利用鱼类性别控制技术创制YY超雄和XY全雄乌苏里拟鲿

蒋有渤, 孙瑞东, 谢焱, 程宜, 陈见, 李佩, 王忠卫, 熊阳, 梅洁

蒋有渤, 孙瑞东, 谢焱, 程宜, 陈见, 李佩, 王忠卫, 熊阳, 梅洁. 利用鱼类性别控制技术创制YY超雄和XY全雄乌苏里拟鲿[J]. 水生生物学报. DOI: 10.7541/2025.2024.0407
引用本文: 蒋有渤, 孙瑞东, 谢焱, 程宜, 陈见, 李佩, 王忠卫, 熊阳, 梅洁. 利用鱼类性别控制技术创制YY超雄和XY全雄乌苏里拟鲿[J]. 水生生物学报. DOI: 10.7541/2025.2024.0407
JIANG You-Bo, SUN Rui-Dong, XIE Yan, CHENG Yi, CHEN Jian, LI Pei, WANG Zhong-Wei, XIONG Yang, MEI Jie. PRODUCTION OF YY SUPER-MALE AND XY ALL-MALE PSEUDOBAGRUS USSURIENSIS BY SEX CONTROL TECHNOLOGY[J]. ACTA HYDROBIOLOGICA SINICA. DOI: 10.7541/2025.2024.0407
Citation: JIANG You-Bo, SUN Rui-Dong, XIE Yan, CHENG Yi, CHEN Jian, LI Pei, WANG Zhong-Wei, XIONG Yang, MEI Jie. PRODUCTION OF YY SUPER-MALE AND XY ALL-MALE PSEUDOBAGRUS USSURIENSIS BY SEX CONTROL TECHNOLOGY[J]. ACTA HYDROBIOLOGICA SINICA. DOI: 10.7541/2025.2024.0407
蒋有渤, 孙瑞东, 谢焱, 程宜, 陈见, 李佩, 王忠卫, 熊阳, 梅洁. 利用鱼类性别控制技术创制YY超雄和XY全雄乌苏里拟鲿[J]. 水生生物学报. CSTR: 32229.14.SSSWXB.2024.0407
引用本文: 蒋有渤, 孙瑞东, 谢焱, 程宜, 陈见, 李佩, 王忠卫, 熊阳, 梅洁. 利用鱼类性别控制技术创制YY超雄和XY全雄乌苏里拟鲿[J]. 水生生物学报. CSTR: 32229.14.SSSWXB.2024.0407
JIANG You-Bo, SUN Rui-Dong, XIE Yan, CHENG Yi, CHEN Jian, LI Pei, WANG Zhong-Wei, XIONG Yang, MEI Jie. PRODUCTION OF YY SUPER-MALE AND XY ALL-MALE PSEUDOBAGRUS USSURIENSIS BY SEX CONTROL TECHNOLOGY[J]. ACTA HYDROBIOLOGICA SINICA. CSTR: 32229.14.SSSWXB.2024.0407
Citation: JIANG You-Bo, SUN Rui-Dong, XIE Yan, CHENG Yi, CHEN Jian, LI Pei, WANG Zhong-Wei, XIONG Yang, MEI Jie. PRODUCTION OF YY SUPER-MALE AND XY ALL-MALE PSEUDOBAGRUS USSURIENSIS BY SEX CONTROL TECHNOLOGY[J]. ACTA HYDROBIOLOGICA SINICA. CSTR: 32229.14.SSSWXB.2024.0407

利用鱼类性别控制技术创制YY超雄和XY全雄乌苏里拟鲿

基金项目: 湖北省杰青项目——长江特色鱼类精准性控育种的遗传学基础(2021CFA057)资助
详细信息
    作者简介:

    蒋有渤(2000—), 男, 硕士研究生; 主要从事鱼类遗传育种研究。E-mail: jiangyb@webmail.hzau.edu.cn

    通信作者:

    熊阳(1993—), 男, 博士; 主要从事鱼类遗传育种研究。E-mail: xiongyang2018@163.com

    梅洁(1981—), 博士, 教授; 主要从事鱼类遗传育种研究。E-mail: jmei@ihb.ac.cn *共同通信作者

  • 中图分类号: S965.1

PRODUCTION OF YY SUPER-MALE AND XY ALL-MALE PSEUDOBAGRUS USSURIENSIS BY SEX CONTROL TECHNOLOGY

Funds: Supported by Excellent Youth Foundation of Hubei Provincial Natural Science Foundation (2021CFA057)
    Corresponding author:
  • 摘要:

