quality and nutritional quality of Anguilla japonica in summer and autumn [J]. Acta Hydrobiologica Sinica, 2024, 48(6): 979-990. [ doi: 10.7541/2024.2023.0336

    [30] 陈旭, 梁旭方, 李姣, 等. 硝化细菌对加州鲈池塘水质影响及底质净化作用 [J]. 水生生物学报, 2020, 44(2): 399-406.]

    Chen X, Liang X F, Li J, et al. Study of water quality and sediment purification by nitrifying bacteria in a California perch (Micropterus salmoides) pond [J]. Acta Hydrobiologica Sinica, 2020, 44(2): 399-406. [

    [31]

    Keuter S, Koch H, Nowka B, et al. A novel Nitrospira lineage isolated from activated sludge using elevated temperatures [J]. FEMS Microbiology Letters, 2023(370): fnad035. doi: 10.1093/femsle/fnad035

    [32]

    Mueller A J, Daebeler A, Herbold C W, et al. Cultivation and genomic characterization of novel and ubiquitous marine nitrite-oxidizing bacteria from the Nitrospirales [J]. The ISME Journal, 2023, 17(11): 2123-2133. doi: 10.1038/s41396-023-01518-6

    [33]

    Huang T, Xia J, Liu T, et al. Comammox Nitrospira bacteria are dominant ammonia oxidizers in mainstream nitrification bioreactors emended with sponge carriers [J]. Environmental Science & Technology, 2022, 56(17): 12584-12591.

    [34]

    Hoseini S M, Taheri Mirghaed A, Ghelichpour M. Effects of dietary tryptophan levels and fish stocking density on immunological and antioxidant responses and bactericidal activity against Aeromonas hydrophilain rainbow trout (Oncorhynchus mykiss) [J]. Aquaculture Research, 2020, 51(4): 1455-1463. doi: 10.1111/are.14491

    [35]

    García-Cruz E L, Yamamoto Y, Hattori R S, et al. Crowding stress during the period of sex determination causes masculinization in pejerrey Odontesthes bonariensis, a fish with temperature-dependent sex determination [J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2020(245): 110701.

    [36]

    Lin Y C, Chen J C, Chen Y Y, et al. Crowding of white shrimp Litopenaeus vananmei depresses their immunity to and resistance against Vibrio alginolyticus and white spot syndrome virus [J]. Fish & Shellfish Immunology, 2015, 45(1): 104-111.

    [37]

    Naderi M, Keyvanshokooh S, Ghaedi A, et al. Effect of acute crowding stress on rainbow trout (Oncorhynchus mykiss): a proteomics study [J]. Aquaculture, 2018(495): 106-114. doi: 10.1016/j.aquaculture.2018.05.038

    [38] 葛红星, 郭洛宇, 申欣, 等. 不同密度三疣梭子蟹混养中国明对虾、青蛤对生长、经济效益及水质的影响 [J]. 江苏海洋大学学报(自然科学版), 2023, 32(2): 1-6.]

    Ge H X, Guo L Y, Shen X, et al. Effects of polyculture of fenneropenaeus chinensis and Cyclina sinensis with different densities of Portunus trituberculatus on growth, economic benefits and water quality [J]. Journal of Jiangsu Ocean University (Natural Science Edition), 2023, 32(2): 1-6. [

    [39]

    Debnath C, Dube K, Saharan N, et al. Growth and production of endangered Indian butter catfish, Ompok bimaculatus (Bloch) at different stocking densities in earthen ponds [J]. Aquaculture Research, 2016, 47(10): 3265-3275. doi: 10.1111/are.12780

    [40]

    Zorita I, Juez A, Solaun O, et al. Stocking density effect on the growth and mortality of juvenile European flat oyster (Ostrea edulis Linnaeus, 1758) [J]. Aquaculture, Fish and Fisheries, 2021, 1(1): 60-65. doi: 10.1002/aff2.18

    [41]

    Ellison A R, Uren Webster T M, Rey O, et al. Transcriptomic response to parasite infection in Nile tilapia (Oreochromis niloticus) depends on rearing density [J]. BMC Genomics, 2018, 19(1): 723. doi: 10.1186/s12864-018-5098-7

    [42] 张龙, 曲克明, 张鹏, 等. 在循环水养殖系统中养殖密度对红鳍东方鲀应激反应和抗氧化状态的影响 [J]. 渔业现代化, 2019, 46(4): 14-23.]

