黄河高原鳅血红蛋白基因家族全基因组分析及低氧胁迫响应

谭瑾, 郭守全, 刘丹, 张存芳, 聂苗苗, 寇若彬, 姚占雯, 田菲, 祁得林

谭瑾, 郭守全, 刘丹, 张存芳, 聂苗苗, 寇若彬, 姚占雯, 田菲, 祁得林. 黄河高原鳅血红蛋白基因家族全基因组分析及低氧胁迫响应[J]. 水生生物学报, 2025, 49(5): 052506. DOI: 10.7541/2025.2024.0325
引用本文: 谭瑾, 郭守全, 刘丹, 张存芳, 聂苗苗, 寇若彬, 姚占雯, 田菲, 祁得林. 黄河高原鳅血红蛋白基因家族全基因组分析及低氧胁迫响应[J]. 水生生物学报, 2025, 49(5): 052506. DOI: 10.7541/2025.2024.0325
TAN Jin, GUO Shou-Quan, LIU Dan, ZHANG Cun-Fang, NIE Miao-Miao, KOU Ruo-Bin, YAO Zhan-Wen, TIAN Fei, QI De-Lin. GENOME-WIDE ANALYSIS OF THE TRIPLOPHYSA PAPPENHEIMI HEMOGLOBIN GENE FAMILY AND ITS RESPONSE TO HYPOXIA STRESS[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(5): 052506. DOI: 10.7541/2025.2024.0325
Citation: TAN Jin, GUO Shou-Quan, LIU Dan, ZHANG Cun-Fang, NIE Miao-Miao, KOU Ruo-Bin, YAO Zhan-Wen, TIAN Fei, QI De-Lin. GENOME-WIDE ANALYSIS OF THE TRIPLOPHYSA PAPPENHEIMI HEMOGLOBIN GENE FAMILY AND ITS RESPONSE TO HYPOXIA STRESS[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(5): 052506. DOI: 10.7541/2025.2024.0325
谭瑾, 郭守全, 刘丹, 张存芳, 聂苗苗, 寇若彬, 姚占雯, 田菲, 祁得林. 黄河高原鳅血红蛋白基因家族全基因组分析及低氧胁迫响应[J]. 水生生物学报, 2025, 49(5): 052506. CSTR: 32229.14.SSSWXB.2024.0325
引用本文: 谭瑾, 郭守全, 刘丹, 张存芳, 聂苗苗, 寇若彬, 姚占雯, 田菲, 祁得林. 黄河高原鳅血红蛋白基因家族全基因组分析及低氧胁迫响应[J]. 水生生物学报, 2025, 49(5): 052506. CSTR: 32229.14.SSSWXB.2024.0325
TAN Jin, GUO Shou-Quan, LIU Dan, ZHANG Cun-Fang, NIE Miao-Miao, KOU Ruo-Bin, YAO Zhan-Wen, TIAN Fei, QI De-Lin. GENOME-WIDE ANALYSIS OF THE TRIPLOPHYSA PAPPENHEIMI HEMOGLOBIN GENE FAMILY AND ITS RESPONSE TO HYPOXIA STRESS[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(5): 052506. CSTR: 32229.14.SSSWXB.2024.0325
Citation: TAN Jin, GUO Shou-Quan, LIU Dan, ZHANG Cun-Fang, NIE Miao-Miao, KOU Ruo-Bin, YAO Zhan-Wen, TIAN Fei, QI De-Lin. GENOME-WIDE ANALYSIS OF THE TRIPLOPHYSA PAPPENHEIMI HEMOGLOBIN GENE FAMILY AND ITS RESPONSE TO HYPOXIA STRESS[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(5): 052506. CSTR: 32229.14.SSSWXB.2024.0325

黄河高原鳅血红蛋白基因家族全基因组分析及低氧胁迫响应

基金项目: 

国家自然科学基金(32371578和31960127)资助

详细信息
    作者简介:

    谭瑾(1999—), 女, 硕士研究生; 研究方向为动物生态学。E-mail: 631999450@qq.com

    通信作者:

    祁得林(1973—), 男, 博士; 研究方向为动物分子遗传与生态学。E-mail: delinqi@126.com

  • 中图分类号: Q344+.1

GENOME-WIDE ANALYSIS OF THE TRIPLOPHYSA PAPPENHEIMI HEMOGLOBIN GENE FAMILY AND ITS RESPONSE TO HYPOXIA STRESS

Funds: 