    研究探索了17β-雌二醇(17β-estradiol, E2)的不同处理浓度和不同处理时间对乌苏里拟鲿(Pseudobagrus ussuriensis)生长、存活率和性比的影响。结果显示, 在10—70dph期间, 使用10、50和100 mg/kg E2投喂乌苏里拟鲿的雌性率高达100%, 但生长速度和存活率随E2浓度升高而降低, 投喂150 mg/kg E2组乌苏里拟鲿全部死亡。利用10 mg/kg E2投喂诱导乌苏里拟鲿100%雌性化的最佳时间为10—40dph。qRT-PCR结果显示雄性性别分化关键基因dmrt1amhcyp17a1在XY生理雌性的表达量显著低于XY雄性, 雌性性别分化关键基因cyp19a1azar1gdf9在XY生理雌性的表达量与XX雌性一致, 显著高于XY雄性。此外, 利用全基因组重测序技术在15尾雌性和15尾雄性乌苏里拟鲿中共筛选到3777645个SNP和1287509个Indel, 其中有99601个性别连锁SNP和27614个性别连锁Indel。性别连锁的SNP主要集中在乌苏里拟鲿8号染色体6.84—23.82 Mb的位置。利用性别连锁的Indel开发了乌苏里拟鲿X和Y染色体特异的分子标记, 适用于黑龙江野生群体、河南和湖北的养殖群体。使用性别分子标记在XY雄性与XY雌性繁殖的子一代中鉴定出了YY超雄鱼, 使用YY超雄鱼为父本繁殖的乌苏里拟鲿雄性率为100%, 1年龄个体的体重是两性养殖群体的1.54倍。综上所述, 在10—40dph期间使用10 mg/kg E2诱导乌苏里拟鲿雌性化的效果最佳, 利用全基因组重测序技术开发的性别连锁分子标记能有效鉴定乌苏里拟鲿的遗传性别获得YY超雄鱼。研究创制的XY全雄乌苏里拟鲿与两性群体相比, 具有规格整齐和生长速度快的特点。

    Abstract:

    In this study, we investigated the effects of various doses and treatment durations of 17β-estradiol (E2) on the growth, survival rate, and sex ratio of P. ussuriensis. From 10 to 70dph (days post-hatching), feeding P. ussuriensis diets containing 10, 50, and 100 mg/kg E2 resulted in a 100% feminization rate. However, the growth and survival rates decreased with increasing E2 concentration, and all fish in the group fed with 150 mg/kg E2 died. Overall, 10 mg/kg E2 treatment from 10 to 40dph was found to be the optimal approach for the feminization of P. ussuriensis. The expression levels of male key sex differentiation-related genes, such as dmrt1, amh, and cyp17a1, were significantly lower in XY females than that of XY males. The expression levels of female key sex differentiation-related genes including cyp19a1a, zar1, and gdf9 in XY females were consistent with those in XX females and were significantly higher than that in XY males. Additionally, whole-genome resequencing revealed 3777645 single nucleotide polymorphisms (SNPs) and 1287509 insertions/deletions (Indels) in 15 female and 15 male P. ussuriensis. Among these, 99601 were identified as sex-linked SNPs and 27614 as sex-linked Indels. The sex-linked SNPs were enriched in the 6.84 and 23.82 Mb regions of chromosome 8. X and Y chromosome specific molecular marker were developed based on sex-linked Indels, which proved effective for the sex identification in P. ussuriensis. These markers were well applied to wild populations from the Heilongjiang River as well as farmed populations in Henan and Hubei Province. YY super-male were identified from the offsprings of XY male mating with XY female. Subsequently, using YY super-male P. ussuriensis as the male parent, an all-male population was bred with a 100% male ratio. The all-male population at one-year old was 1.54 times heavier than the mixed-sex population. In summary, 10 mg/kg E2 treatment from 10 to 40dph is the optimal approach for the feminization of P. ussuriensis. The sex-linked molecular markers developed by whole-genome resequencing can effectively identify the genotype of P. ussuriensis and help produce YY super-male fish. XY all-male P. ussuriensis had the characteristics of uniform size and fast growth performance which will be more popular among farmers.

