海洋生态系统中砷的生物累积和生物转化机制

陈李招, 连泰鑫, 张黎

陈李招, 连泰鑫, 张黎. 海洋生态系统中砷的生物累积和生物转化机制[J]. 水生生物学报, 2025, 49(1): 012512. DOI: 10.7541/2025.2024.0421
引用本文: 陈李招, 连泰鑫, 张黎. 海洋生态系统中砷的生物累积和生物转化机制[J]. 水生生物学报, 2025, 49(1): 012512. DOI: 10.7541/2025.2024.0421
CHEN Li-Zhao, LIAN Tai-Xin, ZHANG Li. ARSENIC BIOACCUMULATION AND BIOTRANSFORMATION MECHANISMS IN MARINE ECOSYSTEM[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(1): 012512. DOI: 10.7541/2025.2024.0421
Citation: CHEN Li-Zhao, LIAN Tai-Xin, ZHANG Li. ARSENIC BIOACCUMULATION AND BIOTRANSFORMATION MECHANISMS IN MARINE ECOSYSTEM[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(1): 012512. DOI: 10.7541/2025.2024.0421
陈李招, 连泰鑫, 张黎. 海洋生态系统中砷的生物累积和生物转化机制[J]. 水生生物学报, 2025, 49(1): 012512. CSTR: 32229.14.SSSWXB.2024.0421
引用本文: 陈李招, 连泰鑫, 张黎. 海洋生态系统中砷的生物累积和生物转化机制[J]. 水生生物学报, 2025, 49(1): 012512. CSTR: 32229.14.SSSWXB.2024.0421
CHEN Li-Zhao, LIAN Tai-Xin, ZHANG Li. ARSENIC BIOACCUMULATION AND BIOTRANSFORMATION MECHANISMS IN MARINE ECOSYSTEM[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(1): 012512. CSTR: 32229.14.SSSWXB.2024.0421
Citation: CHEN Li-Zhao, LIAN Tai-Xin, ZHANG Li. ARSENIC BIOACCUMULATION AND BIOTRANSFORMATION MECHANISMS IN MARINE ECOSYSTEM[J]. ACTA HYDROBIOLOGICA SINICA, 2025, 49(1): 012512. CSTR: 32229.14.SSSWXB.2024.0421

海洋生态系统中砷的生物累积和生物转化机制

基金项目: 海南省自然科学基金(423CXTD392); 中国科学院南海海洋研究所自主部署项目(SCSIO2023QY04); 广州市基础与应用基础研究项目(202201010198)资助
详细信息
    作者简介:

    陈李招(1991—), 女, 博士, 助理研究员; 主要研究方向为砷生态毒理学。E-mail: chenlizhao@scsio.ac.cn

    通信作者:

    张黎(1981—), 男, 博士, 研究员; 主要研究方向为海洋生态毒理学。E-mail: zhangli@scsio.ac.cn

  • 中图分类号: X55

ARSENIC BIOACCUMULATION AND BIOTRANSFORMATION MECHANISMS IN MARINE ECOSYSTEM

Funds: Supported by the Hainan Provincial Natural Science Foundation of China (423CXTD392); Special Foundation of South China Sea Institute of Oceanology, Chinese Academy of Sciences (SCSIO2023QY04); the Basic and Applied Basic Research Foundation of Guangzhou City (202201010198)
    Corresponding author:
  • 摘要:

    砷是一种在自然环境中广泛分布的有毒元素, 能够通过生物累积和食物链传递,对生态系统及人类健康构成威胁。砷污染问题已经成为河口与沿海区域不容忽视的环境问题之一。本章综述了海洋浮游动植物、多毛类、软体动物、虾蟹类及鱼类中砷的生物累积与转化作用,同时总结了内源性与外源性因素对海洋生物砷累积与转化的影响,进一步揭示了海洋生物通过独特的生物代谢过程,将高毒性的无机砷转化为低毒性的甲基砷,并生成无毒的砷糖和砷甜菜碱等有机砷形态的普遍规律,发现海洋生物体内的有机砷具有更高的生物可利用性,是导致海洋生物中砷富集的重要原因。鉴于海洋生物高砷富集的复杂性与特殊性,未来研究应进一步探究海洋生物中砷累积与转化的影响因素和分子机制,以期深入揭示海洋生物对砷的富集与代谢规律。

    Abstract:

    Arsenic is a toxic element that is widely distributed in natural environments, posing significant risks to ecosystems and human health through trophic transfer along food chains. Arsenic pollution has emerged as a critical environmental concern in estuarine and nearshore areas. This review provides an overview of the bioaccumulation and transformation patterns of arsenic across various marine organisms, including phytoplankton, zooplankton, polychaetes, shellfish, shrimp, crabs, and marine fish. Marine organisms can accumulate high concentrations of arsenic, predominantly in the forms of arsenobetaine and arsenosugars, reflecting unique bioaccumulation and transformation mechanisms. Through biotransformation processes, marine organisms can convert highly toxic inorganic arsenic into less toxic organic arsenic compounds. Organic arsenic exhibits greater bioavailability compared to inorganic arsenic, thereby contributing to higher concentrations of arsenic in marine organisms. Additionally, both endogenous and exogenous factors influencing arsenic accumulation and transformation in these organisms. Given the complexity and specificity of arsenic enrichment in marine systems, future research should prioritize investigate the molecular mechanisms of arsenic bioaccumulation and transformation across diverse marine species.

  • 大黄鱼(Larimichthys crocea), 又称大黄花, 隶属硬骨鱼纲(Osteichthyes)的鲈形目(Perciformes), 石首鱼科(Sciaenidae), 黄鱼属(Larimichthys), 其肉质鲜美, 营养价值高, 主要分布在浙江、福建等沿海地区, 是我国东南沿海重要的养殖鱼类之一[1]。过去, 大黄鱼的养殖主要以投喂生物饵料为主, 而生物饵料的缺点突出, 如成本过高、成分不明、供应量不稳定、易携带病原微生物、容易污染水体等[2], 导致大黄鱼养殖业风险增加、收益减少, 在长远上限制了大黄鱼养殖业的健康发展。为了提高养殖经济效益, 大黄鱼人工配合饲料的研发刻不容缓。近年来, 由于渔业资源衰退和鱼粉需求量增加, 导致鱼粉价格上升[3], 而鱼粉在大黄鱼饲料中的配比又较高(>40%)[4, 5], 因而寻找价格低廉的优质蛋白源替代鱼粉至关重要。

    本试验研究了5种新型非粮蛋白源, 分别为乙醇梭菌蛋白、小球藻、黑水虻粉、黄粉虫粉和棉籽浓缩蛋白。乙醇梭菌蛋白是以炼钢废气中的一氧化碳为碳源、氨水为氮源, 通过乙醇梭菌发酵产生的一种新型微生物蛋白, 其蛋白质含量高达85%, 且具有与鱼粉相似的氨基酸组成[6]。小球藻是一种富含蛋白质、多糖、不饱和脂肪酸、类胡萝卜素、虾青素、多种维生素和矿物质的微藻资源[7], 而经过破壁处理的小球藻蛋白质含量高达50%, 且其营养物质更容易被吸收利用[8]。乙醇梭菌蛋白和小球藻均属于单细胞蛋白, 也称微生物蛋白, 是从蛋白质含量较高的微生物细胞中分离出来的纯化蛋白[9], 可通过化工产业规模化生产, 该生产模式效率高, 是一种“变废为宝”的绿色可持续发展模式[10]。黑水虻是一种能将动物粪便、餐厨垃圾和其他有机废物有效转化成自身营养成分的双翅目昆虫, 其本身可作为家禽、牲畜、宠物和水生经济动物的饲料原料[11]。黑水虻粉蛋白质平均含量约为55%, 必需氨基酸组成平衡, 脂肪含量约为35%, 可通过脱脂过程将其降至5%—9%[12], 此外黑水虻粉中还富含ω-3多不饱和脂肪酸, 使其更适合饲喂肉食性海水鱼类[13]。黄粉虫粉是将活虫经过处死、灭菌、烘干、低温保存、加工等一系列过程而制成, 是高度可持续供给的新型昆虫蛋白源[1416]。黄粉虫具有废物转化、节能减排的功能[15, 16], 其幼虫易繁殖, 且蛋白质含量高, 约为47%—60%, 在畜禽和水产饲料的应用中有巨大潜力[17, 18]。棉籽浓缩蛋白是指将脱壳的棉籽进行软化轧胚、低温烘干, 其次在甲醇和正己烷混合溶剂中脱酚提油得到的一种新型植物蛋白源[19]。其棉酚含量低, 且蛋白质含量高(>60%)[20], 是一种极具开发潜力的新型非粮蛋白源。

    消化率是评价饲料原料营养价值的重要依据[21], 也是饲料配方设计的考虑因素之一[22], 对于提高经济效益和促进养殖业健康的发展具有重要意义。因此, 本试验通过指示剂法, 分析大黄鱼对乙醇梭菌蛋白、小球藻、黑水虻粉、黄粉虫粉和棉籽浓缩蛋白的干物质、蛋白质、脂肪、能量和氨基酸表观消化率。

    基础饲料以鱼粉、鸡肉粉、豆粕、玉米蛋白粉和大豆浓缩蛋白为主要蛋白源, 鱼油和豆油为主要脂肪源, 以0.1%的三氧化二钇(Y2O3)为外源指示剂, 并补充矿物质和维生素等配制基础饲料[22], 其配方见表 1。5种新型非粮蛋白源分别为乙醇梭菌蛋白(河北首朗新能源有限公司)、小球藻(中国科学院水生生物研究所)、黑水虻粉(广州飞禧特生物科技有限公司)、黄粉虫粉(广州泽合成生物科技有限公司)、棉籽浓缩蛋白(新疆金兰植物蛋白有限公司), 原料的营养水平和氨基酸组成分别见表 2表 3。以质量分数为70%的基础饲料和30%的乙醇梭菌蛋白、小球藻、黑水虻粉、黄粉虫粉和棉籽浓缩蛋白配制成5种试验饲料。所有饲料原料均粉碎后过60目筛, 并按比例称量后逐级混匀, 然后加入20% 的水搅拌均匀, 用TSE-65双螺杆膨化机(北京现代洋工机械科技发展有限公司)制成粒径为5.0 mm的颗粒饲料, 在电热鼓风干燥箱(WGL-625B, 天津市泰斯特仪器有限公司)中60℃恒温干燥12h, 烘干后置于–20℃冰箱内备用。

