大口黑鲈养殖塘水−气界面CO2、CH4、N2O排放特征及其影响因素

卢慧贤, 李诗琦, 李民敬, 郭超, 覃丽蓉, 张堂林, 刘家寿, 李为

卢慧贤, 李诗琦, 李民敬, 郭超, 覃丽蓉, 张堂林, 刘家寿, 李为. 大口黑鲈养殖塘水−气界面CO2、CH4、N2O排放特征及其影响因素[J]. 水生生物学报, 2025, 49(4): 042508. DOI: 10.7541/2025.2024.0276
引用本文: 卢慧贤, 李诗琦, 李民敬, 郭超, 覃丽蓉, 张堂林, 刘家寿, 李为. 大口黑鲈养殖塘水−气界面CO2、CH4、N2O排放特征及其影响因素[J]. 水生生物学报, 2025, 49(4): 042508. DOI: 10.7541/2025.2024.0276
LU Hui-Xian, LI Shi-Qi, LI Min-Jing, GUO Chao, QIN Li-Rong, ZHANG Tang-Lin, LIU Jia-Shou, LI Wei. EMISSION CHARACTERISTIC AND INFLUENCING FACTOR OF CO2, CH4, AND N2O FROM WATER-AIR INTERFACE OF LARGEMOUTH BASS CULTURE POND[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(4): 042508. DOI: 10.7541/2025.2024.0276
Citation: LU Hui-Xian, LI Shi-Qi, LI Min-Jing, GUO Chao, QIN Li-Rong, ZHANG Tang-Lin, LIU Jia-Shou, LI Wei. EMISSION CHARACTERISTIC AND INFLUENCING FACTOR OF CO2, CH4, AND N2O FROM WATER-AIR INTERFACE OF LARGEMOUTH BASS CULTURE POND[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(4): 042508. DOI: 10.7541/2025.2024.0276
卢慧贤, 李诗琦, 李民敬, 郭超, 覃丽蓉, 张堂林, 刘家寿, 李为. 大口黑鲈养殖塘水−气界面CO2、CH4、N2O排放特征及其影响因素[J]. 水生生物学报, 2025, 49(4): 042508. CSTR: 32229.14.SSSWXB.2024.0276
引用本文: 卢慧贤, 李诗琦, 李民敬, 郭超, 覃丽蓉, 张堂林, 刘家寿, 李为. 大口黑鲈养殖塘水−气界面CO2、CH4、N2O排放特征及其影响因素[J]. 水生生物学报, 2025, 49(4): 042508. CSTR: 32229.14.SSSWXB.2024.0276
LU Hui-Xian, LI Shi-Qi, LI Min-Jing, GUO Chao, QIN Li-Rong, ZHANG Tang-Lin, LIU Jia-Shou, LI Wei. EMISSION CHARACTERISTIC AND INFLUENCING FACTOR OF CO2, CH4, AND N2O FROM WATER-AIR INTERFACE OF LARGEMOUTH BASS CULTURE POND[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(4): 042508. CSTR: 32229.14.SSSWXB.2024.0276
Citation: LU Hui-Xian, LI Shi-Qi, LI Min-Jing, GUO Chao, QIN Li-Rong, ZHANG Tang-Lin, LIU Jia-Shou, LI Wei. EMISSION CHARACTERISTIC AND INFLUENCING FACTOR OF CO2, CH4, AND N2O FROM WATER-AIR INTERFACE OF LARGEMOUTH BASS CULTURE POND[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(4): 042508. CSTR: 32229.14.SSSWXB.2024.0276

大口黑鲈养殖塘水−气界面CO2、CH4、N2O排放特征及其影响因素

基金项目: 国家重点研发计划(2023YFD2400505); 吉安市创新类人才项目(jasb202310324); 黄河三角洲产业领军人才工程项目(DYRC20200215)资助
详细信息
    作者简介:

    卢慧贤(1998—), 女, 硕士研究生; 主要研究方向为渔业生态学。E-mail: 13532270697@163.com

    通信作者:

    郭超(1993—), 男, 博士后; 研究方向为渔业生态学。E-mail: guochao@ihb.ac.cn

    李为(1983—), 男, 研究员; 主要研究方向为渔业生态学。E-mail: liwei@ihb.ac.cn *共同通信作者

  • 中图分类号: Q178.1

EMISSION CHARACTERISTIC AND INFLUENCING FACTOR OF CO2, CH4, AND N2O FROM WATER-AIR INTERFACE OF LARGEMOUTH BASS CULTURE POND

Funds: Supported by the National Key R & D Program of China (2023YFD2400505); the Innovative Talents Project of Jian City (jasb202310324); the Yellow River Delta Industry Leading Talent Project (DYRC20200215)
    Corresponding author:
  • 摘要:

    为探究大口黑鲈(Micropterus salmoides)养殖系统温室气体的排放特征和规律, 于2023年7—10月采用静态箱−气相色谱法对大口黑鲈养殖塘水−气界面CO2、CH4、N2O排放通量进行了测定, 并结合水体表层环境因子和氮磷营养变化分析了其主要影响因素。结果表明: 监测期间大口黑鲈养殖塘水−气界面CO2、CH4、N2O的排放通量均值分别为(241.4±14.5)、(1.38±0.31)和(0.24±0.04) mg/(m2·h), 养殖塘整体上表现为温室气体排放源。皮尔森分析结果表明CO2排放通量与水温(WT)、温度(T)、叶绿素a (Chl.a)、压强(P)和pH呈显著正相关, 与氨氮(${\rm{NH}}^+_4 $-N)呈显著负相关; N2O排放通量与总氮(TN)、亚硝态氮(${\rm{NO}}^-_2 $-N)、硝态氮(${\rm{NO}}^-_3 $-N)和溶解氧(DO)呈显著正相关, 与WT呈显著负相关; CH4排放通量与环境因子无显著相关关系。冗余分析表明WT是影响水−气界面CO2、CH4、N2O排放的关键环境因子。在90d的重要养殖期内, 大口黑鲈养殖塘百年全球增温潜势为7.74×103 kg/hm2, 暗示大口黑鲈池塘养殖或有促进温室效应的潜力。

    Abstract:

    Largemouth bass (Micropterus salmoides) has become one of the important species cultured in ponds across China, yet there are few studies on greenhouse gas fluxes at the water-gas interface in largemouth bass culture ponds. In this study, we investigated the characteristics and patterns of greenhouse gas emissions in largemouth bass culture ponds located in Daye City, Hubei Province. The CO2, CH4, and N2O emission fluxes at the water-air interface were measured by static box-gas chromatography from July to October 2023. Additionally, we analyzed the main influencing factors by examining changes in surface environmental factors and nutrients levels. The results showed that the mean emission fluxes of CO2, CH4, and N2O at the water-air interface of the largemouth bass culture ponds were (241.0±14.5), (1.38±0.31), and (0.24±0.04) mg/m2·h during the monitoring period, respectively, indicating that the largemouth bass culture ponds are a net source of greenhouse gas emission. Pearson correlation analysis showed that CO2 emission fluxes were positively correlated with WT, T, Chl.a, P, and pH, and negatively correlated with ${\rm{NH}}^+_4 $-N. N2O emission flux was positively correlated with TN, ${\rm{NO}}^-_2 $-N, ${\rm{NO}}^-_3 $-N, and DO, and negatively correlated with WT. No significant correlation was found between CH4 emission flux and environmental factors. Redundancy analysis indicated that WT is the key environmental factor affecting the emission of CO2, CH4, and N2O at the water-air interface. During the 90-day growth cycle, the 100-year global warming potential of largemouth bass aquaculture pond was 7.74×103 kg/hm2, suggesting that pond culture of largemouth bass may have the potential to promote the greenhouse effect.