  • 图  1   染色体 SNP 分布情况

    A. 染色体SNP密度分布图; B. 染色体性别连锁SNP密度分布图; C. 性别连锁SNP在染色体上的分布; D. 性别连锁SNP在8号染色体上的分布

    Figure  1.   Distribution of SNP in chromosome

    A. density profile of SNP in chromosome; B. density profile of sex linkage SNP in chromosome; C. distribution of sex linkage SNP in chromosome; D. distribution of sex linkage SNP in chromosome 8

    图  2   性别特异性引物PCR验证图

    引物M1(A)和引物M2(B)在河南和湖北养殖群体及黑龙江野生群体乌苏里拟鲿中验证

    Figure  2.   PCR validation picture of sex linkage primer

    Primer M1 (A) and M2 (B) validation in Henan and Hubei Province culture populations, and Heilongjiang River wild population

    图  3   性别特异性引物扩增条带序列

    引物M1 (A)和引物M2 (B)扩增产生的特异性条带序列

    Figure  3.   Sequence of band amplified by sex linkage primer

    Sequence of band amplified by primer M1 (A) and M2 (B)

    图版Ⅰ   不同浓度 E2处理后 90dph 乌苏里拟鲿的性腺表型

    XY基因型的精巢(1)、XY基因型的卵巢(2)、XX基因型的卵巢(3)波恩氏液固定后性腺形态学观察; XY基因型的精巢(4)、XY基因型的卵巢(5)、XX基因型的卵巢(6) HE染色后性腺组织学观察; 7—9为4—6对应的放大图; SPG. 精原细胞; PSP. 初级精母细胞; SSP. 次级精母细胞; PO. 初级卵母细胞; N. 细胞核

    图版Ⅰ.   Gonadal phenotypes of P. ussuriensis treated with different concentrations of E2 at 90dph

    Testis of XY genotype (1), ovary of XY genotype (2), ovary of XX genotype (3) fixed by bouin’s solution; testis of XY genotype (4), ovary of XY genotype (5), ovary of XX genotype (6) stained by hematoxylin-eosin; 7—9. the corresponding magnified picture of 4—6; SPG. spermatogonia; PSP. primary spermatocytes; SSP. secondary spermatocytes; PO. primary oocyte, N. nucleus

    图  4   性别分化关键基因在性腺的表达分析

    雄性性别分化关键基因dmrt1 (A)、amh (B)和cyp17a1 (C)在XY精巢、XY卵巢和XX卵巢组织中的表达; 雌性性别分化关键基因cyp19a1a (D)、zar1 (E)和gdf9 (F)在XY精巢、XY卵巢和XX卵巢组织中的表达; ns表示单因素方差分析显示组间没有显著性差异, *表示有显著性差异(P<0.05), **表示有显著性差异(P<0.01)

    Figure  4.   Relative expression of key sex differentiation-related genes

    Relative expression of male differentiation genes dmrt1 (A), amh (B), and cyp17a1 (C) in XY testis, XY ovary, and XX ovary; Relative expression of female differentiation genes cyp19a1a (D), zar1 (E), and gdf9 (F) in XY testis, XY ovary, and XX ovary; ns means no significant differences in each tissue, *means significant differences (P<0.05) and ** means significant differences (P<0.01) by One-way ANOVA

    图  5   1年龄乌苏里拟鲿全雄群体与两性群体生长对比

    引物M2鉴定XY雄性与XY生理雌性繁殖获得的子代基因型(A),1、2、4、6、7、12、14、16、17为XY雄鱼,8、9、10、15为XX雌鱼,3、5、11、13为YY超雄鱼;1年龄乌苏里拟鲿全雄群体与两性群体的雄性比例(B)、体长(C)和体重(D)对比分析

    Figure  5.   Comparative analysis of growth performance in one-year-old P. ussuriensis between all-male and mixed-sex population

    Genotype identification of offspring mating by XY male and XY female with primer M2 (A), 1, 2, 4, 6, 7, 12, 14, 16, 17 are XY males, 8, 9, 10, 15 are XX females, and 3, 5, 11, 13 are YY supermales; Comparative analysis of male ratio (B), body length (C) and body weight (D) in one-year-old P. ussuriensis between all-male and mixed-sex population