    表  1  基础饲料组成及营养水平(干物质基础%)
    Table  1.  Composition and nutrient levels of foundational diets (dry-matter basis %)
    原料Ingredient含量Content (%)
    鱼粉Fish meal125.0
    鸡肉粉Chicken meal12.0
    大豆浓缩蛋白Soyprotein concentrate 5.0
    豆粕Soybean meal16.0
    玉米蛋白粉Corn gluten meal 6.0
    高筋面粉Wheat flour25.4
    鱼油Fish oil 2.0
    豆油Soybean oil2.0
    卵磷脂Lecithin1.5
    鱿鱼膏Squid paste2.5
    磷酸二氢钙Ca(H2PO4)21.0
    维生素预混料Vitamin premix20.4
    矿物质预混料Mineral premix30.5
    维生素C Vitamin C0.1
    氯化胆碱Choline chloride0.5
    三氧化二钇Yttrium(Ⅲ)-oxide0.1
    营养水平Nutrient level4
    水分Moisture5.79
    粗蛋白Crude protein46.25
    粗脂肪Crude lipid4.45
    灰分Ash9.06
    能量Gross energy (MJ/Kg)19.06
    注: 1鱼粉为秘鲁蒸汽鱼粉(粗蛋白含量≥67%)。2维生素预混料为每千克饲料提供: 硫胺素, 25 mg; 核黄素, 45 mg; 盐酸吡哆醇, 20 mg; 维生素B12, 0.1 mg; 维生素K3, 10 mg; 肌醇, 800 mg; 泛酸钙, 60 mg; 烟酰胺, 200 mg; 叶酸, 20 mg; 生物素, 1.2 mg; 维生素A乙酸酯, 32 mg; 维生素 D3, 5 mg; α-生育酚, 120 mg; 乙氧基喹啉, 150 mg; 玉米淀粉, 1511.7 mg. 3矿物质预混料为每千克饲料提供: 一水硫酸镁, 4000 mg; 一水硫酸锰, 50 mg;碘化钾(1%), 100 mg; 氯化钴(1%), 100 mg; 五水硫酸铜, 20 mg; 一水硫酸亚铁, 260 mg; 一水硫酸锌, 150 mg; 亚硒酸钠(1%), 50 mg。4营养水平均为实测值Note: 1The fish meal is Peruvian steam dried fish meal (crude protein content≥67%), and its quality is Japanese-grade. 2Vitamin premix provided the following per kg of diets: thiamin, 25 mg; riboflavin, 45 mg; hydrochloric acid pyridoxine, 20 mg; vitamin B12, 0.1 mg; vitamin K3, 10 mg; inositol, 800 mg; pantothenic acid, 60 mg; nicotinic acid, 200 mg; folic acid, 20 mg; biotin, 1.2 mg; retinal acetate, 32 mg; vitamin D3, 5 mg; alpha tocopherol, 120 mg; ethoxy quinoline, 150 mg; microcrystalline cellulose, 1511.7 mg. 3Mineral premix provided the following per kg of diets: MgSO4·H2O, 4000 mg; MnSO4·H2O, 50 mg; KI, 100 mg; CoCl2(1%), 100 mg; CuSO4·5H2O, 20 mg; FeSO4·H2O, 260 mg; ZnSO4·H2O, 150 mg; Na2SeO3(1%), 50 mg. 4Nutrient levels are all measured values
    下载: 导出CSV 
    | 显示表格
    表  2  试验原料营养水平与鱼粉的比较(干物质基础%)
    Table  2.  Nutrient levels of test ingredients (dry-matter basis %)
    原料
    Ingredient
    乙醇梭
    菌蛋白
    CAP
    小球藻
    CM
    黑水
    虻粉
    HM
    黄粉
    虫粉
    TM
    棉籽浓
    缩蛋白
    CPC
    鱼粉
    FM
    营养水平Nutrient level
    水分Moisture2.479.112.282.675.095.79
    粗蛋白Crude protein84.5454.2934.2066.3063.0568.00
    粗脂肪Crude lipid0.747.9241.470.763.069.66
    灰分Ash6.988.2610.159.048.739.06
    能量Gross energy (MJ/kg)21.8921.6224.3620.3318.9822.43
    下载: 导出CSV 
    | 显示表格
    表  3  试验原料氨基酸组成与鱼粉的比较(干物质基础%)
    Table  3.  Amino acids compositions of test ingredients (dry-matter basis %)
    氨基酸
    Amino acid
    乙醇
    梭菌
    蛋白
    CAP
    小球藻
    CM
    黑水
    虻粉
    HM
    黄粉
    虫粉
    TM
    棉籽
    浓缩
    蛋白
    CPC
    鱼粉
    FM
    必需氨基酸Essential amino acid
    精氨酸Arg3.432.921.223.937.783.87
    组氨酸His1.220.870.750.651.621.82
    异亮氨酸Ile4.981.541.312.651.664.86
    亮氨酸Leu6.064.022.314.743.232.85
    蛋氨酸Met2.321.170.611.150.881.67
    赖氨酸Lys7.402.841.944.892.574.78
    苯丙氨酸Phe3.172.341.313.013.103.09
    苏氨酸Thr4.402.321.242.301.842.33
    色氨酸Trp0.490.770.340.390.710.57
    缬氨酸Val5.092.681.823.992.593.54
    非必需氨基酸Non-essential amino acid
    丙氨酸Ala4.873.992.523.092.184.11
    天冬氨酸Asp8.944.212.344.615.216.20
    谷氨酸Glu8.585.413.256.9311.909.45
    甘氨酸Gly3.932.771.604.672.354.01
    脯氨酸Pro2.762.171.925.962.142.55
    丝氨酸Ser3.362.101.214.912.472.02
    酪氨酸Tyr2.961.601.731.881.421.78
    胱氨酸Cys1.370.770.382.141.090.52
    必需氨基酸总量EAA38.5621.4712.8527.725.9829.38
    非必需氨基酸总量NEAA36.7723.0214.9534.1928.7630.64
    氨基酸总量TAA75.3344.4927.861.8954.7460.02
    下载: 导出CSV 
    | 显示表格

    试验所用大黄鱼为宁德市三都澳某大黄鱼育苗场培育的同一批鱼苗, 养殖试验于宁德市三都澳海上浮式网箱中进行。试验鱼运至鱼排后, 先置于养殖网箱中暂养1周, 暂养期间使用基础组饲料投喂以适应环境。正式试验开始前, 大黄鱼饥饿24h, 挑选体格健壮、规格一致的大黄鱼[(154.0±5.3) g]1800尾, 随机分到18个养殖网箱中(2.5 m×2.5 m×2 m), 每组3个重复, 每个重复100尾鱼, 其中对照组试验鱼投喂基础饲料, 试验组分别投喂5种试验饲料, 每天(6:00和18:00)饱食投喂2次, 当大多数鱼停止摄食时, 即达到了饱食。养殖周期为8周, 养殖期间水温20—24℃, pH为7.5—8.0, 溶解氧≥6 mg/L, 氨氮<0.1 mg/L。

    投喂试验饲料1周后, 采用挤压和解剖的方法收集后肠粪便样品, 其过程为将试验鱼进行解剖, 取出后肠, 再将粪便从后肠中轻轻挤压而出, 粪便经60℃烘干后, 用研钵研磨成粉末状, 放置在−20℃冰箱中保存。

    原料、饲料和粪便样品中的水分、粗蛋白、粗脂肪和粗灰分的含量测定参照AOAC(2005)[23]的方法。样品的水分采用105℃恒温干燥法(DHG-9123A, 宁波江南仪器厂)测定; 粗蛋白采用凯氏定氮法测定; 粗脂肪采用索氏抽提法(无水乙醚为提取溶剂)测定; 粗灰分则通过马弗炉中550℃燃烧8h的灼烧法测定。饲料和粪便的能量采用全自动氧弹量热仪(Parr 6300)测定。矿物元素含量的测定方法为加酸微波消解(JUPITER-B, 多通量微波消解仪, 上海新仪微波化学科技有限公司), 然后稀释定容, 用电感耦合等离子体原子发射光谱仪(ICP-OES, Prodigy7, LEEMAE LABS, USA)测定。原料、饲料和粪便样品被冻干至恒重, 每个样品取30 mg放入15 mL 6 mol/L HCl溶液中, 在110℃下水解24h, 用全自动氨基酸分析仪(L-8900, Hitachi, Tokyo, Japan)测定其氨基酸含量。

    试验饲料干物质表观消化率(ADC, %)=(1–Dy/Fy)×100;

    试验饲料营养成分表观消化率(ADC, %)=[1–(Fi/Di)×(Dy/Fy)]×100;

    试验原料营养物质和能量的表观消化率(ADC, %)=ADC试验饲料+[(ADC试验饲料–ADC基础饲料)×(0.7×DR)/(0.3×DT)];

    式中, Dy为饲料中钇的含量(%); Fy为粪便中钇的含量(%); Di为饲料中营养成分的含量(%); Fi为粪便中营养成分的含量(%); DR为基础饲料中营养成分的含量(%); DT为试验原料中营养成分的含量(%)。

    所有试验数据使用SPSS 22.0统计软件进行One-way ANOVA分析, 采用Levene,s F检验方差齐次性, 并用Duncan氏法进行多重比较, 差异显著水平为P<0.05。所有试验数据均以平均值±标准误(mean±SE)的形式来表示。

    表 4所示,大黄鱼对5种试验原料中干物质的表观消化率为56.77%—75.53%(乙醇梭菌蛋白>黄粉虫粉>小球藻>黑水虻粉>棉籽浓缩蛋白)。乙醇梭菌蛋白干物质的表观消化率显著高于其他试验原料(P<0.05); 其次是黄粉虫粉、小球藻和黑水虻粉, 黑水虻粉干物质的表观消化率显著低于黄粉虫粉(P<0.05); 棉籽浓缩蛋白干物质的表观消化率显著低于其他试验原料(P<0.05)。