  • 图  1   不同监测时间点大口黑鲈养殖塘的氮、磷变化特征

    Figure  1.   Characteristics of nitrogen and phosphorus in ponds of Micropterus salmoides culture at different monitoring times

    图  2   不同监测时间点大口黑鲈养殖塘的叶绿素a变化特征

    Figure  2.   Characteristics of chlorophylla content in ponds of Micropterus salmoides culture at different monitoring times

    图  3   不同监测时间点大口黑鲈养殖塘水−气界面CO2、CH4、N2O排放特征

    Figure  3.   Characteristics of CO2, CH4, and N2O emissions at the water-gas interface in ponds of Micropterus salmoides culture at different monitoring times

    图  4   大口黑鲈养殖塘水−气界面CO2、CH4、N2O通量与环境因子的Pearson相关分析

    Figure  4.   Mantle analysis of CO2, CH4, and N2O fluxes at the water-gas interface and environmental factors in ponds of Micropterus salmoides culture

    图  5   大口黑鲈养殖塘水−气界面CO2、CH4、N2O通量与环境因子的冗余分析

    Figure  5.   Redundancy analysis of CO2, CH4, and N2O fluxes at the water-gas interface and environmental factors in ponds of Micropterus salmoides culture

    图  6   大口黑鲈养殖塘水−气界面CO2、CH4、N2O通量与环境因子层次分割

    Figure  6.   Hierarchical segmentation of CO2, CH4, and N2O fluxes at the water-gas interface and environmental factors in ponds of Micropterus salmoides culture

    表  1   不同监测时间点大口黑鲈养殖塘的气候因子变化特征

    Table  1   Characteristics of climatic factors in ponds of Micropterus salmoides culture at different monitoring times

    指标Parameter 采样日期Sampling date
    7—29 8—12 8—27 9—11 9—27 10—11 10—26
    温度T (℃) 31.7±0.8ab 36.8±1.3a 28.0±1.4abc 37.6±1.3a 25.6±0.9bc 25.9±1.7bc 20.3±1.1c
    风速U (m/s) 1.41±0.18 ab 1.78±0.31 ab 2.04±0.32 ab 1.57±0.28 ab 0.88±0.15b 1.00±0.20b 2.82±0.30a
    压强P (hPa) 999.4±0.1d 1001.6±0.2cd 1009.1.±0.2abc 1006.6±0.4bcd 1005.9±0.2ab 1014.3±3.1ab 1024.7±0.4a
    注: 同一行中平均值上标有不同字母表示差异显著(P<0.05); 下同Note: Means with different superscript letters are significantly different from each other in the same row (P<0.05); The same applies below
    下载: 导出CSV

    表  2   不同监测时间点大口黑鲈养殖塘的水质理化因子变化特征

    Table  2   Characteristics of water quality physicochemical factors in ponds of Micropterus salmoides culture at different monitoring times

    指标Parameter 采样日期Sampling date
    7—29 8—12 8—27 9—11 9—27 10—11 10—26
    水温WT (℃) 31.3±0.1ab 33.6±0.1a 26.9±0.1bc 31.1±0.2ab 25.3±0.1bcd 22.6±0.2cd 19.4±0.1d
    溶解氧DO (mg/L) 4.75±0.36ab 5.79±0.30a 5.94±0.46a 5.89±0.44a 4.02±0.19b 5.58±0.43ab 5.96±0.38a
    电导率Cond (μS/cm) 577.2±16.1ab 677.6±27.9a 571.7±20.2abc 482.7±60.6bc 599.2±14.0ab 590.9±11.2ab 455.6±4.4c
    pH 8.36±0.05ab 8.38±0.06 ab 8.24±0.03b 8.65±0.06a 9.05±0.19a 8.59±0.07a 8.46±0.08ab
    下载: 导出CSV

    表  3   大口黑鲈养殖池塘在90d实验期间的CO2、CH4和N2O累积排放量、总二氧化碳当量和增温潜势

    Table  3   Cumulative emissions of CO2, CH4, and N2O, total CO2 equivalent and global warming potential (GWP) in ponds of Micropterus salmoides culture in 90d experiment

    时间Time CO2累积排放量
    CO2 cumulative emission (kg/hm2)
    CH4累积排放量
    CH4 cumulative emission (kg/hm2)
    N2O累积排放量
    N2O cumulative emission (kg/hm2)
    7-29—
    8-12
    840.7 2.99 0.20
    8-12—
    8-27
    1101.2 7.13 0.18
    8-27—
    9-11
    1138.2 9.25 0.68
    9-11—
    9-27
    911.4 6.17 0.65
    9-27—
    10-11
    633.0 2.56 0.99
    10-11—
    10-26
    630.3 3.94 1.98
    监测期间累积排
    放量
    5257.8 32.04 4.68
    二氧化碳排放当量(kg/hm2) 5257.8 1089.4 1394.6
    全球增温潜势GWP (kg/hm2) 7741.8
    注: GWP以CO2当量计Note: GWP is measured in CO2 equivalent
    下载: 导出CSV