    表  1   乌苏里拟鲿基因型鉴定引物和定量PCR引物

    Table  1   Primer of genotype identification and qRT-PCR in P. ussuriensis

    引物名称
    Primer name
    引物序列
    Sequence (5′—3′)
    扩增大小
    Amplicon size(bp)
    目的
    Purpose
    M1-FTCCCTCCAAGATTACGCY和X特异片段分别为349和424 bp基因型鉴定
    M1-RCTCGCAGGCAGACAGAA
    M2-FACCATCTGCTGAAACCCY和X特异片段分别为212和308 bp基因型鉴定
    M2-RCAGGACCAAATCAAATAAG
    dmrt1-FAACCACGGCTTCGTCTCG217qRT-PCR
    dmrt1-RCAGGCTCATTCTTCACCACA
    amh-FTTGCTTCTGCCACTAACG285qRT-PCR
    amh-RTTCGGCTCACCGTCCTTA
    cyp17a1-FGAGTTGAGCCTTACACCC269qRT-PCR
    cyp17a1-RCAGACTGGTCCTGTCACTTA
    zar1-FTGTGAAGGAAGGACCGAAGA281qRT-PCR
    zar1-RCTCCCAGCGAAGGTTGCA
    cyp19a1a-FAACATCACGCTGTGGAAG199qRT-PCR
    cyp19a1a-RGAACAGACGGTTGGAAAT
    gdf9-FTAGACCCGATTCCAGATA255qRT-PCR
    gdf9-RAAGTGATACCGCGTAGTT
    β-actin-FATTGCCGCACTGGTTGTT270qRT-PCR
    β-actin-RCAGCTCGTTGTAGAAGGTATGA
    下载: 导出CSV

    表  2   全基因组重测序数据统计及与参考基因组比对分析

    Table  2   Statistics on genome re-sequencing data and results of mapping to reference genome of P. ussuriensis

    样品名
    Sample
    滤后数据
    Clean reads (Gb)
    Q20 (%) GC (%) 比对片段
    Mapped reads
    比对率
    Mapping rate (%)
    测序深度
    Depth (×)
    覆盖率
    Coverage (%)
    雌1 14.50 98.15 39.23 96749092 98.48 19.81 95.94
    雌2 11.57 98.19 39.17 76718966 98.31 15.86 95.79
    雌3 13.86 98.32 39.35 91846572 98.33 18.88 95.96
    雌4 13.14 98.40 39.24 87469694 98.50 17.98 95.94
    雌5 14.29 98.35 39.39 94780100 98.38 19.45 96.12
    雌6 16.50 98.45 39.56 111238674 98.66 22.43 96.23
    雌7 14.22 98.28 39.21 94303612 98.40 19.48 95.75
    雌8 14.99 98.25 39.40 99265184 98.36 20.40 96.26
    雌9 16.40 97.89 39.27 109939318 98.61 22.32 96.11
    雌10 15.48 98.26 39.32 103286516 98.45 21.15 96.09
    雌11 14.51 98.16 39.40 96758464 98.45 19.77 96.24
    雌12 15.55 97.89 39.34 103774566 98.53 21.19 96.02
    雌13 13.80 98.18 39.29 92052298 98.46 18.93 95.76
    雌14 16.34 98.51 39.88 111871132 98.73 22.25 96.22
    雌15 15.31 97.82 39.24 102373812 98.58 20.89 96.10
    雄1 14.72 97.90 39.25 98008536 98.33 20.11 96.04
    雄2 12.86 97.53 39.33 85642362 98.40 17.70 95.63
    雄3 14.50 98.08 39.44 96807852 98.34 19.78 96.03
    雄4 16.03 98.41 39.19 107289926 98.58 21.89 95.98
    雄5 14.39 98.20 39.31 95864434 98.41 19.67 95.98
    雄6 16.13 97.51 39.31 107485372 98.49 22.09 95.77
    雄7 13.37 98.25 39.41 88689152 98.38 18.26 95.98
    雄8 15.14 97.99 39.26 100476860 98.33 20.70 95.96
    雄9 14.72 98.16 39.28 98048248 98.33 20.07 96.11
    雄10 11.52 94.47 39.17 77728982 98.80 15.95 95.15
    雄11 14.58 97.58 39.18 97830558 98.53 19.95 95.85
    雄12 15.19 98.31 39.27 101311888 98.44 20.75 96.13
    雄13 13.13 98.15 39.27 87638776 98.42 17.98 95.87
    雄14 14.43 97.97 39.40 96155192 98.37 19.68 96.04
    雄15 9.16 94.62 39.50 61381790 98.60 12.75 94.93
    均值Average 14.34 97.87 39.33 95759597 98.47 19.60 95.93
    下载: 导出CSV