    Zhang L, Qu K M, Zhang P, et al. Effects of the stocking density on stress response and antioxidant status of Takifugu rubripes in recirculating aquaculture systems [J]. Fishery Modernization, 2019, 46(4): 14-23. [

    [43]

    Nga B T, Lürling M, Peeters E T H M, et al. Chemical and physical effects of crowding on growth and survival of Penaeus monodon Fabricius post-larvae [J]. Aquaculture, 2005, 246(1/2/3/4): 455-465.

    [44]

    Cohen D, Raanan Z, Brody T. Population profile development and morphotypic differentiation in the giant freshwater prawn Macrobrachium rosenbergii (de Man) [J]. Journal of the World Mariculture Society, 1981, 12(2): 231-243. doi: 10.1111/j.1749-7345.1981.tb00298.x

    [45]

    Levy T, Rosen O, Eilam B, et al. All-female monosex culture in the freshwater prawn Macrobrachium rosenbergii–A comparative large-scale field study [J]. Aquaculture, 2017(479): 857-862. doi: 10.1016/j.aquaculture.2017.07.039

    [46] 李倩, 孙丽慧, 姜建湖, 等. 放养密度对IPRA养殖太湖鲂鲌生长、抗氧化酶及肠道微生物群落的影响 [J]. 水生生物学报, 2023, 47(3): 479-487.]

    Li Q, Sun L H, Jiang J H, et al. Stocking densities on growth, antioxidant enzyme activities and intestinal microbiota of hybrid of Culter alburnus (♀) × Megalobrama terminalis (♂) in IPRA system [J]. Acta Hydrobiologica Sinica, 2023, 47(3): 479-487. [

    [47]

    Wang Y W, Zhu J, Ge X P, et al. Effects of stocking density on the growth performance, digestive enzyme activities, antioxidant resistance, and intestinal microflora of blunt snout bream (Megalobrama amblycephala) juveniles [J]. Aquaculture Research, 2019, 50(1): 236-246. doi: 10.1111/are.13889

    [48] 袁航, 胡乃捷, 陈俭, 等. 养殖密度对凡纳滨对虾生长性能及其肠道消化酶和菌群结构的影响 [J]. 南方农业学报, 2023, 54(1): 289-302.]

    Yuan H, Hu N J, Chen J, et al. Effects of stocking density on the growth performance, intestinal digestive enzyme activities and microflora structure of Litopenaeus vannamei [J]. Journal of Southern Agriculture, 2023, 54(1): 289-302. [

    [49] 谢梦琪, 张诗雨, 许荔立, 等. 不同性别和生长阶段对克氏原螯虾肠道菌群多样性的影响 [J]. 水生生物学报, 2021, 45(6): 1243-1254.]

    Xie M Q, Zhang S Y, Xu L L, et al. The intestinal microbiota diversities of Procambarus clarkia at different sexes and growth stages [J]. Acta Hydrobiologica Sinica, 2021, 45(6): 1243-1254. [

    [50] 徐静静, 冯广朋, 陈建华, 等. 长江口中华绒螯蟹雌蟹洄游期的肠道菌群多样性 [J]. 江苏农业科学, 2021, 49(1): 146-151.]

    Xu J J, Feng G P, Chen J H, et al. The study of intestinal flora diversity of female Eriocheir sinensis in the Yangtze River [J]. Jiangsu Agricultural Sciences, 2021, 49(1): 146-151. [

图(9)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-11
  • 修回日期:  2024-08-12
  • 网络出版日期:  2024-10-30
  • 刊出日期:  2025-04-14

目录

    /

    返回文章
    返回