Supported by the National Natural Science Foundation of China (32371578 and 31960127)

    Corresponding author:
  • 摘要:

    为探究血红蛋白基因家族在黄河高原鳅(Triplophysa pappenheimi)低氧适应中的作用, 研究基于黄河高原鳅基因组数据对血红蛋白基因家族进行了生物信息学分析, 并开展低氧胁迫和基因表达检测。结果显示, 黄河高原鳅血红蛋白基因家族由11个成员组成, 其中包括6个α珠蛋白基因(hbaa1hbaa2hbae1hbae3hbae4hbae5)和5个β珠蛋白基因(hbba1hbba2hbbe1.1hbbe1.2hbbe2)。Motif、Domain 及基因结构分析结果均表明该家族成员具有较高的保守性, 除hbbe2外, 其余基因结构相似。染色体定位分析结果显示, 血红蛋白基因家族成员分布在2条染色体上(Chr_07、Chr_17)。蛋白理化性质分析结果显示, 除hbbe1.2为疏水性不稳定蛋白, 其余基因产物均为疏水性稳定蛋白, 其中hbae3hbbe1.1hbbe2为酸性蛋白; 其余8个为碱性蛋白, 其中α-螺旋是主要的二级结构。亚细胞定位预测结果显示, 除hbae4基因产物位于细胞质中, hbae3位于细胞质和细胞外; 其余血红蛋白基因均位于线粒体中。基因表达研究表明, 在急性低氧胁迫12h (0.3±0.1 mg/L)后, hbaa1、hbaa2、hbba1hbba2基因在肝脏、鳃和血液中的表达量具有上调趋势, 但是差异不显著(P<0.05); 在慢性低氧24h至96h [(3.0±0.1) mg/L]时, hbaa1hbba1hbaa2hbba2基因在肝脏和血液中的表达量达到峰值(P<0.05), 随着胁迫时间延长, 上述基因的表达量均有所下调。在鳃组织中, hbaa1、hbaa2hbba1的最高表达量出现在慢性低氧后的196h, 而hbba2基因表达峰值出现在24h。研究展示了黄河高原鳅血红蛋白基因家族成员的低氧胁迫表达模式, 为黄河高原鳅的低氧适应机制研究积累科学数据。

    Abstract:

    Triplophysa pappenheimi is a representative species of Nemacheilinae, which can adapt to the aquatic environment of Tibetan Plateau. To investigate the role of hemoglobin gene family in T. pappenheimi adaptation to hypoxia, bioinformatics analysis of hemoglobin gene family was performed based on genome data, followed by an examination of expression changes of hemoglobin genes in response to hypoxia. The hemoglobin gene family to T. pappenheimi consists of 11 members, including six α-globin genes (hbaa1, hbaa2, hbae1, hbae3, hbae4, and hbae5) and five β-globin genes (hbba1, hbba2, hbbe1.1, hbbe1.2, and hbbe2). Motif, domain, and gene structure analysis showed high conservation among these genes; with the exception of hbbe2, the others exhibited similar structure features. Chromosomal localization analysis showed that the members of hemoglobin gene family were distributed on two chromosomes (Chr_07 and Chr_17). The results of physicochemical analysis indicated that all the gene products were stable hydrophobic proteins, except hbbe1.2, among which, hbae3, hbbe1.1, and hbbe2 were classified as acidic proteins, and the other eight were basic proteins, with α-helix is the main secondary structure. Subcellular localization prediction showed that hbae3 and hbae4 were located in the cytoplasm and the other hemoglobin genes were found in the mitochondria. The expression of hbaa1, hbaa2, hbba1 and hbba2 genes in liver, gill and blood showed an up-regulated trend after 12h of acute hypoxia stress, though the difference was not significant (P<0.05). The expression levels of hbaa1, hbba1, hbaa2, and hbba2 genes in liver and blood reached the peak at 24 h to 96h under chronic hypoxia (P<0.05). In gill tissue, the highest expression of hbaa1, hbaa2, and hbba1 appeared at 196h after chronic hypoxia, while hbba2 reached its peak at 24h. This study reveals the role of the hemoglobin gene family in hypoxic environment of T. pappenheimi, accumulating valuable scientific data for its conservation.