    表  4  干物质、粗蛋白、粗脂肪和能量的表观消化率
    Table  4.  Apparent digestibility coefficients of dry matter, crude protein, crude lipid and gross energy
    原料Ingredient乙醇梭菌蛋白CAP小球藻CM黑水虻粉HM黄粉虫粉TM棉籽浓缩蛋白CPC
     干物质Dry matter75.53±0.99d67.04±1.20bc65.33±0.07b69.49±0.20c56.77±1.07a
     粗蛋白Crude protein89.59±0.13d81.29±1.09c78.43±0.89b69.93±0.25a79.41±0.27bc
     粗脂肪Crude lipid93.77±0.18e89.16±0.48d58.58±0.43a63.04±0.15c60.48±0.54b
     能量Gross energy84.33±0.63d75.30±1.28c76.72±0.30c71.72±0.30b63.39±1.03a
    注: 同列数据肩标不同小写字母表示差异显著(P<0.05); 下同Note: In the same column, values with different small letter superscripts mean significant difference (P<0.05). The same applies below
    下载: 导出CSV 
    | 显示表格

    大黄鱼对5种试验原料中粗蛋白的表观消化率为69.93%—89.59%(乙醇梭菌蛋白>小球藻>棉籽浓缩蛋白>黑水虻粉>黄粉虫粉)。乙醇梭菌蛋白粗蛋白的表观消化率显著高于其他4种试验原料(P<0.05); 其次是小球藻、棉籽浓缩蛋白和黑水虻粉, 黑水虻粉粗蛋白的表观消化率显著低于小球藻(P<0.05); 黄粉虫粉粗蛋白的表观消化率显著低于其他4种试验原料(P<0.05)。

    大黄鱼对5种试验原料中粗脂肪的表观消化率为58.58%—93.77%(乙醇梭菌蛋白>小球藻>黄粉虫粉>棉籽浓缩蛋白>黑水虻粉)。乙醇梭菌蛋白粗脂肪的表观消化率显著高于其他4种试验原料(P<0.05); 其次是小球藻, 小球藻粗脂肪的表观消化率显著高于黑水虻粉和黄粉虫粉(P<0.05); 黑水虻粉粗脂肪的表观消化率显著低于其他4种试验原料(P<0.05)。

    大黄鱼对5种试验原料中能量的表观消化率为63.39%—84.33%(乙醇梭菌蛋白>黑水虻粉>小球藻>黄粉虫粉>棉籽浓缩蛋白)。乙醇梭菌蛋白能量的表观消化率显著高于其他4种试验原料(P<0.05); 其次是黑水虻粉、小球藻和黄粉虫粉, 黑水虻粉和小球藻能量的表观消化率无显著差异(P>0.05), 且这两种试验原料能量的表观消化率均显著高于黄粉虫粉(P<0.05); 棉籽浓缩蛋白能量的表观消化率显著低于其他试验原料(P<0.05)。

    表 5所示,大黄鱼对5种试验原料氨基酸总量的表观消化率为76.62%—93.24%(乙醇梭菌蛋白>小球藻>棉籽浓缩蛋白>黑水虻粉>黄粉虫粉), 乙醇梭菌蛋白氨基酸总量的表观消化率显著高于其他试验原料(P<0.05); 其次是小球藻和棉籽浓缩蛋白, 这两种原料氨基酸总量的表观消化率无显著差异(P>0.05); 黑水虻粉和黄粉虫粉氨基酸总量的表观消化率显著低于其余3种试验原料(P<0.05)。在10种必需氨基酸中, 5种试验原料精氨酸的表观消化率普遍较高, 为89.44%—98.13%; 除色氨酸外, 其余必需氨基酸在乙醇梭菌蛋白中的表观消化率显著高于其他试验原料(P<0.05); 异亮氨酸、亮氨酸、蛋氨酸、赖氨酸和缬氨酸在棉籽浓缩蛋白中的表观消化率显著低于其他试验原料(P<0.05); 组氨酸、苏氨酸和色氨酸均在黄粉虫粉中的表观消化率最低, 组氨酸和色氨酸在黄粉虫粉中的表观消化率显著低于其他试验原料(P<0.05)。

    表  5  氨基酸的表观消化率
    Table  5.  Apparent digestibility coefficients of amino acid
    氨基酸Amino acid乙醇梭菌蛋白CAP小球藻CM黑水虻粉HM黄粉虫粉TM棉籽浓缩蛋白CPC
    必需氨基酸Essential amino acid
    精氨酸Arg98.13±0.37d94.24±0.77c89.44±0.43a91.30±0.56b94.59±0.18c
    组氨酸His91.66±0.32d81.19±0.40c75.09±0.85b71.83±0.99a83.19±0.56c
    异亮氨酸Ile93.91±0.07d82.88±0.29c81.46±0.61b81.69±0.40bc71.72±0.39a
    亮氨酸Leu92.74±0.07e83.27±0.16d78.21±0.23b80.41±0.35c73.41±0.45a
    蛋氨酸Met95.38±0.19c86.13±0.41b84.63±0.91b86.30±0.30b79.15±0.71a
    赖氨酸Lys96.25±0.06e86.44±0.77c75.71±0.40b88.09±0.14d69.82±0.35a
    苯丙氨酸Phe92.90±0.55c85.08±0.31b76.92±2.26a83.58±0.52b85.64±0.85b
    苏氨酸Thr92.85±0.27d80.76±0.22c76.42±1.52b69.10±0.72a70.31±0.83a
    色氨酸Trp80.16±1.35b82.08±0.73b81.11±0.82b74.77±1.75a82.40±1.37b
    缬氨酸Val93.66±0.24e83.99±0.74d81.60±1.06c78.48±1.01b75.57±0.30a
    非必需氨基酸Non-essential amino acid
    丙氨酸Ala93.50±0.53d87.43±0.28c83.19±1.26b73.48±0.87a71.26±0.41a
    天冬氨酸Asp92.97±0.16c80.31±0.24b68.44±0.36a68.83±0.96a79.84±0.61b
    谷氨酸Glu93.21±0.41e83.07±0.25c73.34±1.63b69.79±0.78a88.04±0.14d
    甘氨酸Gly90.95±0.40c78.52±0.49b68.36±2.19a71.57±0.72a75.20±0.22b
    脯氨酸Pro92.90±1.28c80.88±0.98b74.10±1.24a74.37±0.42a78.45±0.16b
    丝氨酸Ser90.32±0.46d77.21±0.23ab75.27±1.29a78.61±0.38b80.84±0.30c
    酪氨酸Tyr91.80±0.22c79.48±1.04b79.56±0.70b77.17±0.64b71.50±1.39a
    胱氨酸Cys71.31±0.51c55.53±0.15b91.83±0.66d42.96±0.54a97.86±0.55e
    氨基酸总量TAA93.24±0.15c83.24±0.25b77.21±0.64a76.62±0.49a82.12±0.27b
    下载: 导出CSV 
    | 显示表格

    蛋氨酸在各组试验原料中表观消化率从高到低依次为: 乙醇梭菌蛋白、黄粉虫粉、小球藻、黑水虻粉和棉籽浓缩蛋白, 其中蛋氨酸在乙醇梭菌蛋白中的表观消化率显著高于其他试验原料(P<0.05); 蛋氨酸在棉籽浓缩蛋白中表观消化率显著低于其他试验原料(P<0.05); 蛋氨酸在小球藻、黑水虻粉和黄粉虫粉3种试验原料中表观消化率无显著差异(P>0.05)。

    赖氨酸在各组试验原料中表观消化率从高到低依次为: 乙醇梭菌蛋白、黄粉虫粉、小球藻、黑水虻粉和棉籽浓缩蛋白, 其中赖氨酸在棉籽浓缩蛋白中表观消化率显著低于其他试验原料(P<0.05), 在乙醇梭菌蛋白中表观消化率显著高于其他试验原料(P<0.05)。

    由于本试验是在海上浮式网箱中进行, 无法通过沉积法或虹吸法等方法收集粪便, 故本试验采用挤压法和解剖法收集粪便, 其所得试验结果与肛吸法和沉淀柱采粪法相近[24]

    干物质的表观消化率反映了动物对饲料原料总体的消化吸收能力[25]。本研究中大黄鱼对乙醇梭菌蛋白干物质的表观消化率最高, 为75.53%。李会涛等[26]研究发现, 大黄鱼对基础白鱼粉和红鱼粉的表观消化率分别为70.0%和65.2%, 略低于本研究中大黄鱼对乙醇梭菌蛋白干物质的表观消化率, 而大黄鱼对乙醇梭菌蛋白粗蛋白、粗脂肪和能量的表观消化率均为5种蛋白源中最高, 分别为89.59%、93.77%和84.33%, 这与白鱼粉和红鱼粉的表观消化率结果相近。氨基酸在细胞和代谢水平上起着重要的调节作用[27], 而鱼类饲料中必需氨基酸的适宜含量是维持正常肌肉生长、蛋白质合成及脂肪和碳水化合物代谢的必要条件。否则, 必需氨基酸的含量不足可能会对鱼类的生长性能和生理生化健康产生不利影响[2830]。而在本研究中, 乙醇梭菌蛋白的多项必需氨基酸含量均高于进口鱼粉, 尤其作为鱼类生长的限制性氨基酸, 蛋氨酸和赖氨酸在乙醇梭菌蛋白中的含量分别为2.32%和7.40%, 而进口鱼粉的蛋氨酸和赖氨酸含量分别为1.67%和4.78%, 乙醇梭菌蛋白在蛋氨酸和赖氨酸的含量上更有优势。在本研究中, 大黄鱼对乙醇梭菌蛋白中蛋氨酸和赖氨酸的表观消化率均为同组最高, 分别为95.38%和96.25%。此外, 在大口黑鲈(Micropterus salmoides)[31]、黑鲷(Acanthopagrus schlegelii)[32]、凡纳滨对虾(Litopenaeus vannamei)[33]、皱纹盘鲍(Haliotis discus hannai)[34]和罗非鱼(Oreochromis niloticus)[35]等相关研究中均表明乙醇梭菌蛋白替代饲料中部分鱼粉而不会对养殖对象的生长产生不利影响。因此, 乙醇梭菌蛋白可以作为优质蛋白源添加到大黄鱼配合饲料中。

