黑水河中华纹胸栖息地适宜性指数算法筛选及评估

谢伟, 邓华堂, 蒲艳, 倪达富, 成必新, 唐锡良, 陈大庆, 段辛斌, 田辉伍

谢伟, 邓华堂, 蒲艳, 倪达富, 成必新, 唐锡良, 陈大庆, 段辛斌, 田辉伍. 黑水河中华纹胸栖息地适宜性指数算法筛选及评估[J]. 水生生物学报, 2025, 49(4): 042515. DOI: 10.7541/2025.2024.0244
引用本文: 谢伟, 邓华堂, 蒲艳, 倪达富, 成必新, 唐锡良, 陈大庆, 段辛斌, 田辉伍. 黑水河中华纹胸栖息地适宜性指数算法筛选及评估[J]. 水生生物学报, 2025, 49(4): 042515. DOI: 10.7541/2025.2024.0244
XIE Wei, DENG Hua-Tang, PU Yan, NI Da-Fu, CHENG Bi-Xin, TANG Xi-Liang, CHEN Da-Qing, DUAN Xin-Bin, TIAN Hui-Wu. ALGORITHM SCREENING AND EVALUATION OF HABITAT SUITABILITY INDEX FOR GLYPTOTHORAX SINENSE IN THE HEISHUI RIVER[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(4): 042515. DOI: 10.7541/2025.2024.0244
Citation: XIE Wei, DENG Hua-Tang, PU Yan, NI Da-Fu, CHENG Bi-Xin, TANG Xi-Liang, CHEN Da-Qing, DUAN Xin-Bin, TIAN Hui-Wu. ALGORITHM SCREENING AND EVALUATION OF HABITAT SUITABILITY INDEX FOR GLYPTOTHORAX SINENSE IN THE HEISHUI RIVER[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(4): 042515. DOI: 10.7541/2025.2024.0244
谢伟, 邓华堂, 蒲艳, 倪达富, 成必新, 唐锡良, 陈大庆, 段辛斌, 田辉伍. 黑水河中华纹胸栖息地适宜性指数算法筛选及评估[J]. 水生生物学报, 2025, 49(4): 042515. CSTR: 32229.14.SSSWXB.2024.0244
引用本文: 谢伟, 邓华堂, 蒲艳, 倪达富, 成必新, 唐锡良, 陈大庆, 段辛斌, 田辉伍. 黑水河中华纹胸栖息地适宜性指数算法筛选及评估[J]. 水生生物学报, 2025, 49(4): 042515. CSTR: 32229.14.SSSWXB.2024.0244
XIE Wei, DENG Hua-Tang, PU Yan, NI Da-Fu, CHENG Bi-Xin, TANG Xi-Liang, CHEN Da-Qing, DUAN Xin-Bin, TIAN Hui-Wu. ALGORITHM SCREENING AND EVALUATION OF HABITAT SUITABILITY INDEX FOR GLYPTOTHORAX SINENSE IN THE HEISHUI RIVER[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(4): 042515. CSTR: 32229.14.SSSWXB.2024.0244
Citation: XIE Wei, DENG Hua-Tang, PU Yan, NI Da-Fu, CHENG Bi-Xin, TANG Xi-Liang, CHEN Da-Qing, DUAN Xin-Bin, TIAN Hui-Wu. ALGORITHM SCREENING AND EVALUATION OF HABITAT SUITABILITY INDEX FOR GLYPTOTHORAX SINENSE IN THE HEISHUI RIVER[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(4): 042515. CSTR: 32229.14.SSSWXB.2024.0244

黑水河中华纹胸栖息地适宜性指数算法筛选及评估

基金项目: 国家重点研发计划(2022YFC3202001); 中国三峡建设管理有限公司项目(JG/18056B和JG/18057B); 国家自然科学基金(51909271和51509262); 中国水产科学研究院中央级公益性科研院所基本科研业务费专项资金(2023TD09)资助
详细信息
    作者简介:

    谢伟(1999年—), 男, 硕士; 研究方向为渔业资源。E-mail: 19909025637@163.com

    邓华堂(1985—), 男, 博士; 研究方向为鱼类生态学。E-mail: denght@yfi.ac.cn *共同第一作者

    通信作者:

    田辉伍, 博士; 研究方向为鱼类生态学。E-mail: tianhw@yfi.ac.cn

  • 中图分类号: Q178.1

ALGORITHM SCREENING AND EVALUATION OF HABITAT SUITABILITY INDEX FOR GLYPTOTHORAX SINENSE IN THE HEISHUI RIVER

Funds: Supported by the National Key Research and development Project (2022YFC3202001); China Three Gorges Construction Management Co., LTD. (JG/18056B and JG/18057B); National Natural Science Foundation of China (51909271 and 51509262); Chinese Academy of Fishery Sciences, Central Level Public Welfare Research Institutes Basic Research Funds Special Fund (2023TD09)
    Corresponding author:
  • 摘要:

    为研究中华纹胸鮡(Glyptothorax sinensis)栖息地适宜性指数(Habitat suitability index, HSI)模型最优算法, 科学评估其适宜栖息地分布, 基于2018—2019年黑水河中华纹胸鮡渔获物数据及同步采集的13个环境因子, 采用一元非线性函数拟合构建单个环境因子SI曲线, 并结合最大值法(Maximum, MAX)、最小值法(Minimum, MIN)、算术平均法(Arithmetic mean model, AMM)、几何平均法(Geometric mean model, GMM)、加权平均法(Weighted moving average, WMA)分别计算中华纹胸鮡HSI值。计算结果表明: 在各模型算法中, 算术平均法和加权平均法两种方法的预测结果误差最小, 最大值法与最小值法的预测结果与中华纹胸鮡实际分布偏差较大, 在进行算法选择时要慎重考虑。黑水河中华纹胸鮡栖息地适宜性指数总体呈现上游至下游纵向上升趋势, HSI值大于0.7的点位为下游自然河段S3和S4。水温、海拔等物理环境是驱动中华纹胸鮡栖息地空间分布差异的主要因素。算术平均法及加权平均法为黑水河中华纹胸鮡栖息地适宜性指数模型预测最优算法。研究结果可为黑水河鱼类栖息地评估提供参考资料, 促进鱼类栖息地保护。

    Abstract:

    Habitat assessment is a prerequisite for in-situ conservation of fish, and appropriate model algorithms is an important basis for improving the prediction accuracy of habitat assessment models. This study aims to identify the optimal algorithm for the habitat suitability index (HSI) model of Glyptothorax sinensis and to scientifically evaluate its suitable habitat distribution. We utilized fishery catch data and 13 environmental factors collected synchronously from the Heishui River from 2018 to 2019. A one-dimensional nonlinear function was employed to fit a single environmental factor curve, and HSI values of G. sinensis were calculated using the maximum value method, minimum value method, arithmetic mean model, geometric mean model, and weighted moving average. The results indicate that among the various model algorithms, the arithmetic mean model and weighted moving average model exhibited the smallest prediction error, while the maximum and minimum value method showed significant prediction error and deviated notably from the actual distribution of G. sinensis. Therefore, caution should be taken when choosing model algorithms. Overall, the HSI index of G. sinensis in the Heishui River shows an upward trend from the upstream to the downstream, with sections S3 and S4 exhibiting HSI values greater than 0.7. Water temperature and elevation are the main driving factors for the spatial distribution differences in G. sinensis habitat. The arithmetic mean model and weighted moving average model are identified as the optimal algorithm for predicting the habitat suitability index of G. sinensis in the Heishui River. The research results can provide reference for the assessment of fish habitats in the Heishui River and promote the protection of fish habitats.

  • 图  1   黑水河中华纹胸鮡及生境因子采样点分布示意图

    Figure  1.   Distribution of sampling sites for G. sinensis and habitat factors in Heishui River

    图  2   黑水河中华纹胸鮡环境因子特征权重值

    Figure  2.   Characteristic weights of environmental factors for G. sinensis in Heishui River

    图  3   黑水河水温、流速、海拔、浊度、溶氧、电导率适宜性曲线(横实线代表SI>0.7, 为生境因子适宜范围)

    Figure  3.   Suitability curves of water temperature, velocity, elevation, turbidity, dissolved oxygen, and conductivity of Heishui River (The horizontal solid line represents SI>0.7, which is the appropriate range of habitat factor)

    图  4   中华纹胸鮡HSI算术平均法预测结果验证

    Figure  4.   Verification of prediction results for G. sinensis by HSI arithmetic mean method

    图  5   黑水河中华纹胸鮡HSI算术平均法预测分布图

    Figure  5.   Distribution map of G. sinensis from Heishui River by HSI weighted average method

    表  1   黑水河环境因子与中华纹胸RAD值相关性分析

    Table  1   Correlation analysis between environmental factors and G. sinensis RAD value in Heishui River