  • 图  1   斑马鱼和黄河高原鳅血红蛋白系统进化树

    Figure  1.   Phylogenetic tree of hemoglobin from Danio rerio and Triplophysa pappenheimi based on the protein sequences

    图  2   黄河高原鳅血红蛋白三级结构模型

    Figure  2.   Protein tertiary structure model of Hemoglobin in Triplophysa pappenheimi

    图  3   黄河高原鳅血红蛋白基因家族的Motif基序(a)、Domain结构域(b)及基因结构(c)

    Figure  3.   Motif (a), domain (b), and gene structure (c) of the hemoglobin gene family in Triplophysa pappenheimi

    图  4   黄河高原鳅血红蛋白基因在染色体上的分布

    Figure  4.   Distribution of hemoglobin gene on chromosomes in Triplophysa pappenheimi

    图  5   血红蛋白基因在不同组织的表达热图

    Figure  5.   Heat map of hemoglobin gene expression in different tissues

    图  6   血红蛋白各基因在各组织中的表达量

    a. 肝脏组织中的相对表达量; b. 鳃组织中的相对表达量; c. 血液中的相对表达量; 相同字母表示差异不显著(P>0.05); 不同字母表示差异显著(P<0.05)

    Figure  6.   Expression levels of hemoglobin gene in various tissues

    a. Relative expression in liver; b. Relative expression in gill; c. Relative expression in blood; The same letter indicates no significant difference (P>0.05), while different letters indicate significant differences (P<0.05)

    表  1   用于qRT-PCR 分析的引物序列

    Table  1   Primer sequences for qRT-PCR analysis

    基因
    Gene
    序列
    Sequence (5′—3′)
    退火温度
    Annealing
    temperature (℃)
    β-actin F GAACCCCAAGGCTAACAGAGAA 56.9
    β-actin R AGGCATACAGGGACAGCACA 59.1
    hbae1 F TGGTGTTGGTGAAGCTGTTGAGAA 58.8
    hbae1 R GCCAGAACGACGAGTATGTTGTGA 59.3
    hbae3 F GAGCCAGGAACTTATCCACAGACA 58.7
    hbae3 R CCTCAGACCAAGACCTACTTCTCC 58.8
    hbae4 F CATTTACGCTGCCACGGGAAGAA 60.4
    hbae4 R TGCTGAGGTGTGCCAGTGTAGT 61.2
    hbae5 F TCTCACTGGAGCGACCTGACAC 61.7
    hbae5 R GGAAGAGCATGGCAATCACAACAAG 59.0
    hbbe1.1 F TACAACGCCGCCGCCATCAT 63.2
    hbbe1.1 R GAGGAGACCACAACAGCGAGGAA 61.6
    hbbe1.2 F TACAACGCCGCCGCCATCAT 63.2
    hbbe1.2 R AGAGACCACAACAGCGAGGAACTT 60.5
    hbbe2 F ACTCAGCGGTACTTCGGCAGTT 61.3
    hbbe2 R GCAGCAATCACGATAGTCAGGCAAT 59.8
    hbaa1 F GACAAGGACAAGGCTGCCGTAAG 61.0
    hbaa1 R TGAGCGAAGTAGGTCTTGGTCTGAG 60.3
    hbaa2 F ACGATCTTGTTGGTGGATTGAGCAA 58.7
    hbaa2 R AGCAGATACAGCCGACAGGAACT 60.5
    hbba1 F TCCACCTTCGGCAACCTGTCA 61.8
    hbba1 R AGCGGACACGACCACAGACA 61.9
    hbba2 F GCCTTTACGCCAAACTAAGCAAACT 58.1
    hbba2 R GCCACGACGACAGACAGGAATT 60.1
    下载: 导出CSV

    表  2   黄河高原鳅血红蛋白基因家族成员理化性质

    Table  2   Physical and chemical properties of hemoglobin gene family members in Triplophysa pappenheimi

