利用鱼类性别控制技术创制YY超雄和XY全雄乌苏里拟鲿

PRODUCTION OF YY SUPER-MALE AND XY ALL-MALE PSEUDOBAGRUS USSURIENSIS BY SEX CONTROL TECHNOLOGY

  • 摘要: 研究探索了17β-雌二醇(17β-estradiol, E2)的不同处理浓度和不同处理时间对乌苏里拟鲿(Pseudobagrus ussuriensis)生长、存活率和性比的影响。结果显示, 在10—70dph期间, 使用10、50和100 mg/kg E2投喂乌苏里拟鲿的雌性率高达100%, 但生长速度和存活率随E2浓度升高而降低, 投喂150 mg/kg E2组乌苏里拟鲿全部死亡。利用10 mg/kg E2投喂诱导乌苏里拟鲿100%雌性化的最佳时间为10—40dph。qRT-PCR结果显示雄性性别分化关键基因dmrt1amhcyp17a1在XY生理雌性的表达量显著低于XY雄性, 雌性性别分化关键基因cyp19a1azar1gdf9在XY生理雌性的表达量与XX雌性一致, 显著高于XY雄性。此外, 利用全基因组重测序技术在15尾雌性和15尾雄性乌苏里拟鲿中共筛选到3777645个SNP和1287509个Indel, 其中有99601个性别连锁SNP和27614个性别连锁Indel。性别连锁的SNP主要集中在乌苏里拟鲿8号染色体6.84—23.82 Mb的位置。利用性别连锁的Indel开发了乌苏里拟鲿X和Y染色体特异的分子标记, 适用于黑龙江野生群体、河南和湖北的养殖群体。使用性别分子标记在XY雄性与XY雌性繁殖的子一代中鉴定出了YY超雄鱼, 使用YY超雄鱼为父本繁殖的乌苏里拟鲿雄性率为100%, 1年龄个体的体重是两性养殖群体的1.54倍。综上所述, 在10—40dph期间使用10 mg/kg E2诱导乌苏里拟鲿雌性化的效果最佳, 利用全基因组重测序技术开发的性别连锁分子标记能有效鉴定乌苏里拟鲿的遗传性别获得YY超雄鱼。研究创制的XY全雄乌苏里拟鲿与两性群体相比, 具有规格整齐和生长速度快的特点。

     

    Abstract: In this study, we investigated the effects of various doses and treatment durations of 17β-estradiol (E2) on the growth, survival rate, and sex ratio of P. ussuriensis. From 10 to 70dph (days post-hatching), feeding P. ussuriensis diets containing 10, 50, and 100 mg/kg E2 resulted in a 100% feminization rate. However, the growth and survival rates decreased with increasing E2 concentration, and all fish in the group fed with 150 mg/kg E2 died. Overall, 10 mg/kg E2 treatment from 10 to 40dph was found to be the optimal approach for the feminization of P. ussuriensis. The expression levels of male key sex differentiation-related genes, such as dmrt1, amh, and cyp17a1, were significantly lower in XY females than that of XY males. The expression levels of female key sex differentiation-related genes including cyp19a1a, zar1, and gdf9 in XY females were consistent with those in XX females and were significantly higher than that in XY males. Additionally, whole-genome resequencing revealed 3777645 single nucleotide polymorphisms (SNPs) and 1287509 insertions/deletions (Indels) in 15 female and 15 male P. ussuriensis. Among these, 99601 were identified as sex-linked SNPs and 27614 as sex-linked Indels. The sex-linked SNPs were enriched in the 6.84 and 23.82 Mb regions of chromosome 8. X and Y chromosome specific molecular marker were developed based on sex-linked Indels, which proved effective for the sex identification in P. ussuriensis. These markers were well applied to wild populations from the Heilongjiang River as well as farmed populations in Henan and Hubei Province. YY super-male were identified from the offsprings of XY male mating with XY female. Subsequently, using YY super-male P. ussuriensis as the male parent, an all-male population was bred with a 100% male ratio. The all-male population at one-year old was 1.54 times heavier than the mixed-sex population. In summary, 10 mg/kg E2 treatment from 10 to 40dph is the optimal approach for the feminization of P. ussuriensis. The sex-linked molecular markers developed by whole-genome resequencing can effectively identify the genotype of P. ussuriensis and help produce YY super-male fish. XY all-male P. ussuriensis had the characteristics of uniform size and fast growth performance which will be more popular among farmers.

     

/

返回文章
返回