    环境因子
    Environmental factor
    相关系数
    Correlation coefficient
    环境因子
    Environmental factor
    相关系数
    Correlation coefficient
    溶解氧Dissolved oxygen (mg/L) –0.46* 电导率Conductivity (s/m) 0.85**
    水温Water temperature (℃) 0.88** 悬浮物Suspended solids (mg/L) 0.28
    透明度Transparency (m) 0.05 化学需氧量Chemical oxygen demand (mg/L) –0.04
    流速Velocity of flow (m/s) –0.76** 总磷Phosphorus (mg/L) –0.14
    水深Water depth (m) –0.37 氨氮Ammonia nitrogen (mg/L) 0.08
    海拔Altitude (m) –0.87** 浊度Turbidity (ntu) –0.50*
    叶绿素a Chlorophyll a –0.26
    注: * 表示P<0.05存在显著性相关; ** 表示P<0.01存在极显著相关; 下同Note: * indicates significant correlation with P<0.05; ** indicates extremely significant correlation with P<0.01; the same applies below
    下载: 导出CSV

    表  2   黑水河中华纹胸环境因子拟合函数

    Table  2   Environmental factor fitting function of G. sinensis in Heishui River

    环境因子Environmental factor 适宜性指数模型Suitability index model PP-value
    水温Water temperature (℃) y=−0.14+1.86×e(−0.5*[(Tem−20.01)/2.1])^2 **P<0.01
    流速Velocity of flow (m/s) y=0.02+0.96×e(−0.5*[(Vel−0.42)/0.06])^2 *P<0.05
    海拔Altitude (m) y=0.02+1×e(−0.5*[(Alt−723)/73])^2 **P<0.01
    浊度Turbidity (ntu) y=0.06+0.91×e(−0.5*[(Tur−56.36)/6.15])^2 *P<0.05
    溶解氧Dissolved oxygen (mg/L) y=0.09+0.8×e(−0.5*[(Dis−9.04)/0.12])^2 **P<0.01
    电导率Conductivity (s/m) y=0.02+0.82×e(−0.5*[(Con−316.9)/14.27])^2 **P<0.01
    下载: 导出CSV

    表  3   黑水河环境因子及SI曲线预测适宜范围

    Table  3   Suitable range for predicting environmental factors and SI curve of Heishui River

    环境因子
    Environmental factor
    最小值
    Min
    最大值
    Max
    平均值±标准差
    mean±SD
    预测适宜范围
    Scope of suitability
    水温 Water temperature (℃) 14.88 17.85 16.37±0.73 17.44—17.85
    流速 Flow rate (m/s) 0.33 1.20 0.55±0.27 0.36—0.47
    海拔 Altitude (m) 617 1134 834.00±190.94 659—788
    浊度 Turbidity (ntu) 41.20 159.74 81.71±43.80 50.57—57.21
    溶氧 Dissolved oxygen (mg/L) 8.76 9.93 9.31±0.38 8.96—9.12
    电导率 Conductivity (m/s) 203.33 335.50 291.24±38.44 307.85—324.96
    下载: 导出CSV

    表  4   黑水河中华纹胸鮡五种HSI模型算法预测精度

    Table  4   Prediction accuracy of five HSI model algorithms for G. chinensis from Heishuihe River

    算法
    Algorithm
    R2 AIC值
    AIC value
    均方根误差
    RMSE
    P
    P-value
    Max 0.70 –4.31 0.18 **P<0.01
    Min 0.63 –1.12 0.20 **P<0.01
    AMM 0.87 –15.98 0.12 **P<0.01
    GMM 0.79 –9.03 0.15 **P<0.01
    WAM 0.86 –15.22 0.12 **P<0.01
    下载: 导出CSV
  • [1]

    Liu H, Guo C, Qu X, et al. Fish diversity, endemism, threats, and conservation in the Jinsha river basin (Upper Yangtze River), China [J]. North American Journal of Fisheries Management, 2021, 41(4): 967-984. doi: 10.1002/nafm.10441

    [2]

    Yan T, He J, Yang D, et al. Fish community structure and biomass particle-size spectrum in the upper reaches of the Jinsha River (China) [J]. Animals, 2022, 12(23): 3412. doi: 10.3390/ani12233412

    [3]

    Dai L, Wang Y, Dai H, et al. Assessment of environmental flow requirements for four major Chinese carps in the lower reaches of the Jinsha River, southwest China [J]. Frontiers in Ecology and Evolution, 2022(10): 810889. doi: 10.3389/fevo.2022.810889

    [4] 曹文宣. 关于对长江水生态环境状况的评估与考核(序言) [J]. 水生生物学报, 2021, 45(6): 1381.]