    基因
    Gene
    CDS长度
    CDS length
    (bp)
    氨基酸数目
    Number of
    amino acid
    分子质量
    Molecular
    weight (ku)
    理论等电点
    Theoretical
    isoelectric point
    脂溶性指数
    Aliphatic
    index
    亲水性平均值
    Grand average of
    hydropathicity
    不稳定性指数
    Instability
    index
    hbae1 444 143 15615.17 9.16 103.71 0.064 23.46
    hbae3 528 175 19411.69 6.37 112.57 0.245 24.81
    hbae4 426 141 15971.74 9.58 94.89 0.040 39.90
    hbae5 432 143 15796.51 9.04 101.68 0.121 24.35
    hbbe1.1 444 147 16417.94 6.96 96.87 0.083 16.63
    hbbe1.2 444 147 16426.95 7.01 96.87 0.085 96.87
    hbbe2 444 147 16786.39 6.90 94.22 –0.073 11.10
    hbaa1 432 143 15552.07 8.89 99.65 0.129 21.91
    hbaa2 432 143 15556.10 9.33 100.98 0.097 16.03
    hbba1 444 147 16113.64 7.70 88.98 0.086 20.53
    hbba2 444 147 16181.79 8.89 99.52 0.134 9.90
    下载: 导出CSV

    表  3   黄河高原鳅血红蛋白基因家族成员二级结构和亚细胞定位

    Table  3   Secondary structure and subcellular localization of hemoglobin gene family members in Triplophysa pappenheimi

    基因
    Gene
    α-螺旋
    Alpha-helix (%)
    β-折叠
    Beta-turn (%)
    无规卷曲
    Random coil (%)
    延伸链
    Extended strand (%)
    亚细胞定位
    Subcellular localization
    hbae1 66.43 4.20 19.58 9.79 Mitochondrion
    hbae3 58.29 6.29 22.29 13.14 Cytoplasm, Extracell
    hbae4 63.83 4.26 22.70 9.22 Cytoplasm
    hbae5 65.73 4.20 21.68 8.39 Mitochondrion
    hbbe1.1 65.31 6.80 17.69 10.20 Mitochondrion
    hbbe1.2 70.75 6.12 17.01 6.12 Mitochondrion
    hbbe2 63.27 3.40 24.49 8.84 Mitochondrion
    hbaa1 67.13 4.90 16.78 11.19 Mitochondrion
    hbaa2 61.54 4.20 25.87 8.39 Mitochondrion
    hbba1 73.47 6.80 14.97 4.76 Mitochondrion
    hbba2 70.07 6.12 19.05 4.76 Mitochondrion
    下载: 导出CSV

    表  4   基于转录组数据的血红蛋白基因在不同组织中的相对表达量

    Table  4   The relative expression of hemoglobin genes in different tissues based on RNA-seq data

    组织Tissue时间Time (h)基因相对表达量 Relative expression of gene
    hbae4hbbe1hbbe2hbaa1hbaa2hbba1hbba2
    肝脏Liver00.060.220.63447.34150.68447.7848.50
    120.070.220.52481.01204.95676.5470.12
    240.120.350.501333.31554.801336.64177.50
    960.160.310.331192.53448.941109.33113.44
    1680.130.300.62835.76354.51871.5871.14
    鳃Gill00.350.510.042253.08957.552217.45264.53
    120.582.1410.164603.072103.876968.25776.39
    241.261.344.466961.283612.676321.26996.59
    961.132.000.588994.123892.078518.22857.03
    1680.731.751.823693.781528.614072.82285.90
    血液Blood023.7742.620.40163575.3464712.88189796.5820481.05
    1215.1196.023.22187315.8082866.30331174.6639786.25
    2413.0116.849.21102190.1943706.21127182.4816116.07
    9621.5458.551.13222169.6987838.61226260.8524392.49
    16829.1286.1917.44201510.7666919.83217962.2419762.22
    下载: 导出CSV
  • [1] 陈宜瑜. 中国动物志·硬骨鱼纲·鲤形目(中卷) [M]. 北京: 科学出版社, 1998: 389-393.]

    Chen Y Y. Fauna Sinica, Osteichthyes, Cypriniformes Ⅱ [M]. Beijing: Science Press, 1998: 389-393. [

    [2] 朱松泉. 中国条鳅志 [M]. 南京: 江苏科学技术出版社, 1989: 101-102.]