    表  4   我国不同类型养殖塘的CO2、CH4、N2O通量比较

    Table  4   Comparison of CO2, CH4, and N2O fluxes in different types of ponds in China

    养殖塘类型
    Type of aquaculture pond
    位置
    Location
    观测时间
    Observation
    CO2排放通量
    CO2 emission flux [mg/(m2·h)]
    CH4排放通量
    CH4 emission flux [mg/(m2·h)]
    N2O排放通量
    N2O emission flux [mg/(m2·h)]
    参考文献
    Reference
    大口黑鲈 湖北省大冶市 2023.7—2023.10 241.0 1.38 0.24 本研究
    草鱼−对虾 福建闽江河口 2011.9—2012.2 21.0 3.15 0.02 [12]
    南美白对虾 福建闽江河口 2011.9—2011.11 20.8 19.95 0.01 [31]
    南美白对虾 福建闽江河口 2016.5—2017.3 18.0 / / [44]
    草鱼−鲢 江苏省太湖地区 2016.3—2017.3 / 0.73 / [42]
    中华绒螯蟹−无水草 江苏省太湖地区 2016.3—2017.3 / 0.61 / [42]
    中华绒螯蟹−有水草 江苏省太湖地区 2016.3—2017.3 / 0.54 / [42]
    凡纳滨对虾−硬壳蛤 山东省东营市 2021.5—2021.9 –12.7 / / [40]
    水蕹菜−中华绒螯蟹 江苏省苏州市 2018.4—2018.11 / 2.12 0.38 [23]
    水稻−中华绒螯蟹 江苏省苏州市 2018.4—2018.11 / 2.08 0.48 [23]
    注: “/”表示文献中没有相关数据Note: “/” indicates no relevant data in the literature
    下载: 导出CSV
  • [1]

    Waldemer C, Koschorreck M. Spatial and temporal variability of greenhouse gas ebullition from temperate freshwater fish ponds [J]. Aquaculture, 2023(574): 739656. doi: 10.1016/j.aquaculture.2023.739656

    [2]

    Mosier A R. Soil processes and global change [J]. Biology and Fertility of Soils, 1998, 27(3): 221-229. doi: 10.1007/s003740050424

    [3]

    National Oceanic and Atmospheric (NOAA). Carbon cycle greenhouse gases [EB/OL]. 2023. Available in: https://www.esrl.noaa.gov/gmd/ccgg/.

    [4]

    Raymond P A, Hartmann J, Lauerwald R, et al. Global carbon dioxide emissions from inland waters [J]. Nature, 2013, 503(7476): 355-359. doi: 10.1038/nature12760

    [5]

    Peacock M, Audet J, Bastviken D, et al. Small artificial waterbodies are widespread and persistent emitters of methane and carbon dioxide [J]. Global Change Biology, 2021, 27(20): 5109-5123. doi: 10.1111/gcb.15762

    [6]

    Yang P, Yang H, Lai D Y F, et al. Large contribution of non-aquaculture period fluxes to the annual N2O emissions from aquaculture ponds in Southeast China [J]. Journal of Hydrology, 2020(582): 124550. doi: 10.1016/j.jhydrol.2020.124550

    [7] 周梅, 叶丽菲, 张超, 等. 广东新丰江水库表层水体CO2分压及其影响因素 [J]. 湖泊科学, 2018, 30(3): 770-781.] doi: 10.18307/2018.0319

    Zhou M, Ye L F, Zhang C, et al. Partial pressure of carbon dioxide in the Xinfengjiang Reservoir of Guangdong Province and its influencing factors [J]. Journal of Lake Sciences, 2018, 30(3): 770-781. [ doi: 10.18307/2018.0319

    [8]