    Cao W X. Evaluation and assessment for water ecological environment of Yangtze River (Preface) [J]. Acta Hydrobiologica Sinica, 2021, 45(6): 1381. [

    [5]

    Liao C, Ye S, Zhai D, et al. Tributaries create habitat heterogeneity and enhance fish assemblage variation in one of the largest reservoirs in the world [J]. Hydrobiologia, 2023, 850(19): 4311-4326. doi: 10.1007/s10750-023-05306-3

    [6] 滕航, 田辉伍, 刘寒文, 等. 金沙江下游支流黑水河鱼类资源现状 [J]. 生态学杂志, 2021, 40(5): 1499-1511.]

    Teng H, Tian H W, Liu H W, et al. Fish resources status in Heishui River, a tributary of the lower reaches of Jinsha River [J]. Chinese Journal of Ecology, 2021, 40(5): 1499-1511. [

    [7]

    Yang S, Zhang Z, Wang Y, et al. An improved 3D fish habitat assessment model based on the graph theory algorithm [J]. Ecological Indicators, 2023(148): 110022. doi: 10.1016/j.ecolind.2023.110022

    [8]

    Kuiper S D, Coops N C, Tompalski P, et al. Characterizing stream morphological features important for fish habitat using airborne laser scanning data [J]. Remote Sensing of Environment, 2022(272): 112948. doi: 10.1016/j.rse.2022.112948

    [9]

    Crawford B A, Maerz J C, Moore C T. Expert-informed habitat suitability analysis for at-risk species assessment and conservation planning [J]. Journal of Fish and Wildlife Management, 2020, 11(1): 130-150. doi: 10.3996/092019-JFWM-075

    [10]

    Brownscombe J W, Midwood J D, Cooke S J. Modeling fish habitat: model tuning, fit metrics, and applications [J]. Aquatic Sciences, 2021, 83(3): 44. doi: 10.1007/s00027-021-00797-5

    [11]

    Northrup J M, Vander Wal E, Bonar M, et al. Conceptual and methodological advances in habitat-selection modeling: guidelines for ecology and evolution [J]. Ecological Applications, 2022, 32(1): e02470. doi: 10.1002/eap.2470

    [12] 张康, 张平, 夏德军, 等. 长江江豚对孤立栖息地斑块利用规律研究及潜在因子分析 [J]. 水生生物学报, 2024, 48(10): 1633-1641.]

    Zhang K, Zhang P, Xia D J, et al. Utilization pattern and potential factors of the Yangtze finless porpoise in an isolated habitat patch [J]. Acta Hydrobiologica Sinica, 2024, 48(10): 1633-1641. [

    [13]

    Zhang H, Li S, Liu Y, et al. Assessment of the habitat quality of offshore area in Tongzhou Bay, China: using benthic habitat suitability and the InVEST model [J]. Water, 2022, 14(10): 1574. doi: 10.3390/w14101574

    [14]

    Yu W, Wen J, Chen X, et al. Effects of climate variability on habitat range and distribution of chub mackerel in the East China Sea [J]. Journal of Ocean University of China, 2021, 20(6): 1483-1494. doi: 10.1007/s11802-021-4760-x

    [15]

    Jiang R, Sun H, Li X, et al. Habitat suitability evaluation of Harpadon nehereus in nearshore of Zhejiang province, China [J]. Frontiers in Marine Science, 2022(9): 961735. doi: 10.3389/fmars.2022.961735

    [16] 严鑫, 成必新, 杨绍荣. 鱼类栖息地保护与修复措施研究 [J]. 绿色科技, 2020, 22(18): 16-19.]

    Yan X, Cheng B X, Yang S R. Analysis of domestic status of fish habitat protection and restoration measures [J]. Journal of Green Science and Technology, 2020, 22(18): 16-19. [

    [17]

    Chowdhury M S N, Wijsman J W M, Hossain M S, et al. A verified habitat suitability model for the intertidal rock oyster, Saccostrea cucullata [J]. PLoS One, 2019, 14(6): e0217688. doi: 10.1371/journal.pone.0217688

    [18]

    Lee P Y, Suen J P. Comparing habitat suitability indices (HSIs) based on abundance and occurrence data [J]. North American Journal of Fisheries Management, 2013, 33(1): 89-96. doi: 10.1080/02755947.2012.743933

    [19] 杨志, 龚云, 董纯, 等. 黑水河下游鱼类资源现状及其保护措施 [J]. 长江流域资源与环境, 2017, 26(6): 847-855.]

    Yang Z, Gong Y, Dong C, et al. Fish resource status of the lower reaches of the Heishui river and the measures for their conservation [J]. Resources and Environment in the Yangtze Basin, 2017, 26(6): 847-855. [

    [20] 褚新洛, 郑葆珊, 戴定远. 中国动物志-硬骨鱼纲. 鲇形目 [M]. 北京: 科学出版社, 1999: 133.]