    在本研究中, 大黄鱼对小球藻干物质、蛋白质、粗脂肪和能量的表观消化率分别为67.04%、81.29%、89.16%和75.30%, 略低于乙醇梭菌蛋白。Tibbetts等[8]在对大西洋鲑(Salmo salar)饲喂小球藻的研究中发现, 相较于完整的小球藻, 饲喂细胞壁破碎的小球藻能大幅提高大西洋鲑对营养物质的消化吸收能力。本研究中的小球藻经过破壁处理, 以保证其营养成分能尽可能被大黄鱼吸收利用。有研究表明, 饲料中氨基酸的不平衡会降低饲料的转化效率, 从而对鱼种的生长产生负面影响[36]。在本研究中, 大黄鱼对小球藻氨基酸的表观消化率为83.24%, 仅次于乙醇梭菌蛋白, 但小球藻的蛋氨酸和赖氨酸含量低于鱼粉, 分别为1.17%和2.84%, 若将小球藻应用到大黄鱼饲料中, 需在饲料原料中补充蛋氨酸和赖氨酸以提高饲料的营养价值。

    黑水虻是一种可以将废弃的食物和粪便转化为高质量蛋白质的昆虫[37]。目前, 黑水虻粉已经被证实是大口黑鲈[38]、凡纳滨对虾[39]、大西洋鲑[40]和红鲷(Pagrus major)[41]等动物饲料中鱼粉的有效替代品, 而黑水虻粉在大黄鱼人工配合饲料中的研究却尚未有报道。本研究大黄鱼对黑水虻粉粗脂肪的表观消化率较低, 为58.58%。推测可能是由于黑水虻粉原料中粗脂肪的含量较高(41.47%), 大黄鱼不能高效率地消化利用饲料中的粗脂肪。此外, Guerreiro等[42]的研究中发现黑水虻粉替代鱼粉会造成饲料中SFA/PUFA比值上升, 而n-3/n-6 PUFA比值下降。有研究表明[43], PUFA会影响鱼类对脂肪的消化吸收。此外, 在大菱鲆的研究中也发现[44], n-3/n-6 PUFA比值下降会降低肠道对脂肪的消化能力, 这可能是造成大黄鱼对黑水虻粉粗脂肪表观消化率较低的原因之一。由于本研究采用的黑水虻粉末经过脱脂处理, 饲料原料中高比例的粗脂肪则会影响到粗蛋白的含量, 导致黑水虻原料中粗蛋白含量较低(34.20%)。Zozo等[45]研究证明, 未经过脱脂处理的黑水虻粉粗蛋白含量低于脱脂处理组。另外, 本研究中黑水虻粉的氨基酸组成不平衡, 必需氨基酸含量较低, Pfarr等[46]在研究中发现大豆中较低的蛋白质含量会影响氨基酸的平衡, 这与本研究结果相符。Zhang等[47]、He等[48]和Li等[49]研究发现, 饲料中赖氨酸、苏氨酸和亮氨酸等多种必需氨基酸的含量过低会直接对大黄鱼生长及健康产生不利影响。因此, 未经过脱脂处理的黑水虻粉不适合添加到大黄鱼饲料中, 而脱脂黑水虻粉在大黄鱼饲料中的应用有待进一步研究。

    黄粉虫是一种生长迅速、以面包和谷物为食的昆虫, 黄粉虫粉具有蛋白质含量高、脂肪含量适中和氨基酸组成平衡等优点[18], 因而被认为是替代鱼粉的优质蛋白源。目前, 黄粉虫粉在大黄鱼人工配合饲料中的研究已有相关报道。Yuan等[50]研究表明, 在大黄鱼饲料中添加黄粉虫粉可替代鱼粉中至少30%的蛋白质, 且不会对大黄鱼的生长、饲料利用率和肉质产生负面影响。本研究中大黄鱼对黄粉虫干物质、粗蛋白、粗脂肪和能量的表观消化率分别为69.49%、69.93%、63.04%和71.72%, 这表明大黄鱼对黄粉虫粉的利用率较低, 可能有两方面原因: 首先本研究采用的是脱脂黄粉虫粉, 其粗脂肪含量只有0.76%, Hillestad等[51]和Boujard等[52]在研究中证明适量的脂肪水平可以节省饲料蛋白质和提高饲料利用效率, 本研究中大黄鱼对黄粉虫粉的利用率较低可能是黄粉虫粗脂肪含量低导致的; 另一方面, 黄粉虫粉中含有较高的甲壳素含量, Alegbeleye等[53]研究证实甲壳素含量高可能会阻碍非洲鲶(Clarias gariepinus)对其他营养成分的吸收利用。本研究中黄粉虫粉具有与鱼粉相似的氨基酸组成, 必需氨基酸中蛋氨酸和赖氨酸含量较高, 而异亮氨酸含量较低, 李晋南等[54]研究发现饲料中较低的异亮氨酸含量会对大黄鱼生长和饲料利用等方面有负面影响。因此, 脱脂黄粉虫粉可在搭配含高脂和高异亮氨酸原料的大黄鱼饲料中使用。

    棉籽浓缩蛋白是经脱酚提油后得到的一种新型植物蛋白源[19]。本研究中大黄鱼对棉籽浓缩蛋白干物质的表观消化率最低, 仅为56.77%。在时于惠等[55]和程云旺等[22]的研究中, 大口黑鲈和花鲈(Lateolabrax maculatus)对脱酚棉籽蛋白干物质的消化率同样较低, 仅为37.27%和69.24%, 这与本研究相符。大黄鱼对棉籽浓缩蛋白的利用率较低可能是因为其中含有较高的纤维素含量(4.5%), 鱼类较难吸收饲料中的纤维素。较高的纤维素含量会降低原料干物质的表观消化率, 这一点已在Kraugerud等[56]用大豆纤维素喂养大西洋鲑鱼的研究中证实。本研究中大黄鱼对棉籽浓缩蛋白氨基酸的表观消化率为69.82%—97.86%, 其中蛋氨酸和赖氨酸的表观消化率较低, 分别为79.15%和69.82%, 这可能是由于原料中缺乏蛋氨酸和赖氨酸所致。此外, 棉籽浓缩蛋白中含有较高浓度的精氨酸, 过多的精氨酸也会阻碍赖氨酸的消化吸收。因此, 大黄鱼饲料中若添加棉籽浓缩蛋白, 还需补充蛋氨酸和赖氨酸且避开使用精氨酸含量高的原料。

    根据大黄鱼对5种蛋白质原料的表观消化率和原料的营养含量, 乙醇梭菌蛋白是5种原料中最理想的蛋白源、小球藻次之, 可作为大黄鱼饲料中鱼粉的有效替代原料。

  • 图  1   海洋生态系统中常见的砷化合物结构

    Figure  1.   Structures of arsenic speciation commonly found in marine ecosystem

    图  2   海洋生物砷代谢示意图

    Figure  2.   Schematic diagram of arsenic metabolism in marine organisms

    表  1   海洋生物体内总砷含量和所检出的砷化合物形态

    Table  1   The concentrations of total arsenic and speciation in marine organisms

    海洋生物类群
    Marine organism
    group
    砷浓度范围
    (μg/g, 干重)
    Arsenic concentration
    range (μg/g, dry weight)
    砷形态
    Arsenic speciation
    浮游植物Phytoplankton 0.1—35 As (Ⅲ)、As (Ⅴ)、MMA、DMA、TMA、TMAO、AsS
    浮游动物 Zooplankton 0.2—24.4 As (Ⅲ)、As (Ⅴ)、MMA、DMA、AsS、AsB
    多毛类Polychaete 0.07—2739 As (Ⅲ)、As (Ⅴ)、MMA、DMA、TETRA、AsB
    腹足类Gastropod 0.42—118 As (Ⅲ)、As (Ⅴ)、MMA、DMA、AsB
    双壳类Bivalve 0.06—100 As (Ⅲ)、As (Ⅴ)、MMA、DMA、AsS、AsC、AsB
    头足类Cephalopoda 0.23—1300 As (Ⅲ)、As (Ⅴ)、MMA、DMA、AsB
    甲壳类Crustacean 0.21—35.8 As (Ⅲ)、As (Ⅴ)、MMA、DMA、AsC、AsB
    海胆类Echinoidea 2.84—53 As (Ⅲ)、As (Ⅴ)、MMA、DMA、AsB
    上层鱼类
    Pelagic fish
    2.09—134 As (Ⅲ)、As (Ⅴ)、MMA、DMA、AsC、AsB
    底栖鱼类
    Benthic fish
    5.6—449.5 As (Ⅲ)、As (Ⅴ)、MMA、DMA、AsC、AsB
    下载: 导出CSV
  • [1]

    Pan K, Wang W X. Trace metal contamination in estuarine and coastal environments in China [J]. Science of the Total Environment, 2012(421): 3-16.

    [2]

    Sharma V K, Sohn M. Aquatic arsenic: Toxicity, speciation, transformations, and remediation [J]. Environment International, 2009, 35(4): 743-759. doi: 10.1016/j.envint.2009.01.005

    [3]

    Byeon E, Kang H M, Yoon C, et al. Toxicity mechanisms of arsenic compounds in aquatic organisms [J]. Aquatic toxicology, 2021(237): 105901.

    [4]

    Huang J H. Arsenic trophodynamics along the food chains/webs of different ecosystems: a review [J]. Chemistry and Ecology, 2016, 32(9): 803-828. doi: 10.1080/02757540.2016.1201079

    [5]

    Mandal B K, Suzuki K T. Arsenic round the world: a review [J]. Talanta, 2002, 58(1): 201-235. doi: 10.1016/S0039-9140(02)00268-0

    [6]

    Smedley P L, Kinniburgh D G. A review of the source, behaviour and distribution of arsenic in natural waters [J]. Applied Geochemistry, 2002, 17(5): 517-568. doi: 10.1016/S0883-2927(02)00018-5

    [7]

    Kato L S, Ferrari R G, Leite J V M, et al. Arsenic in shellfish: A systematic review of its dynamics and potential health risks [J]. Marine Pollution Bulletin, 2020(161): 111693.

    [8]

    Zhang W, Miao A, Wang N X, et al. Arsenic bioaccumulation and biotransformation in aquatic organisms [J]. Environment International, 2022(163): 107221.