    Zhu S Q. Chinese Nemacheilinae [M]. Nanjing: Jiangsu Science and Technology Press, 1989: 101-102. [

    [3] 曹亮, 张鹗, 臧春鑫, 等. 通过红色名录评估研究中国内陆鱼类受威胁现状及其成因 [J]. 生物多样性, 2016, 24(5): 598-609.] doi: 10.17520/biods.2015331

    Cao L, Zhang E, Zang C X, et al. Evaluating the status of China’s continental fish and analyzing their causes of endangerment through the red list assessment [J]. Biodiversity Science, 2016, 24(5): 598-609. [ doi: 10.17520/biods.2015331

    [4]

    Sidell B D. When bad things happen to good fish: the loss of hemoglobin and myoglobin expression in Antarctic icefishes [J]. Journal of Experimental Biology, 2006, 209(10): 1791-1802. doi: 10.1242/jeb.02091

    [5]

    Villota E D, Carmona M G, Rubio J J, et al. Equality of the in vivo and in vitro oxygen-binding capacity of haemoglobin in patients with severe respiratory disease [J]. British Journal of Anaesthesia, 1981, 53(12): 1325-1328. doi: 10.1093/bja/53.12.1325

    [6]

    Weber R E, Vinogradov S N. Nonvertebrate hemoglobins: functions and molecular adaptations [J]. Physiological Reviews, 2001, 81(2): 569-628. doi: 10.1152/physrev.2001.81.2.569

    [7] 齐小琼, 王艇. 植物血红蛋白基因家族的分子进化研究 [J]. 湖北农业科学, 2014, 53(18): 4447-4456.]

    Qi X Q, Wang T. Molecular evolution of hemoglobin families [J]. Hubei Agricultural Science, 2014, 53(18): 4447-4456. [

    [8] 冯蕾, 谭之京, 胡鸢雷, 等. 含血红蛋白基因(VHb)的铜绿假单胞菌重组菌的构建及鼠李糖脂表达条件的研究 [J]. 工业微生物, 2012, 42(3): 78-82.]

    Feng L, Tan Z J, Hu Y L, et al. Construction of recombinant strain containing vitreoscilla hemoglobin gene (VHb) of Pseudomonas aeruginosa and its rhamnolipid expressing conditions [J]. Industrial Microbiology, 2012, 42(3): 78-82. [

    [9] 孟琳, 陈良标. CRISPR/Cas9技术敲除hbae1.1基因对斑马鱼血红蛋白生成的影响 [J]. 生物学杂志, 2021, 38(5): 12-16.]

    Meng L, Chen L B. The effect of hbae1.1 gene on hemoglobin production in zebrafish knocked out by CRISPR/Cas9 [J]. Journal of Biology, 2021, 38(5): 12-16. [

    [10]

    Opazo J C, Butts G T, Nery M F, et al. Whole-genome duplication and the functional diversification of teleost fish hemoglobins [J]. Molecular Biology and Evolution, 2013, 30(1): 140-153. doi: 10.1093/molbev/mss212

    [11]

    Roesner A, Hankeln T, Burmester T. Hypoxia induces a complex response of globin expression in zebrafish (Danio rerio) [J]. Journal of Experimental Biology, 2006, 209(11): 2129-2137. doi: 10.1242/jeb.02243

    [12]

    Roesner A, Mitz S A, Hankeln T, et al. Globins and hypoxia adaptation in the goldfish, Carassius auratus [J]. The FEBS Journal, 2008, 275(14): 3633-3643. doi: 10.1111/j.1742-4658.2008.06508.x

    [13] 吕琳莉, 李朝霞, 崔崇雨. 高原河流溶解氧变化规律研究 [J]. 环境科学与技术, 2018, 41(7): 133-140.]

    Lü L L, Li Z X, Cui C Y. Study on the variation of dissolved oxygen in the plateau river [J]. Environmental Science& Technology, 2018, 41(7): 133-140. [

    [14] 刘壮, 魏峣, 陈强, 等. 长江黄河上游地表水溶解氧时空分布特征研究-以四川省为例 [J]. 环境保护科学, 2023, 49(3): 74-80.]

    Liu Z, Wei Y, Chen Q, et al. Spatial and temporal distribution characteristics of dissolved oxygen in surface water in the upper reaches of the Yangtze River and the Yellow River-Taking Sichuan Province as an example [J]. Environmental Protection Science, 2023, 49(3): 74-80. [

    [15]

    Shang E H H, Wu R S S. Aquatic hypoxia is a teratogen and affects fish embryonic development [J]. Environmental Science & Technology, 2004, 38(18): 4763-4767.