    Zhu X L, Zheng B S, Dai D Y. Fauna Sinica, Osteichthyes, Siluriformes [M]. Beijing: Science Press, 1999: 133. [

    [21] 张力文, 田辉伍, 陈大庆, 等. 长江上游中华纹胸鮡遗传多样性及遗传结构研究 [J]. 淡水渔业, 2020, 50(4): 3-11.]

    Zhang L W, Tian H W, Chen D Q, et al. Genetic diversity and structure of Glyptothorax sinensis in upper Yangtze River [J]. Freshwater Fisheries, 2020, 50(4): 3-11. [

    [22] 李洪池, 龚君华. 雅鲁藏布江土著鮡科鱼类优先保护次序的定量分析研究 [J]. 西藏科技, 2023, 45(8): 3-8.]

    Li H C, Gong J H. Quantitative analysis of priority protection order of indigenous fishes in Yarlung Zangbo River [J]. Xizang Science and Technology, 2023, 45(8): 3-8. [

    [23] 周伟, 李明会. 鮡科鱼类多样性与栖境的关系 [J]. 云南农业大学学报, 2006, 21(6): 811-815.]

    Zhou W, Li M H. The study on relationship between biodiversity and habitat of catfish family Sisoridae (Siluriformes) in China [J]. Journal of Yunnan Agricultural University, 2006, 21(6): 811-815. [

    [24] 曾旭, 章守宇, 汪振华, 等. 马鞍列岛褐菖鲉Sebasticus marmoratus栖息地适宜性评价 [J]. 生态学报, 2016, 36(12): 3765-3774.]

    Zeng X, Zhang S Y, Wang Z H, et al. Habitat suitability assessment of Sebasticus marmoratus in the rocky reef region of the Ma’an Archipelago [J]. Acta Ecologica Sinica, 2016, 36(12): 3765-3774. [

    [25] 易雨君, 张尚弘. 水生生物栖息地模拟 [M]. 北京: 科学出版社, 2019: 147-148.]

    Yi Y J, Zhang S H. Simulation of Aquatic Habitats [M]. Beijing: Science Press, 2019: 147-148. [

    [26] 武智, 李跃飞, 朱书礼, 等. 基于渔业声学调查的珠江东塔产卵场鱼类栖息地适宜性研究 [J]. 南方水产科学, 2023, 19(3): 11-18.]

    Wu Z, Li Y F, Zhu S L, et al. Fish habitat suitability analysis of Dongta spawning ground of Pearl River based on fisheries acoustic survey [J]. South China Fisheries Science, 2023, 19(3): 11-18. [

    [27] 何术锋, 唐磊, 王骏, 等. 水坝拆除对黑水河鱼类群落结构和空间分布的影响 [J]. 生态学报, 2021, 41(9): 3525-3534.]

    He S F, Tang L, Wang J, et al. Effects of dam removal on fish community structure and spatial distribution in Heishui River [J]. Acta Ecologica Sinica, 2021, 41(9): 3525-3534. [

    [28] 何术锋, 张辉, 杨培思, 等. 黑水河下游岸边带植物群落空间格局与相对水位响应关系 [J]. 水生态学杂志, 2021, 42(5): 127-136.]

    He S F, Zhang H, Yang P S, et al. Relationship between spatial pattern of riparian vegetation and relative water level in lower Heishui River [J]. Journal of Hydroecology, 2021, 42(5): 127-136. [

    [29] 陈大庆. 长江水生生物资源监测手册 [M]. 北京: 中国农业出版社, 2021.]

    Chen D Q. Handbook of Monitoring Aquatic Biological Resources in the Yangtze River [M]. Beijing: China Agriculture Press, 2021. [

    [30] 丁瑞华. 四川鱼类志 [M]. 成都: 四川科学技术出版社, 1994: 478-483.]

    Ding R H. The Fishes of Sichuan, China [M]. Chengdu: Sichuan Publishing House of Science & Technology, 1994: 478-483. [

    [31] 周为峰, 李英雪, 程田飞, 等. 栖息地适宜性指数模型在鱼类生境评价中的应用进展 [J]. 渔业信息与战略, 2020, 35(1): 48-54.]

    Zhou W F, Li Y X, Cheng T F, et al. Progress of habitat suitability index model in fish habitat assessment [J]. Fishery Information & Strategy, 2020, 35(1): 48-54. [

    [32] 龚彩霞, 陈新军, 高峰, 等. 栖息地适宜性指数在渔业科学中的应用进展 [J]. 上海海洋大学学报, 2011, 20(2): 260-269.]