    Tong C, Bastviken D, Tang K W, et al. Annual CO2 and CH4 fluxes in coastal earthen ponds with Litopenaeus vannamei in Southeastern China [J]. Aquaculture, 2021(545): 737229. doi: 10.1016/j.aquaculture.2021.737229

    [9]

    Yuan J, Xiang J, Liu D, et al. Rapid growth in greenhouse gas emissions from the adoption of industrial-scale aquaculture [J]. Nature Climate Change, 2019(9): 318-322. doi: 10.1038/s41558-019-0425-9

    [10]

    Zhang Y, Tang K W, Yang P, et al. Assessing carbon greenhouse gas emissions from aquaculture in China based on aquaculture system types, species, environmental conditions and management practices [J]. Agriculture, Ecosystems & Environment, 2022(338): 108110.

    [11] 宋红丽, 刘兴土, 文波龙. 黄河三角洲养殖塘水−气界面CO2、CH4和N2O通量特征 [J]. 生态环境学报, 2017, 26(9): 1554-1561.]

    Song H L, Liu X T, Wen B L. Greenhouse gases fluxes at water-air interface of aquaculture ponds in the Yellow River estuary [J]. Ecology and Environmental Sciences, 2017, 26(9): 1554-1561. [

    [12] 杨平, 仝川, 何清华, 等. 闽江口鱼虾混养塘水−气界面温室气体通量及主要影响因子 [J]. 环境科学学报, 2013, 33(5): 1493-1503.]

    Yang P, Tong C, He Q H, et al. Greenhouse gases fluxes at water-air interface of aquaculture ponds and influencing factors in the Min River estuary [J]. Acta Scientiae Circumstantiae, 2013, 33(5): 1493-1503. [

    [13]

    Fang X, Zhao J, Wu S, et al. A two-year measurement of methane and nitrous oxide emissions from freshwater aquaculture ponds: Affected by aquaculture species, stocking and water management [J]. Science of the Total Environment, 2022(813): 151863. doi: 10.1016/j.scitotenv.2021.151863

    [14]

    Yang P, Wang D Q, Lai D, et al. Spatial variations of N2O fluxes across the water-air interface of mariculture ponds in a subtropical estuary in Southeast China [J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(9): e2019JG005605. doi: 10.1029/2019JG005605

    [15]

    Stankus A. State of world aquaculture 2020 and regional reviews: FAO webinar series [J]. FAO Aquaculture Newsletter, 2021(63): 17-18.

    [16] 农业农村部渔业渔政管理局. 2023中国渔业统计年鉴 [R]. 北京: 中国农业出版社, 2023: 21-25.]

    Fishery Administration of Ministry of Agriculture and Rural Affairs. China Fishery Statistical Yearbook [R]. Beijing: China Agriculture Press, 2023: 21-25. [

    [17]

    Zhu L, Che X, Liu H, et al. Greenhouse gas emissions and comprehensive greenhouse effect potential of Megalobrama amblycephala culture pond ecosystems in a 3-month growing season [J]. Aquaculture International, 2016, 24(4): 893-902. doi: 10.1007/s10499-015-9959-7

    [18] 安桐彤, 许潇方, 高强, 等. 我国养殖水体N2O排放特征及其影响因素研究进展 [J]. 生态学杂志, 2021, 40(1): 266-277.]

    An T T, Xu X F, Gao Q, et al. Spatiotemporal distribution and the influencing factors of nitrous oxide emissions from aquaculture water in China: a review [J]. Chinese Journal of Ecology, 2021, 40(1): 266-277. [

    [19]

    Tidwell J H, Coyle S D, Bright L A, et al. Effect of water temperature on growth, survival, and biochemical composition of largemouth bass Micropterus salmoides [J]. Journal of the World Aquaculture Society, 2003, 34(2): 175-183. doi: 10.1111/j.1749-7345.2003.tb00054.x

    [20]

    Park J, Renukdas N, Luna T, et al. The effects of biomass density on size variability and growth performance of juvenile largemouth bass, Micropterus salmoides, in a semi-closed recirculating system [J]. Journal of the World Aquaculture Society, 2015, 46(3): 283-291. doi: 10.1111/jwas.12194

    [21] 张政, 刘梅, 周聃, 等. 我国淡水增养殖系统温室气体排放的时空特征研究进展 [J]. 广东海洋大学学报, 2023, 43(6): 153-162.]