    [9]

    Kumari B, Kumar V, Sinha A K, et al. Toxicology of arsenic in fish and aquatic systems [J]. Environmental Chemistry Letters, 2017, 15(1): 43-64. doi: 10.1007/s10311-016-0588-9

    [10]

    Wang Y, Wang S, Xu P, et al. Review of arsenic speciation, toxicity and metabolism in microalgae [J]. Reviews in Environmental Science and Bio/Technology, 2015, 14(3): 427-451. doi: 10.1007/s11157-015-9371-9

    [11]

    Hussain M M, Wang J, Bibi I, et al. Arsenic speciation and biotransformation pathways in the aquatic ecosystem: The significance of algae [J]. Journal of Hazardous Materials, 2021(403): 124027.

    [12]

    Caumette G, Koch I, Estrada E, et al. Arsenic speciation in plankton organisms from contaminated lakes: Transformations at the base of the freshwater food chain [J]. Environmental Science & Technology, 2011, 45(23): 9917-9923.

    [13]

    Liu T, Lin H, Zhang L. Arsenic bioaccumulation and biotransformation in the marine copepod Tigriopus japonicus under chronic dietborne and waterborne exposure [J]. Journal of Hazardous Materials, 2024(474): 134655.

    [14]

    Fattorini D, Notti A, Halt M N, et al. Levels and chemical speciation of arsenic in polychaetes: a review [J]. Marine Ecology, 2005, 26(3-4): 255-264. doi: 10.1111/j.1439-0485.2005.00057.x

    [15]

    Zhang W, Guo Z, Song D, et al. Arsenic speciation in wild marine organisms and a health risk assessment in a subtropical bay of China [J]. Science of The Total Environment, 2018(626): 621-629.

    [16]

    Rahman M A, Hasegawa H, Peter Lim R. Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain [J]. Environmental Research, 2012, 116: 118-135. doi: 10.1016/j.envres.2012.03.014

    [17]

    Ghosh D, Ghosh A, Bhadury P. Arsenic through aquatic trophic levels: effects, transformations and biomagnification—a concise review [J]. Geoscience Letters, 2022, 9(1): 20. doi: 10.1186/s40562-022-00225-y

    [18]

    Zhang L, Huang L, Ye Z, et al. Integrating transcriptome and metabolome analyses revealed salinity induces arsenobetaine biosynthesis in marine medaka (Oryzias melastigma) [J]. Environmental Science & Technology, 2024, 58(40): 17629-17640.

    [19]

    Caumette G, Koch I, Reimer K J. Arsenobetaine formation in plankton: a review of studies at the base of the aquatic food chain [J]. Journal of Environmental Monitoring, 2012, 14(11): 2841-2853. doi: 10.1039/c2em30572k

    [20]

    Popowich A, Zhang Q, Le X C. Arsenobetaine: The ongoing mystery [J]. National Science Review, 2016, 3(4): 451-458. doi: 10.1093/nsr/nww061

    [21]

    Jiang Y, Purchase D, Jones H, et al. Technical note: effects of arsenate (AS5+) on growth and production of glutathione (GSH) and phytochelatins (PCS) in Chlorella vulgaris [J]. International Journal of Phytoremediation, 2011, 13(8): 834-844. doi: 10.1080/15226514.2010.525560

    [22]

    Zhang J, Ding T, Zhang C. Biosorption and toxicity responses to arsenite (As[III]) in Scenedesmus quadricauda [J]. Chemosphere, 2013, 92 (9): 1077-1084.

    [23]

    Naveed S, Yu Q, Zhang C, et al. Extracellular polymeric substances alter cell surface properties, toxicity, and accumulation of arsenic in Synechocystis PCC6803 [J]. Environmental Pollution, 2020(261): 114233.

    [24]

    Zhang J, Zhou F, Liu Y, et al. Effect of extracellular polymeric substances on arsenic accumulation in Chlorella pyrenoidosa [J]. Science of the Total Environment, 2020(704): 135368.

    [25]

    Naveed S, Li C, Lu X, et al. Microalgal extracellular polymeric substances and their interactions with metal(loid)s: A review [J]. Critical Reviews in Environmental Science and Technology, 2019, 49(19): 1769-1802. doi: 10.1080/10643389.2019.1583052

    [26]

    Duncan E G, Maher W A, Foster S D. Contribution of arsenic species in unicellular algae to the cycling of arsenic in marine ecosystems [J]. Environmental Science & Technology, 2015, 49(1): 33-50.

    [27]

    Karadjova I B, Slaveykova V I, Tsalev D L. The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater [J]. Aquatic Toxicology, 2008, 87(4): 264-271. doi: 10.1016/j.aquatox.2008.02.006

    [28]

    Zhang S, Rensing C, Zhu Y G. Cyanobacteria-mediated arsenic redox dynamics is regulated by phosphate in aquatic environments [J]. Environmental Science & Technology, 2014, 48(2): 994-1000.

    [29]

    Zhang S Y, Sun G X, Yin X X, et al. Biomethylation and volatilization of arsenic by the marine microalgae Ostreococcus tauri [J]. Chemosphere, 2013, 93(1): 47-53. doi: 10.1016/j.chemosphere.2013.04.063

    [30]

    Duncan E G, Maher W A, Foster S D, et al. Influence of culture regime on arsenic cycling by the marine phytoplankton Dunaliella tertiolecta and Thalassiosira pseudonana [J]. Environmental Chemistry, 2013, 10(2): 91-101. doi: 10.1071/EN12191

    [31]

    Wang N X, Huang B, Xu S, et al. Effects of nitrogen and phosphorus on arsenite accumulation, oxidation, and toxicity in Chlamydomonas reinhardtii [J]. Aquatic Toxicology, 2014(157): 167-174.

    [32]

    Wurl O, Zimmer L, Cutter G A. Arsenic and phosphorus biogeochemistry in the ocean: Arsenic species as proxies for P-limitation [J]. Limnology and Oceanography, 2013, 58(2): 729-740. doi: 10.4319/lo.2013.58.2.0729

    [33]

    Wang N X, Chen Z Y, Zhou W Q, et al. Influence of humic acid and fluvic acid on the altered toxicities of arsenite and arsenate toward two freshwater algae [J]. Aquatic Toxicology, 2022(249): 106218.

    [34]

    Papry R I, Fujisawa S, Zai Y, et al. Freshwater phytoplankton: Salinity stress on arsenic biotransformation [J]. Environmental Pollution, 2021(270): 116090.

    [35]

    Papry R I, Omori Y, Fujisawa S, et al. Arsenic biotransformation potential of marine phytoplankton under a salinity gradient [J]. Algal Research, 2020(47): 101842.

    [36]

    Murray L A, Raab A, Marr I L, et al. Biotransformation of arsenate to arsenosugars by Chlorella vulgaris [J]. Applied Organometallic Chemistry, 2003, 17(9): 669-674. doi: 10.1002/aoc.498

    [37]

    Ma Q, Chen L, Zhang L. Effects of phosphate on the toxicity and bioaccumulation of arsenate in marine diatom Skeletonema costatum [J]. Science of The Total Environment, 2023(857): 159566.

    [38]

    Ma Q, Zhang L. The influences of dissolved inorganic and organic phosphorus on arsenate toxicity in marine diatom Skeletonema costatum and dinoflagellate Amphidinium carterae [J]. Journal of Hazardous Materials, 2023(453): 131432.

    [39]

    Posadas E, Muñoz A, García-González M-C, et al. A case study of a pilot high rate algal pond for the treatment of fish farm and domestic wastewaters [J]. Journal of Chemical Technology & Biotechnology, 2015, 90(6): 1094-1101.

    [40]

    Wang Z, Gui H, Luo Z, et al. Dissolved organic phosphorus enhances arsenate bioaccumulation and biotransformation in Microcystis aeruginosa [J]. Environmental Pollution, 2019(252): 1755-1763.

    [41]

    Maeda S, Mawatari K, Ohki A, et al. Arsenic metabolism in a freshwater food chain: Blue-green alga (Nostoc sp.)→ shrimp (Neocaridina denticulata)→ carp (Cyprinus carpio) [J]. Applied Organometallic Chemistry, 1993, 7(7): 467-476. doi: 10.1002/aoc.590070705

    [42]

    Wang Z, Luo Z, Yan C, et al. Impacts of environmental factors on arsenate biotransformation and release in Microcystis aeruginosa using the Taguchi experimental design approach [J]. Water Research, 2017(118): 167-176.

    [43]

    Caumette G, Koch I, House K, et al. Arsenic cycling in freshwater phytoplankton and zooplankton cultures [J]. Environmental Chemistry, 2014, 11(5): 496-505. doi: 10.1071/EN14039

    [44]

    Rahman M A, Hasegawa H. Arsenic in freshwater systems: Influence of eutrophication on occurrence, distribution, speciation, and bioaccumulation [J]. Applied Geochemistry, 2012, 27(1): 304-314. doi: 10.1016/j.apgeochem.2011.09.020

    [45]

    Byeon E, Yoon C, Lee J-S, et al. Interspecific biotransformation and detoxification of arsenic compounds in marine rotifer and copepod [J]. Journal of Hazardous Materials, 2020(391): 122196.

    [46]

    Liu T, Zhang L. Multigenerational effects of arsenate on development and reproduction in marine copepod Tigriopus japonicus [J]. Chemosphere, 2023(342): 140158.

    [47]

    Chen C Y, Folt C L. Bioaccumulation and diminution of arsenic and lead in a freshwater food web [J]. Environmental Science & Technology, 2000, 34(18): 3878-2884.

    [48]

    Mendoza-Chávez Y J, Uc-Castillo J L, Cervantes-Martínez A, et al. Paracyclops chiltoni inhabiting water highly contaminated with arsenic: Water chemistry, population structure, and arsenic distribution within the organism [J]. Environmental Pollution, 2021( 284) : 117155.

    [49]

    Wang N-X, Liu Y Y, Wei Z-B, et al. Waterborne and dietborne toxicity of inorganic arsenic to the freshwater zooplankton Daphnia magna [J]. Environmental Science & Technology, 2018, 52(15): 8912-8919.

    [50]

    Zheng S, Wang R, Kainz M J, et al. How phytoplankton biomass controls metal(loid) bioaccumulation in size-fractionated plankton in anthropogenic-impacted subtropical lakes: A comprehensive study in the Yangtze River Delta, China [J]. Water Research, 2022(224): 119075.