    Gong C X, Chen X J, Gao F, et al. Review on habitat suitability index in fishery science [J]. Journal of Shanghai Ocean University, 2011, 20(2): 260-269. [

    [33] 严鑫, 成必新, 杨少荣. 山区河流生态修复案例: 黑水河生态环境问题诊断及对策[C]. 中国环境科学学会2021年科学技术年会-环境工程技术创新与应用分会场论文集(一). 北京: 《工业建筑》杂志社有限公司, 2021: 105-112.]

    Yan X, Cheng B X, Yang S R. An Ecological-Restoration Case Study of Mountain River: Analysis Andrestoration Measures of Ecoenvironmental Issues in the Heishuihe River [C]. Proceedings of the 2021 Science and Technology Annual Meeting of the Chinese society of Environmental Sciences-Environmental Engineering Technology Innov-ation and Application Branch (1). Beijing: Industrial Construction Magazine Agency Co., Led, 2021: 105-112. [

    [34] 李文, 蒲艳, 田辉伍, 等. 黑水河红尾副鳅时空分布特征及其最适生境条件 [J]. 中国水产科学, 2023, 30(4): 515-524.] doi: 10.12264/JFSC2023-0019

    Li W, Pu Y, Tian H W, et al. Spatial and temporal distribution characteristics and optimum habitat conditions of Paracobitis variegatus in Heishui River [J]. Journal of Fishery Sciences of China, 2023, 30(4): 515-524. [ doi: 10.12264/JFSC2023-0019

    [35] 魏念, 余丽梅, 杜开开, 等. 三峡库区干流浮游植物群落结构及环境影响因子相关性分析 [J]. 长江流域资源与环境, 2022, 31 (3): 615-623.]

    Wei N, Yu L M, Du K K, et al. Phytoplankton communities and correlations analysis of environmental factorsin mainstream of Three Gorges Reservoir [J]. Resources and Environment in the Yangtze Basin, 2022, 31 (3): 615-623. [

    [36] 康鑫, 张远, 张楠, 等. 太子河洛氏鱥幼鱼栖息地适宜度评估 [J]. 生态毒理学报, 2011, 6(3): 310-320.]

    Kang X, Zhang Y, Zhang N, et al. Assessment of habitat suitability of juvenile Phoxinus lagowskii in Taizi River [J]. Asian Journal of Ecotoxicology, 2011, 6(3): 310-320. [

    [37]

    Jiao S, Chen W, Wang J, et al. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems [J]. Microbiome, 2018, 6(1): 146. doi: 10.1186/s40168-018-0526-0

    [38]

    Wang D, Yu J, Lin Z, et al. Spatial-temporal distribution of fish larvae in the Pearl River Estuary based on habitat suitability index model [J]. Biology, 2023, 12(4): 603. doi: 10.3390/biology12040603

    [39] 王嘉龙, 刘慧, 朱国平. 南极半岛周边海域南极磷虾栖息地适应性 [J]. 水产学报, 2024, 48(6): 48-57.]

    Wang J L, Liu H, Zhu G P. Habitat suitability of Antarctic krill (Euphausia superba) in the Antarctic Peninsula [J]. Journal of Fisheries of China, 2024, 48(6): 48-57. [

    [40]

    Xue Y, Guan L, Tanaka K, et al. Evaluating effects of rescaling and weighting data on habitat suitability modeling [J]. Fisheries Research, 2017(188): 84-94. doi: 10.1016/j.fishres.2016.12.001

    [41] 柳晓雪, 高春霞, 田思泉, 等. 基于栖息地适宜指数的浙江南部近海黄鲫最适栖息地分布 [J]. 中国水产科学, 2020, 27(12): 1485-1495.]

    Liu X X, Gao C X, Tian S Q, et al. Distribution of Setipinna taty optimal habitats in the South inshore area of Zhejiang Province based on the habitat suitability index [J]. Journal of Fishery Sciences of China, 2020, 27(12): 1485-1495. [

    [42] 朱承之, 张云雷, 赛可, 等. 生物和非生物因子对秋季海州湾长蛇鲻栖息地适宜性的影响 [J]. 海洋学报, 2020, 42(6): 44-51.]