    Zhang Z, Liu M, Zhou D, et al. Spatial and temporal characteristics of greenhouse gas emissions from freshwater aquaculture systems in China [J]. Journal of Guangdong Ocean University, 2023, 43(6): 153-162. [

    [22] 国家环境保护总局水和废水监测分析方法(第四版) [M]. 北京: 中国环境出版社, 2002: 243-670.]

    State Environmental Protection Administration. Monitoring and Analysis Method of Water and Wastewater (4th edition) [M]. Beijing: China Environment Science Press, 2002: 243-670. [

    [23] 刘永茂, 付为国, 金梅娟, 等. 高温季节蟹塘不同水生植物对水质净化和温室气体排放的影响 [J]. 生态与农村环境学报, 2020, 36(8): 1072-1079.]

    Liu Y M, Fu W G, Jin M J, et al. Effects of different aquatic plants on water purification and greenhouse gas emission in crab pond in high temperature season [J]. Journal of Ecology and Rural Environment, 2020, 36(8): 1072-1079. [

    [24]

    Intergovernmental Panel on Climate Change. Climate Change 2013 - the Physical Science Basis Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge University Press, 2014.

    [25]

    Yang P, Zhang Y, Lai D Y F, et al. Fluxes of carbon dioxide and methane across the water–atmosphere interface of aquaculture shrimp ponds in two subtropical estuaries: The effect of temperature, substrate, salinity and nitrate [J]. Science of the Total Environment, 2018(635): 1025-1035. doi: 10.1016/j.scitotenv.2018.04.102

    [26]

    Odinga S A, Sifuna A, Lungayia H, et al. Greenhouse gas emissions associated with nile tilapia (Oreochromis niloticus) pond fertilization in western Kenya [J]. The Scientific World Journal, 2023(2023): 1712985.

    [27] 胡博文, 潘萌, 石彭兰, 等. 气候变暖与富营养化交互作用对浅水湖泊水−气界面N2O通量的影响 [J]. 水生生物学报, 2021, 45(3): 625-635.]

    Hu B W, Pan M, Shi P L, et al. Effect of climate warming and eutrophication on N2O flux at water-air interface of shallow lakes [J]. Acta Hydrobiologica Sinica, 2021, 45(3): 625-635. [

    [28]

    Barnard R, Leadley P W, Hungate B A. Global change, nitrification, and denitrification: a review [J]. Global Biogeochemical Cycles, 2005, 19(1): GB1007.

    [29] 张晓晶, 李畅游, 贾克力, 等. 乌梁素海水体透明度分布及影响因子相关分析 [J]. 湖泊科学, 2009, 21(6): 879-884.] doi: 10.18307/2009.0619

    Zhang X J, Li C Y, Jia K L, et al. Spatial-temporal changes in water transparency and its impact factors in Lake Wuliangsuhai [J]. Journal of Lake Sciences, 2009, 21(6): 879-884. [ doi: 10.18307/2009.0619

    [30] 郭超, 李为, 李诗琦, 等. 盐龙湖沉水植物群落变化规律及其驱动因子研究 [J]. 水生态学杂志, 2021, 42(6): 34-40.]

    Guo C, Li W, Li S Q, et al. Succession and driving factors of submerged macrophytes in Yanlong Lake [J]. Journal of Hydroecology, 2021, 42(6): 34-40. [

    [31]

    Yang P, He Q, Huang J, et al. Fluxes of greenhouse gases at two different aquaculture ponds in the coastal zone of Southeastern China [J]. Atmospheric Environment, 2015, 115: 269-277. doi: 10.1016/j.atmosenv.2015.05.067

    [32]

    Liu X L, Liu C Q, Li S L, et al. Spatiotemporal variations of nitrous oxide (N2O) emissions from two reservoirs in SW China [J]. Atmospheric Environment, 2011, 45(31): 5458-5468. doi: 10.1016/j.atmosenv.2011.06.074

    [33]

    Wang J, Chen N, Yan W, et al. Effect of dissolved oxygen and nitrogen on emission of N2O from rivers in China [J]. Atmospheric Environment, 2015, 103: 347-356. doi: 10.1016/j.atmosenv.2014.12.054

    [34]

    Paudel S R, Choi O, Khanal S K, et al. Effects of temperature on nitrous oxide (N2O) emission from intensive aquaculture system [J]. Science of the Total Environment, 2015(518): 16-23.