    表  3   SNP和Indel统计分析

    Table  3   Statistics on SNP and Indel

    样品名
    Sample
    SNP总数
    Number of
    SNP
    性别连锁SNP
    Number of
    sex linkage
    SNP
    Indel总数
    Number of
    Indel
    性别连锁Indel
    Number of sex
    linkage Indel
    雌1174056717056525456
    雌21740223761557201194
    雌3168762815755054068
    雌417484626256883230
    雌5171762634956019797
    雌617583744557977426
    雌71687038488549668140
    雌817499499257930133
    雌91756990145745839
    雌10168724115655310267
    雌111682511605552340130
    雌1217528074057152223
    雌13174683627556383174
    雌14172532115955219160
    雌151739789368568588108
    雄118839549923360984727476
    雄217739119876856689127317
    雄318885919905260859827371
    雄418917079932361227527494
    雄519004399909861174627424
    雄618942989931061019827484
    雄718641469894460113927317
    雄818087989925058404027478
    雄918633129923360205627459
    雄1016734639738251914526630
    雄1118332169918358599227437
    雄1218306969923659559027471
    雄1318894159892860154227303
    雄1418152019913058557027457
    雄1515894059463448537225674
    过滤后Filter377764599601128750927614
    下载: 导出CSV

    表  4   不同浓度梯度E2投喂条件下的90dph乌苏里拟鲿生长、存活率和性逆转比例统计

    Table  4   Statistics on growth, survival rate, and sex reversal ratio of P. ussuriensis treated with different concentrations of E2 at 90dph

    雌二醇浓度
    E2 concentration (mg/kg)
    体长
    Body length (cm)
    体重
    Body weight (g)
    存活率
    Survival rate (%)
    卵巢比例
    Ovarian ratio (%)
    性逆转率
    Sex reversal ratio (%)
    对照组 7.79±1.20a 7.19±1.86a 90.00±2.50a 54.45±3.85b 0.00±0.00b
    10 6.48±0.93b 4.43±1.06b 89.08±3.26a 100±0.00a 100±0.00a
    50 5.81±0.96c 3.62±0.99c 41.42±3.50b 100±0.00a 100±0.00a
    100 5.13±0.74d 3.07±0.63d 21.17±2.50c 100±0.00a 100±0.00a
    150
    注: 对不同浓度E2的数据显著性差异用“a, b, c, d”表示, 同列数据不同字母上标表示有显著差异(P<0.05), 卵巢比例(%)=(卵巢数量/解剖性腺总数量)×100, 性逆转率(%)=(XY卵巢数量/解剖XY性腺总数量)×100; 下同Note: The significant differences in data for different concentrations of E2 are represented in “a, b, c d”. In the same line, different superscript letters indicate significant differences (P<0.05). Ovarian ratio (%)=(number of ovaries / total number of dissected gonads)×100, sex reversal ratio (%)=(number of XY ovaries/total number of dissected XY gonads)×100; the same applies below
    下载: 导出CSV

    表  5   10 mg/kg E2投喂不同时间组90dph乌苏里拟鲿生长、存活率和性逆转比例统计

    Table  5   Statistics on growth, survival rate, and sex reversal ratio of P. ussuriensis treated with different sustained times of 10 mg/kg E2 at 90dph

    持续时间
    Sustained time (dph)
    体长
    Body length (cm)
    体重
    Body weight (g)
    存活率
    Survival rate (%)
    卵巢比例
    Ovarian ratio (%)
    性逆转率
    Sex reversal ratio (%)
    对照组 7.69±1.09a 7.18±1.76a 88.75±1.25a 48.89±3.85c 0.00±0.00d
    10—20 7.30±0.80b 6.46±1.23b 89.58±5.64a 64.44±5.09b 34.78±1.27c
    10—30 7.26±1.10b 6.36±1.30b 88.75±2.50a 95.56±1.93a 92.33±3.60b
    10—40 7.12±0.96b 5.46±1.54c 89.17±1.91a 100.00±0.00a 100.00±0.00a
    10—50 6.44±0.75c 4.55±1.13d 88.75±5.00a 100.00±0.00a 100.00±0.00a
    10—60 6.44±0.76c 4.94±1.07d 88.33±3.82a 100.00±0.00a 100.00±0.00a
    下载: 导出CSV
  • [1] 梅洁, 桂建芳. 鱼类性别异形和性别决定的遗传基础及其生物技术操控 [J]. 中国科学: 生命科学, 2014, 44(12): 1198-1212.]