    Zhu C Z, Zhang Y L, Sai K, et al. Impacts of biotic and abiotic factors on the habitat suitability of Saurida elongata during autumn in the Haizhou Bay, China [J]. Haiyang Xuebao, 2020, 42(6): 44-51. [

    [43] 张亚男, 官文江, 李阳东. 印度洋长鳍金枪鱼栖息地指数模型的构建与验证 [J]. 上海海洋大学学报, 2020, 29(2): 268-279.] doi: 10.12024/jsou.20190202533

    Zhang Y N, Guan W J, Li Y D. Construction and verification of a habitat suitability index model for the Indian Ocean Albacore tuna [J]. Journal of Shanghai Ocean University, 2020, 29(2): 268-279. [ doi: 10.12024/jsou.20190202533

    [44] 邹易阳, 薛莹, 麻秋云, 等. 应用栖息地适宜性指数研究海州湾小黄鱼的空间分布特征 [J]. 中国海洋大学学报(自然科学版), 2016, 46(8): 54-63.]

    Zou Y Y, Xue Y, Ma Q Y, et al. Spatial distribution of Larimichthys polyactis in Haizhou Bay based on habitat suitability index [J]. Periodical of Ocean University of China, 2016, 46(8): 54-63. [

    [45] 杨明, 丁福江. 应用多模型方法估算池养条件下罗氏沼虾的生长参数 [J]. 江苏海洋大学学报(自然科学版), 2023, 32(3): 1-8.]

    Yang M, Ding F J. Estimation of growth parameter of the giant greshwater prawn Macrobrachium rosenbergii under pond culture conditions with a multi-model approach [J]. Journal of Jiangsu Ocean University (Natural Science Edition), 2023, 32(3): 1-8. [

    [46]

    Javanmard A, Montanari A. Confidence intervals and hypothesis testing for high-dimensional regression [J]. Journal of Machine Learning Research, 2014, 15(1): 2869-2909.

    [47]

    Shim T, Kim Z, Seo D, et al. Integrating hydraulic and physiologic factors to develop an ecological habitat suitability model [J]. Environmental Modelling & Software, 2020(131): 104760.

    [48]

    Layher W G. Spotted Bass Habitat Evaluation Using an Unweighted Geometric Mean to Determine HSI Values [C]. Proceedings of the Oklahoma Academy of Science, 1985: 11-18.

    [49] 牛明香, 李永涛, 王俊, 等. 基于HSI的黄河口近岸海域鮻鱼卵、仔稚鱼栖息地适宜性研究 [J]. 海洋环境科学, 2023, 42(5): 766-773.]

    Niu M X, Li Y T, Wang J, et al. Habitat suitability of mullet Liza haematocheila ichthyoplankton in coastal waters of the Yellow River Estuary using HSI method [J]. Marine Environmental Science, 2023, 42(5): 766-773. [

    [50]

    Brooks Robert P. Improving habitat suitability index models [J]. Wildlife Society Bulletin, 1997, 25(1): 163-167.

    [51]

    Tian S, Chen X, Chen Y, et al. Evaluating habitat suitability indices derived from CPUE and fishing effort data for Ommatrephes bratramii in the northwestern Pacific Ocean [J]. Fisheries Research, 2009, 95(2/3): 181-188.

    [52]

    Nukazawa K, Shiraiwa J I, Kazama S. Evaluations of seasonal habitat variations of freshwater fishes, fireflies, and frogs using a habitat suitability index model that includes river water temperature [J]. Ecological Modelling, 2011, 222(20/21/22): 3718-3726.

    [53]

    Reza M I H, Abdullah S A, Bin Md Nor S, et al. Integrating GIS and expert judgment in a multi-criteria analysis to map and develop a habitat suitability index: a case study of large mammals on the Malayan Peninsula [J]. Ecological Indicators, 2013(34): 149-158. doi: 10.1016/j.ecolind.2013.04.023

    [54]

    Bondi C A, Yarnell S M, Lind A J, et al. Transferability of habitat suitability criteria for a stream breeding frog (Rana boylii) in the Sierra Nevada, California [J]. Herpetological Conservation and Biology, 2013, 8(1): 88-103.

    [55]

    Runnebaum J, Guan L, Cao J, et al. Habitat suitability modeling based on a spatiotemporal model: an example for cusk in the gulf of Maine [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75(11): 1784-1797. doi: 10.1139/cjfas-2017-0316

    [56]

    Conallin J, Olsen M, Boegh E, et al. Habitat suitability indices development in Denmark: are international indices applicable under small lowland stream conditions [J]? International Journal of River Basin Management, 2010, 8(2): 151-160. doi: 10.1080/15715121003714936

    [57]

    Radinger J, Kail J, Wolter C. Differences among expert judgments of fish habitat suitability and implications for river management [J]. River Research and Applications, 2017, 33(4): 538-547. doi: 10.1002/rra.3109

    [58]

    Terrell J W, Carpenter J. Selected Habitat Suitability Index Model Evaluations [M]. Washington, DC: US Department of the Interior, US Geological Survey, 1997: 25, 28.