    [35]

    Webb J R, Leavitt P R, Simpson G L, et al. Regulation of carbon dioxide and methane in small agricultural reservoirs: optimizing potential for greenhouse gas uptake [J]. Biogeosciences, 2019, 16(21): 4211-4227. doi: 10.5194/bg-16-4211-2019

    [36]

    van Bergen T J H M, Barros N, Mendonça R, et al. Seasonal and diel variation in greenhouse gas emissions from an urban pond and its major drivers [J]. Limnology and Oceanography, 2019, 64(5): 2129-2139. doi: 10.1002/lno.11173

    [37]

    Chen Y, Dong S, Wang F, et al. Carbon dioxide and methane fluxes from feeding and no-feeding mariculture ponds [J]. Environmental Pollution, 2016(212): 489-497. doi: 10.1016/j.envpol.2016.02.039

    [38]

    Zhang D, Xu W, Wang F, et al. Carbon dioxide fluxes from mariculture ponds with swimming crabs and shrimps in Eastern China: The effect of adding razor clams [J]. Aquaculture Reports, 2022(22): 100917. doi: 10.1016/j.aqrep.2021.100917

    [39]

    Zhang D, Tian X, Dong S, et al. Carbon budgets of two typical polyculture pond systems in coastal China and their potential roles in the global carbon cycle [J]. Aquaculture Environment Interactions, 2020(12): 105-115. doi: 10.3354/aei00349

    [40] 刘旭博, 董世鹏, 于力业, 等. 凡纳滨对虾-硬壳蛤池塘综合养殖系统水−气界面 CO2 通量及其与环境因子的关系 [J]. 中国海洋大学学报 (自然科学版), 2023, 53(8): 26-34.]

    Liu X B, Dong S P, Yu L Y, et al. CO2 flux on water-air interface of integrated pond culture system of Litopenaeus vannamei and Mercenaria mercenaria and Its relationships with environmental factors [J]. Periodical of Ocean University of China, 2023, 53(8): 26-34. [

    [41]

    Morris J P, Humphreys M P. Modelling seawater carbonate chemistry in shellfish aquaculture regions: Insights into CO2 release associated with shell formation and growth [J]. Aquaculture, 2019(501): 338-344. doi: 10.1016/j.aquaculture.2018.11.028

    [42] 马煜春, 孙丽英, 刘翠英, 等. 太湖地区两种典型水产养殖系统CH4排放研究 [J]. 生态环境学报, 2018, 27(7): 1269-1275.]

    Ma Y C, Sun L Y, Liu C Y, et al. Methane emission from two typical aquaculture ponds in Taihu Lake [J]. Ecology and Environmental Sciences, 2018, 27(7): 1269-1275. [

    [43] 龚小杰, 袁兴中, 刘婷婷, 等. 水生植物对淡水生态系统温室气体排放的影响研究进展 [J]. 地球与环境, 2020, 48(4): 496-509.]

    Gong X J, Yuan X Z, Liu T T, et al. Review on Effects of aquatic plants on the greenhouse gas emission from freshwater ecosystems [J]. Earth and Environment, 2020, 48(4): 496-509. [

    [44] 赵光辉, 杨平, 谭立山, 等. 闽江河口养虾塘养殖期和非养殖期CO2通量变化特征 [J]. 环境科学研究, 2020, 33(4): 949-957.]

    Zhao G H, Yang P, Tan L S, et al. Temporal variation of carbon dioxide flux between farming and non-farming stages in the land-based shrimp pond in the Min River estuary [J]. Research of Environmental Sciences, 2020, 33(4): 949-957. [

图(6)  /  表(4)
计量
  • 文章访问数:  120
  • HTML全文浏览量:  25
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-12
  • 修回日期:  2024-09-02
  • 网络出版日期:  2024-10-24
  • 刊出日期:  2025-04-14

目录

    /

    返回文章
    返回