    [51]

    Hong S, Choi S D, Khim J S. Arsenic speciation in environmental multimedia samples from the Youngsan River Estuary, Korea: A comparison between freshwater and saltwater [J]. Environmental Pollution, 2018(237): 842-850.

    [52]

    Kirby J, Maher W, Chariton A, et al. Arsenic concentrations and speciation in a temperate mangrove ecosystem, NSW, Australia [J]. Applied Organometallic Chemistry, 2002, 16(4): 192-201. doi: 10.1002/aoc.283

    [53]

    Battuello M, Sartor R M, Brizio P, et al. The influence of feeding strategies on trace element bioaccumulation in copepods (Calanoida) [J]. Ecological Indicators, 2017(74): 311-320.

    [54]

    Viana J L M, Steffler D A, Hernández A H, et al. Bioaccumulation and speciation of arsenic in plankton from tropical soda lakes along a salinity gradient [J]. Science of the Total Environment, 2023(895): 165189.

    [55]

    Hechavarría-Hernández A, Viana J L M, Barbiero L, et al. Spatial and seasonal variation of arsenic speciation in Pantanal soda lakes [J]. Chemosphere, 2023(329): 138672.

    [56]

    Pothier M P, Lenoble V, Garnier C, et al. Dissolved organic matter controls of arsenic bioavailability to bacteria [J]. Science of The Total Environment, 2020(716): 137118.

    [57]

    Yin Q, Wang W-X. Multiple trace element accumulation in the mussel Septifer virgatus: Counteracting effects of salinity on uptake and elimination [J]. Environmental Pollution, 2018(242): 375-382.

    [58]

    Howard A G, Comber S D W, Kifle D, et al. Arsenic speciation and seasonal changes in nutrient availability and micro-plankton abundance in Southampton water, U. K [J]. Estuarine, Coastal and Shelf Science, 1995, 40(4): 435-450. doi: 10.1006/ecss.1995.0030

    [59]

    Andreote A P D, Dini-Andreote F, Rigonato J, et al. Contrasting the genetic patterns of microbial communities in Soda Lakes with and without cyanobacterial bloom [J]. Frontiers in Microbiology, 2018(9): 244.

    [60]

    Waring J, Maher W, Foster S, et al. Occurrence and speciation of arsenic in common Australian coastal polychaete species [J]. Environmental Chemistry, 2005, 2(2): 108-118. doi: 10.1071/EN05027

    [61]

    Waring J, Maher W. Arsenic bioaccumulation and species in marine polychaeta [J]. Applied Organometallic Chemistry, 2005, 19(8): 917-929. doi: 10.1002/aoc.938

    [62]

    Gibbs P E, Langston W J, Burt G R, et al. Tharyx marioni (Polychaeta): a remarkable accumulator of arsenic [J]. Journal of the Marine Biological Association of the United Kingdom, 1983, 63 (2): 313-325.

    [63]

    Fattorini D, Regoli F. Arsenic speciation in tissues of the mediterranean polychaete Sabella spallanzanii [J]. Environmental Toxicology and Chemistry, 2004, 23(8): 1881-1887. doi: 10.1897/03-562

    [64]

    Casado-Martinez M, Smith B D, Luoma S N, et al. Metal toxicity in a sediment-dwelling polychaete: Threshold body concentrations or overwhelming accumulation rates [J]? Environmental Pollution, 2010, 158(10): 3071-3076. doi: 10.1016/j.envpol.2010.06.026

    [65]

    Casado-Martinez M C, Smith B D, Luoma S N, et al. Bioaccumulation of arsenic from water and sediment by a deposit-feeding polychaete (Arenicola marina): A biodynamic modelling approach [J]. Aquatic Toxicology, 2010, 98(1): 34-43. doi: 10.1016/j.aquatox.2010.01.015

    [66]

    Rainbow P S, Smith B D, Casado-Martinez M C. Biodynamic modelling of the bioaccumulation of arsenic by the polychaete Nereis diversicolor [J]. Environmental Chemistry, 2011, 8(1): 1-8. doi: 10.1071/EN10089

    [67]

    Zhang W, Wang W X. Arsenic biokinetics and bioavailability in deposit-feeding clams and polychaetes [J]. Science of the Total Environment, 2018(616-617): 594-601.

    [68]

    Gaion A, Scuderi A, Pellegrini D, et al. Bioconcentration and arsenic speciation analysis in ragworm, Hediste diversicolor (Muller 1776) [J]. Bulletin of Environmental Contamination and Toxicology, 2013, 90(1): 120-125. doi: 10.1007/s00128-012-0875-5

    [69]

    Geiszinger A E, Goessler W, Francesconi K A. The marine polychaete Arenicola marina: its unusual arsenic compound pattern and its uptake of arsenate from seawater [J]. Marine Environmental Research, 2002, 53(1): 37-50. doi: 10.1016/S0141-1136(01)00106-4

    [70]

    Geiszinger A E, Goessler W, Francesconi K A. Biotransformation of arsenate to the tetramethylarsonium ion in the marine polychaetes Nereis diversicolor and Nereis virens [J]. Environmental Science & Technology, 2002, 36(13): 2905-2910.

    [71]

    Ventura-Lima J, Ramos P B, Fattorini D, et al. Accumulation, biotransformation, and biochemical responses after exposure to arsenite and arsenate in the estuarine polychaete Laeonereis acuta (Nereididae) [J]. Environmental Science and Pollution Research, 2011, 18(8): 1270-1278. doi: 10.1007/s11356-011-0478-4

    [72]

    Nunes S M, Josende M E, Ruas C P, et al. Biochemical responses induced by co-exposition to arsenic and titanium dioxide nanoparticles in the estuarine polychaete Laeonereis acuta [J]. Toxicology, 2017(376): 51-58.

    [73]

    Fattorini D, Bocchetti R, Bompadre S, et al. Total content and chemical speciation of arsenic in the polychaete Sabella spallanzanii [J]. Marine Environmental Research, 2004, 58(2): 839-843.

    [74]

    Zhang W, Wang W X, Zhang L. Comparison of bioavailability and biotransformation of inorganic and organic arsenic to two marine fish [J]. Environmental Science & Technology, 2016, 50(5): 2413-2423.

    [75]

    Gaion A, Sartori D, Scuderi A, et al. Bioaccumulation and biotransformation of arsenic compounds in Hediste diversicolor (Muller 1776) after exposure to spiked sediments [J]. Environmental Science and Pollution Research, 2014, 21(9): 5952-5959. doi: 10.1007/s11356-014-2538-z

    [76]

    Casado-Martinez M C, Duncan E, Smith B D, et al. Arsenic toxicity in a sediment-dwelling polychaete: detoxification and arsenic metabolism [J]. Ecotoxicology, 2012, 21(2): 576-590. doi: 10.1007/s10646-011-0818-7

    [77]

    Notti A, Fattorini D, Razzetti E M, et al. Bioaccumulation and biotransformation of arsenic in the Mediterranean polychaete Sabella spallanzanii experimental observations [J]. Environmental Toxicology and Chemistry, 2007, 26(6): 1186-1191. doi: 10.1897/06-362R.1

    [78]

    Ventura-Lima J, Sandrini J Z, Cravo M F, et al. Toxicological responses in Laeonereis acuta (Annelida, Polychaeta) after arsenic exposure [J]. Environment International, 2007, 33(4): 559-564. doi: 10.1016/j.envint.2006.09.016

    [79]

    Liu J, Cao L, Dou S. Bioaccumulation of heavy metals and health risk assessment in three benthic bivalves along the coast of Laizhou Bay, China [J]. Marine Pollution Bulletin, 2017, 117(1): 98-110.

    [80]

    Liu Q, Liao Y, Shou L. Concentration and potential health risk of heavy metals in seafoods collected from Sanmen Bay and its adjacent areas, China [J]. Marine Pollution Bulletin, 2018(131): 356-364.

    [81]

    Liu Y, Liu G, Yuan Z, et al. Presence of arsenic, mercury and vanadium in aquatic organisms of Laizhou Bay and their potential health risk [J]. Marine Pollution Bulletin, 2017, 125(1): 334-340.

    [82]

    Price R E, Breuer C, Reeves E, et al. Arsenic bioaccumulation and biotransformation in deep-sea hydrothermal vent organisms from the Pacmanus hydrothermal field, Manus Basin, PNG [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2016(117): 95-106.

    [83]

    Chandurvelan R, Marsden I D, Glover C N, et al. Assessment of a mussel as a metal bioindicator of coastal contamination: Relationships between metal bioaccumulation and multiple biomarker responses [J]. Science of the Total Environment, 2015(511): 663-675.

    [84]

    Krishnakumar P K, Qurban M A, Stiboller M, et al. Arsenic and arsenic species in shellfish and finfish from the western Arabian Gulf and consumer health risk assessment [J]. Science of the Total Environment, 2016(566-567): 1235-1244.

    [85]

    Maher W, Waring J, Krikowa F, et al. Ecological factors affecting the accumulation and speciation of arsenic in twelve Australian coastal bivalve molluscs [J]. Environmental Chemistry, 2018, 15(2): 46-57. doi: 10.1071/EN17106

    [86]

    Bonsignore M, Salvagio Manta D, Mirto S, et al. Bioaccumulation of heavy metals in fish, crustaceans, molluscs and echinoderms from the Tuscany coast [J]. Ecotoxicology and Environmental Safety, 2018(162): 554-562.

    [87]

    Kaya G, Turkoglu S. Bioaccumulation of heavy metals in various tissues of some fish species and green tiger shrimp (Penaeus semisulcatus) from İskenderun Bay, Turkey, and risk assessment for human health [J]. Biological Trace Element Research, 2017, 180(2): 314-326. doi: 10.1007/s12011-017-0996-0

    [88]

    Foster S, Maher W. Arsenobetaine and thio-arsenic species in marine macroalgae and herbivorous animals: Accumulated through trophic transfer or produced in situ? [J]. Journal of Environmental Sciences, 2016(49): 131-139.

    [89]

    Mok J S, Yoo H D, Kim P H, et al. Bioaccumulation of heavy metals in oysters from the Southern Coast of Korea: Assessment of potential risk to human health [J]. Bulletin of Environmental Contamination and Toxicology, 2015, 94(6): 749-755. doi: 10.1007/s00128-015-1534-4

    [90]

    Nam S-H, Cui S, Oh H-J, et al. A study on arsenic speciation in Korean oyster samples using ion chromatography inductively coupled plasma mass spectrometry [J]. Bulletin of the Korean Chemical Society, 2015, 36(1): 250-257. doi: 10.1002/bkcs.10059

    [91]

    Julshamn K, Valdersnes S, Duinker A, et al. Heavy metals and POPs in red king crab from the Barents Sea [J]. Food Chemistry, 2015(167): 409-417.