    [59]

    Boudreault J, Bergeron N E, St-Hilaire A, et al. A new look at habitat suitability curves through functional data analysis [J]. Ecological Modelling, 2022(467): 109905. doi: 10.1016/j.ecolmodel.2022.109905

    [60]

    Hossain M S, Sarker S, Sharifuzzaman S M, et al. Habitat modelling of juvenile Hilsa Tenualosa ilisha (Clupeiformes) in the coastal ecosystem of the northern Bay of Bengal, Bangladesh [J]. Journal of Ichthyology, 2014, 54(2): 203-213. doi: 10.1134/S0032945214020040

    [61]

    Wegscheider B, Linnansaari T, Ndong M, et al. Fish habitat modelling in large rivers: combining expert opinion and hydrodynamic modelling to inform river management [J]. Journal of Ecohydraulics, 2024, 9(1): 68-86. doi: 10.1080/24705357.2021.1938251

    [62]

    Collier J J, Chiotti J A, Boase J, et al. Assessing habitat for lake sturgeon (Acipenser fulvescens) reintroduction to the Maumee River, Ohio using habitat suitability index models [J]. Journal of Great Lakes Research, 2022, 48(1): 219-228. doi: 10.1016/j.jglr.2021.11.006

    [63]

    Crance J H, Center N E. Guidelines for Using the Delphi Technique to Develop Habitat Suitability Index Curves [M]. Washington, DC: National Ecology Center, Division of Wildlife and Contaminant Research, Fish and Wildlife Service, U. S. Dept. of the Interior, 1987: 1-2.

    [64] 李建生, 袁兴伟, 张辉. 东海北部和黄海南部细纹狮子鱼栖息地分布的季节变化 [J]. 海洋渔业, 2023, 45 (6): 654-661.]

    Li J S, Yuan X W, Zhang H, Seasonal variation in habitat distribution of Liparis tanakae in the northern East China Sea and southern Yellow Sea [J]. Marine Fisheries, 2023, 45 (6): 654-661. [

    [65] 陈艺璇, 张云雷, 黄锘妍, 等. 海州湾鹰爪虾栖息地适宜性研究 [J]. 海洋学报, 2021, 43(4): 84-95.]

    Chen Y X, Zhang Y L, Huang N Y, et al. Study on the habitat suitability of Trachypenaeus curvirostris in the Haizhou Bay [J]. Acta Oceanologica Sinica, 2021, 43(4): 84-95. [

    [66]

    Montesinos López O A, Montesinos López A, Crossa J. Overfitting, Model Tuning, and Evaluation of Prediction Performance [M]. Multivariate Statistical Machine Learning Methods for Genomic Prediction. Cham: Springer International Publishing, 2022: 109-139.

    [67] 杨刚, 张涛, 庄平, 等. 长江口棘头梅童鱼幼鱼栖息地的初步评估 [J]. 应用生态学报, 2014, 25(8): 2418-2424.]

    Yang G, Zhang T, Zhuang P, et al. Preliminary assessment of habitat of juvenile Collichthys lucidus in the Yangtze estuary [J]. Chinese Journal of Applied Ecology, 2014, 25(8): 2418-2424. [

    [68] 严鑫, 卿杰, 成必新, 等. 基于原位观测的金沙江下游黑水河鱼类栖息地河床底质和水流特征分析 [J]. 环境工程, 2023, 41(S2): 819-823.]

    Yan X, Qing J, Cheng B X, et al. Characteristic analysis of riverbed substrate and flow condition of Heishuihe River fish habitat, a tributary of the lower reaches of Jinshajiang river [J]. Environmental Engineering, 2023, 41(S2): 819-823. [

    [69]

    Faucheux N M, Miranda L E, Taylor J M, et al. Impact of dams on stream fish diversity: a different result [J]. Diversity, 2023, 15(6): 728. doi: 10.3390/d15060728

    [70]

    Pander J, Nagel C, Geist J. Integration of constructed floodplain ponds into nature-like fish passes supports fish diversity in a heavily modified water body [J]. Water, 2021, 13(8): 1018. doi: 10.3390/w13081018

    [71]

    Nakamoto B J, Jeffres C A, Corline N J, et al. Multiple trophic pathways support fish on floodplains of California’s Central Valley [J]. Journal of Fish Biology, 2023, 102(1): 155-171. doi: 10.1111/jfb.15248

图(5)  /  表(4)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-14
  • 修回日期:  2024-10-29
  • 网络出版日期:  2024-11-28
  • 刊出日期:  2025-04-14

目录

    /

    返回文章
    返回