    [16]

    Wu R S S, Zhou B S, Randall D J, et al. Aquatic hypoxia is an endocrine disruptor and impairs fish reproduction [J]. Environmental Science & Technology, 2003, 37(6): 1137-1141.

    [17]

    Sollid J, Nilsson G E. Plasticity of respiratory structures-adaptive remodeling of fish gills induced by ambient oxygen and temperature [J]. Respiratory Physiology & Neurobiology, 2006, 154(1-2): 241-251.

    [18]

    Cossins A R, Crawford D L. Fish as models for environmental genomics [J]. Nature Reviews Genetics, 2005, 6(4): 324-333. doi: 10.1038/nrg1590

    [19]

    Zhu C D, Wang Z H, Yan B. Strategies for hypoxia adaptation in fish species: A review [J]. Journal of Comparative Physiology B, Biochemical, Systemic, and Environmental Physiology, 2013, 183(8): 1005-1013. doi: 10.1007/s00360-013-0762-3

    [20]

    Qi D L, Chao Y, Wu R R, et al. Transcriptome analysis provides insights into the adaptive responses to hypoxia of a schizothoracine fish (Gymnocypris eckloni) [J]. Frontiers in Physiology, 2018(9): 1326. doi: 10.3389/fphys.2018.01326

    [21]

    Tzaneva V, Bailey S, Perry S F. The interactive effects of hypoxemia, hyperoxia, and temperature on the gill morphology of goldfish (Carassius auratus) [J]. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 2011, 300(6): R1344-1351. doi: 10.1152/ajpregu.00530.2010

    [22]

    Vuori K A M, Soitamo A, Vuorinen P J, et al. Baltic salmon (Salmo salar) yolk-sac fry mortality is associated with disturbances in the function of hypoxia-inducible transcription factor (HIF-1α) and consecutive gene expression [J]. Aquatic Toxicology, 2004, 68(4): 301-313. doi: 10.1016/j.aquatox.2004.03.019

    [23]

    Øijordsbakken M. Effects of hypoxia on angiogenesis and angiogenic factors in crucian carp brain [D]. Oslo: University of Oslo, 2007: 35-47.

    [24]

    Xia M Z, Chao Y, Jia J L, et al. Changes of hemoglobin expression in response to hypoxia in a Tibetan schizothoracine fish, Schizopygopsis pylzovi [J]. Journal of Comparative Physiology B, 2016, 186(8): 1033-1043. doi: 10.1007/s00360-016-1013-1

    [25]

    Lei Y, Yang L, Jiang H, et al. Recent genome duplications facilitate the phenotypic diversity of Hb repertoire in the cyprinidae [J]. Science China Life Sciences, 2021, 64(7): 1149-1164.

    [26]

    Chen C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194-1202. doi: 10.1016/j.molp.2020.06.009

    [27]

    Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Research, 1997, 25(24): 4876-4882. doi: 10.1093/nar/25.24.4876

    [28]

    Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11 [J]. Molecular Biology and Evolution, 2021, 38(7): 3022-3027. doi: 10.1093/molbev/msab120

    [29]

    Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method [J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262

    [30]

    Bhattacharya M, Hota A, Kar A, et al. In silico structural and functional modelling of antifreeze protein (AFP) sequences of Ocean pout (Zoarces americanus, Bloch & Schneider 1801) [J]. Journal of Genetic Engineering and Biotechnology, 2018, 16(2): 721-730. doi: 10.1016/j.jgeb.2018.08.004

    [31]

    Ganis J J, Hsia N, Trompouki E, et al. Zebrafish globin switching occurs in two developmental stages and is controlled by the LCR [J]. Developmental Biology, 2012, 366(2): 185-194. doi: 10.1016/j.ydbio.2012.03.021

    [32] 王发艳. 花斑裸鲤血红蛋白基因组结构及其功能分化的时空表达调控 [D]. 西宁: 青海大学, 2022: 13-33.]

    Wang F Y. Genomic structure and spatiotemporal expression of functional differentiation of hemoglobin in Gymnocypris eckloni [D]. Xining: Qinghai University, 2022: 13-33. [

    [33] 王发艳, 刘丹, 高强等. 花斑裸鲤胚胎/仔鱼型血红蛋白基因家族成员鉴定与时序表达研究 [J]. 水生生物学报, 2022, 46(5): 718-724.]