    [92]

    Ghaeni M, Pour N A, Hosseini M. Bioaccumulation of polychlorinated biphenyl (PCB), polycyclic aromatic hydrocarbon (PAH), mercury, methyl mercury, and arsenic in blue crab Portunus segnis from Persian Gulf [J]. Environmental Monitoring and Assessment, 2015, 187(5): 253. doi: 10.1007/s10661-015-4459-9

    [93]

    Liu F, Wang W X. Linking trace element variations with macronutrients and major cations in marine mussels Mytilus edulis and Perna viridis [J]. Environmental Toxicology and Chemistry, 2015, 34(9): 2041-2050. doi: 10.1002/etc.3027

    [94]

    Maher W, Maher N, Taylor A, et al. The use of the marine gastropod, Cellana tramoserica, as a biomonitor of metal contamination in near shore environments [J]. Environmental Monitoring and Assessment, 2016, 188(7): 391. doi: 10.1007/s10661-016-5380-6

    [95]

    Chen L, Wu H, Zhao J, et al. The role of GST omega in metabolism and detoxification of arsenic in clam Ruditapes philippinarum [J]. Aquatic Toxicology, 2018(204): 9-18.

    [96]

    Zhao Y, Kang X, Ding H, et al. Bioaccumulation and biotransformation of inorganic arsenic in zhikong scallop (Chlamys farreri) after waterborne exposure [J]. Chemosphere, 2021(277): 130270.

    [97]

    Zhang W, Guo Z, Zhou Y, et al. Biotransformation and detoxification of inorganic arsenic in Bombay oyster Saccostrea cucullata [J]. Aquatic Toxicology, 2015(158): 33-40.

    [98]

    Zhang W, Guo Z, Wu Y, et al. Arsenic boaccumulation and biotransformation in clams (Asaphis violascens) exposed to inorganic arsenic: effects of species and concentrations [J]. Bulletin of Environmental Contamination and Toxicology, 2019, 103(1): 114-119. doi: 10.1007/s00128-018-2493-3

    [99]

    Catharino M G M, Vasconcellos M B A, Kirschbaum A A, et al. Passive biomonitoring study and effect biomarker in oysters Crassostrea brasiliana (Lamark, 1819: Mollusca, Bivalvia) in Santos and Cananéia Estuaries in São Paulo State, Brazil [J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303(3): 2297-2302.

    [100]

    Aguirre-Rubí J R, Ortiz-Zarragoitia M, Izagirre U, et al. Prospective biomonitor and sentinel bivalve species for pollution monitoring and ecosystem health disturbance assessment in mangrove–lined Nicaraguan coasts [J]. Science of the Total Environment, 2019(649): 186-200.

    [101]

    Jacques B, Dames N, Botha A, et al. Trace elements in Mediterranean mussels from the South African West Coast [J]. Ecological Chemistry and Engineering S, 2016, 22(4): 489-498.

    [102]

    Zhang W, Wang W X, Zhang L. Arsenic speciation and spatial and interspecies differences of metal concentrations in mollusks and crustaceans from a South China estuary [J]. Ecotoxicology, 2013, 22(4): 671-682. doi: 10.1007/s10646-013-1059-8

    [103]

    Nędzarek A, Czerniejewski P, Tórz A. Microelements and macroelements in the body of the invasive Harris mud crab (Rhithropanopeus harrisii, Maitland, 1874) from the central coast of the South Baltic Sea [J]. Environmental Monitoring and Assessment, 2019, 191(8): 499. doi: 10.1007/s10661-019-7564-3

    [104]

    Gu X, Ouyang W, Xu L, et al. Occurrence, migration, and allocation of arsenic in multiple media of a typical semi-enclosed bay [J]. Journal of Hazardous Materials, 2020(384): 121313.

    [105]

    Baki M A, Hossain M M, Akter J, et al. Concentration of heavy metals in seafood (fishes, shrimp, lobster and crabs) and human health assessment in Saint Martin Island, Bangladesh [J]. Ecotoxicology and Environmental Safety, 2018(159): 153-63.

    [106]

    Khristoforova N К, Tsygankov V Y, Boyarova M D, et al. The role of the biogeochemical conditions of the marine environment on the trace element content in pacific salmon [J]. Achievements in the Life Sciences, 2014, 8(1): 55-60. doi: 10.1016/j.als.2014.06.009

    [107]

    Du S, Zhou Y, Zhang L. The potential of arsenic biomagnification in marine ecosystems: A systematic investigation in Daya Bay in China [J]. Science of the Total Environment, 2021(773): 145068.

    [108]

    Dara M, Parisi M G, La Corte C, et al. Sabella spallanzanii mucus bacterial agglutinating activity after arsenic exposure. The equilibrium between predation safety and immune response stability [J]. Marine Pollution Bulletin, 2022( 181) : 113833.

    [109]

    Wang Z, Gu X, Ouyang W, et al. Trophodynamics of arsenic for different species in coastal regions of the Northwest Pacific Ocean: In situ evidence and a meta-analysis [J]. Water Research, 2020(184): 116186.

    [110]

    Cui B, Zhang Q, Zhang K, et al. Analyzing trophic transfer of heavy metals for food webs in the newly-formed wetlands of the Yellow River Delta, China [J]. Environmental Pollution, 2011, 159(5): 1297-1306. doi: 10.1016/j.envpol.2011.01.024

    [111]

    Zhang L, Shi Z, Jiang Z, et al. Distribution and bioaccumulation of heavy metals in marine organisms in east and west Guangdong coastal regions, South China [J]. Marine Pollution Bulletin, 2015, 101(2): 930-937. doi: 10.1016/j.marpolbul.2015.10.041

    [112]

    Zhao B, Wang X, Jin H, et al. Spatiotemporal variation and potential risks of seven heavy metals in seawater, sediment, and seafood in Xiangshan Bay, China (2011–2016) [J]. Chemosphere, 2018(212): 1163-1171.

    [113]

    Banaee M, Zeidi A, Mikušková N, et al. Assessing metal toxicity on crustaceans in aquatic ecosystems: a comprehensive review [J]. Biological Trace Element Research, 2024, 202(12): 5743-5761. doi: 10.1007/s12011-024-04122-7

    [114]

    Rodrigues De Almeida P, Ferrari R G, Kato L S, et al. A systematic review on metal dynamics and marine toxicity risk assessment using crustaceans as bioindicators [J]. Biological Trace Element Research, 2022, 200(2): 881-903. doi: 10.1007/s12011-021-02685-3

    [115]

    Zhang W, Wang W X. Large-scale spatial and interspecies differences in trace elements and stable isotopes in marine wild fish from Chinese waters [J]. Journal of Hazardous Materials, 2012(215-216): 65-74.

    [116]

    Amlund H, Francesconi K A, Bethune C, et al. Accumulation and elimination of dietary arsenobetaine in two species of fish, Atlantic salmon (Salmo salar L.) and Atlantic cod (Gadus morhua L.) [J]. Environmental Toxicology and Chemistry, 2006, 25(7): 1787-1794. doi: 10.1897/05-107R1.1

    [117]

    Chen L, Song D, Zhang W, et al. The dynamic changes of arsenic bioaccumulation and antioxidant responses in the marine medaka Oryzias melastigma during chronic exposure [J]. Aquatic Toxicology, 2019(212): 110-119.

    [118]

    Zhang W, Huang L, Wang W X. Arsenic bioaccumulation in a marine juvenile fish Terapon jarbua [J]. Aquatic Toxicology, 2011, 105(3): 582-588.

    [119]

    Zhang W, Zhang L, Wang W X. Prey-specific determination of arsenic bioaccumulation and transformation in a marine benthic fish [J]. Science of The Total Environment, 2017(586): 296-303.

    [120]

    Zhang W, Chen L, Zhou Y, et al. Biotransformation of inorganic arsenic in a marine herbivorous fish Siganus fuscescens after dietborne exposure [J]. Chemosphere, 2016(147): 297-304.

    [121]

    Zhang W, Guo Z, Zhou Y, et al. Comparative contribution of trophic transfer and biotransformation on arsenobetaine bioaccumulation in two marine fish [J]. Aquatic Toxicology, 2016(179): 65-71.

    [122]

    Zhang W, Song D, Tan Q G, et al. Physiologically based pharmacokinetic model for the biotransportation of arsenic in marine medaka (Oryzias melastigma) [J]. Environmental Science & Technology, 2020, 54(12): 7485-7493.

    [123]

    Xiong H, Tan Q G, Zhang J, et al. Physiologically based pharmacokinetic model revealed the distinct bio-transportation and turnover of arsenobetaine and arsenate in marine fish [J]. Aquatic Toxicology, 2021(240): 105991.

    [124]

    Song D, Chen L, Zhu S, et al. Gut microbiota promote biotransformation and bioaccumulation of arsenic in tilapia [J]. Environmental Pollution, 2022(305): 119321.

    [125]

    Song D, Zhu S, Chen L, et al. The strategy of arsenic metabolism in an arsenic-resistant bacterium Stenotrophomonas maltophilia SCSIOOM isolated from fish gut [J]. Environmental Pollution, 2022(312): 120085.

    [126]

    Zhu Y G, Xue X M, Kappler A, et al. Linking genes to microbial biogeochemical cycling: Lessons from arsenic [J]. Environmental Science & Technology, 2017, 51(13): 7326-7339.

    [127]

    Zhu Y G, Yoshinaga M, Zhao F J, et al. Earth abides arsenic biotransformations [J]. Annual Review of Earth and Planetary Sciences, 2014(42): 443-467.