    Mei J, Gui J F. Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish [J]. Science China Life Sciences, 2014, 44(12): 1198-1212. [

    [2] 魏梦雅, 王思梦, 宁静, 等. 乌苏里拟鲿igf基因克隆及其与生长性状关联分析 [J]. 水产科学, 2022, 41(5): 738-748.]

    Wei M Y, Wang S M, Ning J, et al. Cloning and association analysis with growth traits of igf gene in Ussuri catfish Pseudobagrus ussuriensis [J]. Fisheries Science, 2022, 41(5): 738-748. [

    [3]

    Pan Z J, Zhu C K, Wang H, et al. Gonadal morphogenesis and sex differentiation in cultured Ussuri catfish Tachysurus ussuriensis [J]. Journal of Fish Biology, 2017, 91(3): 866-879. doi: 10.1111/jfb.13388

    [4]

    Pandian T J, Sheela S G. Hormonal induction of sex reversal in fish [J]. Aquaculture, 1995, 138(1-4): 1-22. doi: 10.1016/0044-8486(95)01075-0

    [5]

    Valdivia K, Jouanno E, Volff J N, et al. High temperature increases the masculinization rate of the all-female (XX) rainbow trout “Mal” population [J]. PLoS One, 2014, 9(12): e113355. doi: 10.1371/journal.pone.0113355

    [6]

    Piferrer F, Anastasiadi D. Do the offspring of sex reversals have higher sensitivity to environmental perturbations [J]? Sexual Development, 2021, 15(1-3): 134-147.

    [7] 徐思琪, 张世勇, 段永强, 等. 17β-雌二醇诱导斑点叉尾鮰雌性化研究 [J]. 水生生物学报, 2022, 46(11): 1668-1674.] doi: 10.7541/2022.2021.0254

    Xu S Q, Zhang S Y, Duan Y Q, et al. Feminization of channel catfish induced by 17β-estradiol [J]. Acta Hydrobiologica Sinica, 2022, 46(11): 1668-1674. [ doi: 10.7541/2022.2021.0254

    [8] 刘汉勤, 崔书勤, 侯昌春, 等. 从XY雌鱼雌核发育产生YY超雄黄颡鱼 [J]. 水生生物学报, 2007, 31(5): 718-725.] doi: 10.3321/j.issn:1000-3207.2007.05.018

    Liu H Q, Cui S Q, Hou C C, et al. YY super-male generated gynogenetically from XY female in Pelteobagrus fulvidraco (Richardson) [J]. Acta Hydrobiologica Sinica, 2007, 31(5): 718-725. [ doi: 10.3321/j.issn:1000-3207.2007.05.018

    [9]

    de Bem J C, Fontanetti C S, Senhorini J A, et al. Effectiveness of estradiol valerate on sex reversion in Astyanax altiparanae (Characiformes, Characidae) [J]. Brazilian Archives of Biology and Technology, 2012, 55(2): 283-290. doi: 10.1590/S1516-89132012000200015

    [10] 王成龙, 关文志, 李永强, 等. 17β-雌二醇诱导黄颡鱼雌性化的研究 [J]. 南方水产科学, 2020, 16(3): 25-30.] doi: 10.12131/20200001

    Wang C L, Guan W Z, Li Y Q, et al. Study on 17β-estradiol induced feminization of Pelteobagrus fulvidraco [J]. South China Fisheries Science, 2020, 16(3): 25-30. [ doi: 10.12131/20200001

    [11]

    Piferrer F. Endocrine sex control strategies for the feminization of teleost fish [J]. Aquaculture, 2001, 197(1/2/3/4): 229-281.

    [12] 陶彬彬, 胡炜. 鱼类性别控制育种研究进展 [J]. 中国农业科技导报, 2022, 24(2): 1-10.]