    Wang F Y, Liu D, Gao Q, et al. The spatio temporal expression of embryo/larval hemoglobin gene in Gymnocypris eckloni [J]. Acta Hydrobiologica Sinica, 2022, 46(5): 718-724. [

    [34]

    Chen J S C, Wang T Y, Tzeng T D, et al. Evidence for positive selection in the TLR9 gene of teleosts [J]. Fish & Shellfish Immunology, 2008, 24(2): 234-242. doi: 10.1016/j.fsi.2007.11.005

    [35]

    Escriva H, Manzon L, Youson J, et al. Analysis of lamprey and hagfish genes reveals a complex history of gene duplications during early vertebrate evolution [J]. Molecular Biology and Evolution, 2002, 19(9): 1440-1450. doi: 10.1093/oxfordjournals.molbev.a004207

    [36]

    Hoffmann F G, Opazo J C, Storz J F. Whole-genome duplications spurred the functional diversification of the globin gene superfamily in vertebrates [J]. Molecular Biology and Evolution, 2012, 29(1): 303-312. doi: 10.1093/molbev/msr207

    [37]

    Shimeld S M, Holland P W H. Vertebrate innovations [J]. Proceedings of the National Academy of Sciences of the United Satats of America, 2000, 97(9): 4449-4452. doi: 10.1073/pnas.97.9.4449

    [38]

    Jaillon O, Aury J M, Brunet F, et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype [J]. Nature, 2004, 431(7011): 946-957. doi: 10.1038/nature03025

    [39]

    Meyer A, Van de Peer Y. From 2R to 3R: evidence for a fish-specific genome duplication (FSGD) [J]. Bioessays, 2005, 27(9): 937-945. doi: 10.1002/bies.20293

    [40]

    Quinn N L, Boroevich K A, Lubieniecki K P, et al. Genomic organization and evolution of the Atlantic salmon hemoglobin repertoire [J]. BMC Genomics, 2010(11): 539. doi: 10.1186/1471-2164-11-539

    [41] 武云飞, 康斌, 门强, 等. 西藏鱼类染色体多样性的研究 [J]. 动物学研究, 1999, 20(4): 258-264.]

    Wu Y F, Kang B, Men Q, et al. Chromosome diversity of Tibetan fishes [J]. Zoological Research, 1999, 20(4): 258-264. [

    [42]

    Lei Y, Yang L, Zhou Y, et al. Hb adaptation to hypoxia in high-altitude fishes: Fresh evidence from Schizothoracinae fishes in the Qinghai-Tibetan Plateau [J]. International Journal of Biological Macromolecules, 2021(185): 471-484.

    [43] 何云凌, 吴丽颖, 朱玲玲, 等. 线粒体自噬在低氧适应中的作用 [J]. 生物化学与生物物理进展, 2012, 39(3): 217-223.] doi: 10.3724/SP.J.1206.2011.00191

    He Y L, Wu L Y, Zhu L L, et al. The role of mitophagy in hypoxic adaptation [J]. Progress in Biochemistry and Biophysics, 2012, 39(3): 217-223. [ doi: 10.3724/SP.J.1206.2011.00191

    [44] 陈祺昌, 郑志琴, 刘丹, 等. 硬骨鱼类血红蛋白转换表达的新模式-以黄河裸裂尻鱼胚胎型血红蛋白研究为例 [J]. 水生生物学报, 2020, 44(6): 1199-1207.]

    Chen Q C, Zheng Z Q, Liu D, et al. A new pattern of hemoglobin switching in teleost fish-study of the embryonic hemoglobin in the Schizopygopsis pylzovi [J]. Acta Hydrobiologica Sinica, 2020, 44(6): 1199-1207. [

    [45]

    Wawrowski A, Gerlach F, Hankeln T, et al. Changes of globin expression in the Japanese medaka (Oryzias latipes) in response to acute and chronic hypoxia [J]. Journal of Comparative Physiology B, 2011(181): 199-208. doi: 10.1007/s00360-010-0518-2

图(6)  /  表(4)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  13
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-28
  • 修回日期:  2024-10-31
  • 网络出版日期:  2024-12-11
  • 刊出日期:  2025-05-14

目录

    /

    返回文章
    返回