    [128]

    Rosen B P. Biochemistry of arsenic detoxification [J]. FEBS Letters, 2002, 529(1): 86-92. doi: 10.1016/S0014-5793(02)03186-1

    [129]

    Lett M C, Muller D, Lièvremont D, et al. Unified nomenclature for genes involved in prokaryotic aerobic arsenite oxidation [J]. Journal of Bacteriology, 2012, 194(2): 207-208. doi: 10.1128/JB.06391-11

    [130]

    Zargar K, Hoeft S, Oremland R, et al. Identification of a novel arsenite oxidase gene, arxA, in the Haloalkaliphilic, arsenite-oxidizing bacterium Alkalilimnicola ehrlichii strain MLHE-1 [J]. Journal of Bacteriology, 2010, 192(14): 3755-3762. doi: 10.1128/JB.00244-10

    [131]

    Ye J, Rensing C, Rosen B P, et al. Arsenic biomethylation by photosynthetic organisms [J]. Trends in Plant Science, 2012, 17(3): 155-162. doi: 10.1016/j.tplants.2011.12.003

    [132]

    Islam K, Wang Q Q, Naranmandura H. Chapter three-Molecular Mechanisms of Arsenic Toxicity [M]//Fishbein J C, Heilman J M (Eds.), Advances in Molecular Toxicology. Elsevier. 2015: 77-107.

    [133]

    Challenger F. Biological Methylation [M]. Advances in Enzymology and Related Areas of Molecular Biology. 1951: 429-491.

    [134]

    Hong Y S, Song K H, Chung J Y. Health effects of chronic arsenic exposure [J]. Journal of Preventive Medicine and Public Health, 2014, 47(5): 245-252. doi: 10.3961/jpmph.14.035

    [135]

    Vasken Aposhian H, Zakharyan R A, Avram M D, et al. A review of the enzymology of arsenic metabolism and a new potential role of hydrogen peroxide in the detoxication of the trivalent arsenic species [J]. Toxicology and Applied Pharmacology, 2004, 198(3): 327-335. doi: 10.1016/j.taap.2003.10.027

    [136]

    Petrick J S, Ayala-Fierro F, Cullen W R, et al. Monomethylarsonous acid (MMAⅢ) is more toxic than arsenite in chang human hepatocytes [J]. Toxicology and Applied Pharmacology, 2000, 163(2): 203-207. doi: 10.1006/taap.1999.8872

    [137]

    Styblo M, Del Razo L M, Vega L, et al. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells [J]. Archives of Toxicology, 2000, 74(6): 289-299. doi: 10.1007/s002040000134

    [138]

    Kala S V, Neely M W, Kala G, et al. The MRP2/cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic [J]. Journal of Biological Chemistry, 2000, 275(43): 33404-33408. doi: 10.1074/jbc.M007030200

    [139]

    Hayakawa T, Kobayashi Y, Cui X, et al. A new metabolic pathway of arsenite: arsenic–glutathione complexes are substrates for human arsenic methyltransferase Cyt19 [J]. Archives of Toxicology, 2005, 79(4): 183-191. doi: 10.1007/s00204-004-0620-x

    [140]

    Naranmandura H, Suzuki N, Suzuki K T. Trivalent arsenicals are bound to proteins during reductive methylation [J]. Chemical Research in Toxicology, 2006, 19(8): 1010-1018. doi: 10.1021/tx060053f

    [141]

    Yoshinaga M, Cai Y, Rosen B P. Demethylation of methylarsonic acid by a microbial community [J]. Environmental Microbiology, 2011, 13(5): 1205-1215. doi: 10.1111/j.1462-2920.2010.02420.x

    [142]

    Stolz J F, Perera E, Kilonzo B, et al. Biotransformation of 3-nitro-4-hydroxybenzene arsonic acid (roxarsone) and release of inorganic arsenic by Clostridium species [J]. Environmental Science & Technology, 2007, 41(3): 818-823.

    [143]

    Yoshinaga M, Rosen B P. A C·As lyase for degradation of environmental organoarsenical herbicides and animal husbandry growth promoters [J]. Proceedings of the National Academy of Sciences, 2014, 111(21): 7701-7706. doi: 10.1073/pnas.1403057111

    [144]

    Nadar S V, Yoshinaga M, Kandavelu P, et al. Crystallization and preliminary X-ray crystallographic studies of the ArsI C-As lyase from Thermomonospora curvata [J]. Acta Crystallographica Section F, 2014, 70(6): 761-764.

    [145]

    Yan Y, Xue X M, Guo Y Q, et al. Co-expression of cyanobacterial genes for arsenic methylation and demethylation in Escherichia coli offers insights into arsenic resistance [J]. Frontiers in Microbiology, 2017(8): 60.

    [146]

    Xue X-M, Yan Y, Xiong C, et al. Arsenic biotransformation by a cyanobacterium Nostoc sp. PCC 7120 [J]. Environmental Pollution, 2017(228): 111-117.

    [147]

    Edmonds J S, Francesconi K A. Arsenic-containing ribofuranosides: isolation from brown kelp Ecklonia radiata and nuclear magnetic resonance spectra [J]. Journal of the Chemical Society, Perkin Transactions 1, 1983: 2375-2382.

    [148]

    Miyashita S I, Fujiwara S, Tsuzuki M, et al. Rapid biotransformation of arsenate into oxo-arsenosugars by a freshwater unicellular green alga, Chlamydomonas reinhardtii [J]. Bioscience, Biotechnology, and Biochemistry, 2011, 75(3): 522-530. doi: 10.1271/bbb.100751

    [149]

    Xue X-M, Ye J, Raber G, et al. Arsenic methyltransferase is involved in arsenosugar biosynthesis by providing DMA [J]. Environmental Science & Technology, 2017, 51(3): 1224-1230.

    [150]

    Miyashita S I, Fujiwara S, Tsuzuki M, et al. Cyanobacteria produce arsenosugars [J]. Environmental Chemistry, 2012, 9(5): 474-484. doi: 10.1071/EN12061

    [151]

    Miyashita S I, Murota C, Kondo K, et al. Arsenic metabolism in cyanobacteria [J]. Environmental Chemistry, 2016, 13(4): 577-589. doi: 10.1071/EN15071

    [152]

    García-Salgado S, Raber G, Raml R, et al. Arsenosugar phospholipids and arsenic hydrocarbons in two species of brown macroalgae [J]. Environmental Chemistry, 2012, 9(1): 63-66. doi: 10.1071/EN11164

    [153]

    Arroyo-Abad U, Hu Z, Findeisen M, et al. Synthesis of two new arsenolipids and their identification in fish [J]. European Journal of Lipid Science and Technology, 2016, 118(3): 445-452. doi: 10.1002/ejlt.201400502

    [154]

    Rumpler A, Edmonds J S, Katsu M, et al. Arsenic-containing long-chain fatty acids in cod-liver oil: A result of biosynthetic infidelity [J]? Angewandte Chemie International Edition, 2008, 47 (14): 2665-2667.

    [155]

    Edmonds J S, Francesconi K A. The origin of arsenobetaine in marine animals [J]. Applied Organometallic Chemistry, 1988, 2(4): 297-302. doi: 10.1002/aoc.590020404

    [156]

    Foster S, Maher W, Schmeisser E, et al. Arsenic species in a rocky intertidal marine food chain in NSW, Australia, revisited [J]. Environmental Chemistry, 2006, 3(4): 304-315. doi: 10.1071/EN06026

    [157]

    Ye Z, Huang L, Zhao Q, et al. Key genes for arsenobetaine synthesis in marine medaka (Oryzias melastigma) by transcriptomics [J]. Aquatic Toxicology, 2022(253): 106349.

  • 期刊类型引用(2)

    1. 张嘉祺,喻亚丽,路珂,褚志鹏,金佳利,李大鹏,马宝珊. 野生、驯养和养殖硬刺松潘裸鲤肌肉营养成分分析. 大连海洋大学学报. 2025(02): 281-289 . 百度学术
    2. 单春乔,马超鑫,刘恩,郭雪萍,刘星,李笑,刘艳,江国托. 乙醇梭菌蛋白的特性、生产工艺及应用现状. 饲料工业. 2023(19): 10-16 . 百度学术

    其他类型引用(2)

推荐阅读
Optimal ratio of linolenic acid to linoleic acid in the diet ofprocambarus clarkii
MA Shi-Hao et al., ACTA HYDROBIOLOGICA SINICA, 2025
Functional analysis of long non-coding rna1153 in response to gcrv infection in grass carp (ctenopharyngodon idella)
LIU Shuai et al., ACTA HYDROBIOLOGICA SINICA, 2025
Dietary extraction ofatractylodes macrocephalakoidz on growth performance, health and disease resistance ofmacrobrachium nipponense
BAI Ru-Xue et al., ACTA HYDROBIOLOGICA SINICA, 2024
Low-fishmeal and high-fat diet supplement with soybean lecithin on growth, serum biochemical indexes and intestinal flora of rice field eel (monopterus albus)
TANG Zhe et al., ACTA HYDROBIOLOGICA SINICA, 2024
Effect of ph on the structural properties and emulsification of myofibrillar proteins of large yellow croaker (larimichthys crocea)
REN Zhongyang et al., JOURNAL OF FISHERIES OF CHINA, 2024
Effect of chimonanthus salicifolius extract on nutritional metabolism of large yellow croaker(larimichthys crocea) #br#
WEI Qi et al., CHINESE JOURNAL OF FISHERIES, 2023
Transcriptome profiles reveals scdreb10 from syntrichia caninervis regulated phenylpropanoid biosynthesis and starch/sucrose metabolism to enhance plant stress tolerance
Liang, Yuqing et al., PLANTS-BASEL, 2024
Recent advancements in cross-linked starches for food applications- a review
Bangar, Sneh Punia et al., INTERNATIONAL JOURNAL OF FOOD PROPERTIES, 2024
Structural characterization of a pectic polysaccharide from rubus chingii hu. unripe fruits and its efficacy in inhibiting intestinal lipid absorption in vivo
CARBOHYDRATE POLYMERS, 2025
A novel approach to defeat obesity: an in vitro and in vivo evaluation of the active diterpene in coleus forskohlii (forcslim™)
INTERNATIONAL JOURNAL OF PHARMACOLOGY, 2024
Powered by
图(2)  /  表(1)
计量
  • 文章访问数:  189
  • HTML全文浏览量:  19
  • PDF下载量:  39
  • 被引次数: 4
出版历程
  • 收稿日期:  2024-10-24
  • 修回日期:  2024-12-25
  • 网络出版日期:  2024-12-29
  • 刊出日期:  2025-01-14

目录

/

返回文章
返回