    Tao B B, Hu W. Research progress on sex control breeding of fish [J]. Journal of Agricultural Science and Technology, 2022, 24(2): 1-10. [

    [13] 刘洋, 陈松林. 鱼类性别特异分子标记筛选及分子性控育种研究现状与展望 [J]. 水产学报, 2023, 47(11): 34-43.]

    Liu Y, Chen S L. Fish sex-specific molecular marker screening and marker-assisted sex-controlled breeding: history, progress and prospect [J]. Journal of Fisheries of China, 2023, 47(11): 34-43. [

    [14]

    Zhou Y L, Wu J J, Wang Z W, et al. Identification of sex-specific markers and heterogametic XX/XY sex determination system by 2b-RAD sequencing in redtail catfish (Mystus wyckioides) [J]. Aquaculture Research, 2019, 50(8): 2251-2266. doi: 10.1111/are.14106

    [15]

    Han C, Zhu Q Y, Lu H M, et al. Screening and characterization of sex-specific markers developed by a simple NGS method in mandarin fish (Siniperca chuatsi) [J]. Aquaculture, 2020(527): 735495.

    [16]

    Liao Q, Gong G R, Wang J Q, et al. Identification of sex-linked codominant markers and development of a rapid LAMP-based genetic sex identification method in channel catfish (Ictalurus punctatus) [J]. Aquaculture, 2023(572): 739556.

    [17]

    Xiong Y, Wang X, Sun R D, et al. Administration of Arginine Vasotocin and modified Isotocin improve artificial propagation and post-spawning survival of female yellow catfish [J]. Aquaculture, 2024(587): 740849.

    [18]

    Capel B. Vertebrate sex determination: evolutionary plasticity of a fundamental switch [J]. Nature Reviews Genetics, 2017, 18(11): 675-689. doi: 10.1038/nrg.2017.60

    [19] 熊阳, 王帅, 郭稳杰, 等. 不同动物饵料对YY超雄黄颡鱼性腺发育的影响 [J]. 水产学报, 2020, 44(2): 245-252.]

    Xiong Y, Wang S, Guo W J, et al. Effects of different animal baits on the gonad development of YY super-male yellow catfish (Pelteobagrus fulvidruco) [J]. Journal of Fisheries of China, 2020, 44(2): 245-252. [

    [20]

    Dong R R, Yang S J, Feng R J, et al. Complete feminization of catfish by feeding Limnodilus, an annelid worm collected in contaminated streams [J]. Environmental Research, 2014(133): 371-379.

    [21] 姚道霞. 黄颡鱼性分化及激素诱导性转化研究 [D]. 哈尔滨: 东北林业大学, 2007: 21-40.]

    Yao D X. Sex differentiation and hormonal sex reversal of Pelteobagrus fulvidraco [D]. Harbin: Northeast Forestry University, 2007: 21-40. [

    [22] 胡景琦. 人工诱导瓦氏黄颡鱼性别逆转及雌核发育研究 [D]. 武汉: 华中农业大学, 2024: 23-28.]

    Hu J Q. Study on artificially induced sexual-reversal and gynogenesis in Pelteobagrus vachelli [D]. Wuhan: Huazhong Agricultural University, 2024: 23-28. [

    [23]

    Xiong Y, Jiang Y B, Sun R D, et al. Characterization of early gonadal differentiation and estrogen-induced feminization in Chinese longsnout catfish (Leiocassis longirostris) [J]. Aquaculture Reports, 2024(39): 102373.

    [24]

    Wenger M, Sattler U, Goldschmidt-Clermont E, et al. 17Beta-estradiol affects the response of complement components and survival of rainbow trout (Oncorhynchus mykiss) challenged by bacterial infection [J]. Fish & Shellfish Immunology, 2011, 31(1): 90-97.

    [25] 王凌宇, 齐飘飘, 陈敏, 等. 性类固醇激素对黄颡鱼雌雄生长二态性的影响 [J]. 水生生物学报, 2020, 44(2): 379-388.] doi: 10.7541/2020.046

    Wang L Y, Qi P P, Chen M, et al. Effects of sex steroid hormones on sexual size dimorphism in yellow catfish (Tachysurus fulvidraco) [J]. Acta Hydrobiologica Sinica, 2020, 44(2): 379-388. [ doi: 10.7541/2020.046

    [26]

    Ferguson-Smith M. The evolution of sex chromosomes and sex determination in vertebrates and the key role of DMRT1 [J]. Sexual Development, 2007, 1(1): 2-11. doi: 10.1159/000096234

    [27]

    Lin Q, Mei J, Li Z, et al. Distinct and cooperative roles of amh and dmrt1 in self-renewal and differentiation of male germ cells in zebrafish [J]. Genetics, 2017, 207(3): 1007-1022. doi: 10.1534/genetics.117.300274

    [28]

    Chen W T, Liu L, Ge W. Expression analysis of growth differentiation factor 9 (Gdf9/gdf9), anti-müllerian hormone (Amh/amh) and aromatase (Cyp19a1a/cyp19a1a) during gonadal differentiation of the zebrafish, Danio rerio [J]. Biology of Reproduction, 2017, 96(2): 401-413. doi: 10.1095/biolreprod.116.144964

    [29]

    Guiguen Y, Fostier A, Piferrer F, et al. Ovarian aromatase and estrogens: a pivotal role for gonadal sex differentiation and sex change in fish [J]. General and Comparative Endocrinology, 2010, 165(3): 352-366. doi: 10.1016/j.ygcen.2009.03.002

    [30]

    Miao L, Yuan Y, Cheng F, et al. Translation repression by maternal RNA binding protein Zar1 is essential for early oogenesis in zebrafish [J]. Development, 2017, 144(1): 128-138.

    [31]

    Pan Z J, Zhu C K, Chang G L, et al. Differential expression analysis and identification of sex-related genes by gonad transcriptome sequencing in estradiol-treated and non-treated Ussuri catfish Pseudobagrus ussuriensis [J]. Fish Physiology and Biochemistry, 2021, 47(2): 565-581. doi: 10.1007/s10695-021-00932-x

    [32]

    Bentley D R. Whole-genome re-sequencing [J]. Current Opinion in Genetics & Development, 2006, 16(6): 545-552.

    [33] 张俊杰, 赵瑞阳, 蒋丽, 等. 白斑狗鱼雌、雄基因组混池重测序研究 [J]. 淡水渔业, 2020, 50(3): 17-25.] doi: 10.3969/j.issn.1000-6907.2020.03.003

    Zhang J J, Zhao R Y, Jiang L, et al. Resequencing analysis of the female and male mixed pool of Esox lucius [J]. Freshwater Fisheries, 2020, 50(3): 17-25. [ doi: 10.3969/j.issn.1000-6907.2020.03.003

    [34]

    Zheng S Q, Wang X S, Zhang S, et al. Screening and characterization of sex-linked DNA markers and marker-assisted selection in the Southern catfish (Silurus meridionalis) [J]. Aquaculture, 2020(517): 734783.

    [35]

    Pan Z J, Li X Y, Zhou F J, et al. Identification of sex-specific markers reveals male heterogametic sex determination in Pseudobagrus ussuriensis [J]. Marine Biotechnology, 2015, 17(4): 441-451. doi: 10.1007/s10126-015-9631-2

    [36]

    Zhu C K, Liu H Y, Cheng L, et al. Identification of sex-specific sequences through 2b-RAD sequencing in Pseudobagrus ussuriensis [J]. Aquaculture, 2021(539): 736639.

    [37]

    Pruginin Y, Rothbard S, Wohlfarth G, et al. All-male broods of Tilapia nilotica× T. aurea hybrids [J]. Aquaculture, 1975, 6(1): 11-21. doi: 10.1016/0044-8486(75)90086-1

    [38]

    Liu H, Guan B, Xu J, et al. Genetic manipulation of sex ratio for the large-scale breeding of YY super-male and XY all-male yellow catfish (Pelteobagrus fulvidraco (Richardson) [J]. Marine Biotechnology, 2013, 15(3): 321-328. doi: 10.1007/s10126-012-9487-7

    [39] 罗非鱼“粤闽1号” [J]. 中国水产, 2021(4): 92-96.]

    Tilapia “YueMin No. 1” [J]. China Fisheries, 2021(4): 92-96. [

图(6)  /  表(5)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  23
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-19
  • 修回日期:  2024-12-05
  • 网络出版日期:  2024-12-23

目录

    /

    返回文章
    返回