ARSENIC BIOACCUMULATION AND BIOTRANSFORMATION MECHANISMS IN MARINE ECOSYSTEM
-
摘要:
砷是一种在自然环境中广泛分布的有毒元素, 能够通过生物累积和食物链传递,对生态系统及人类健康构成威胁。砷污染问题已经成为河口与沿海区域不容忽视的环境问题之一。本章综述了海洋浮游动植物、多毛类、软体动物、虾蟹类及鱼类中砷的生物累积与转化作用,同时总结了内源性与外源性因素对海洋生物砷累积与转化的影响,进一步揭示了海洋生物通过独特的生物代谢过程,将高毒性的无机砷转化为低毒性的甲基砷,并生成无毒的砷糖和砷甜菜碱等有机砷形态的普遍规律,发现海洋生物体内的有机砷具有更高的生物可利用性,是导致海洋生物中砷富集的重要原因。鉴于海洋生物高砷富集的复杂性与特殊性,未来研究应进一步探究海洋生物中砷累积与转化的影响因素和分子机制,以期深入揭示海洋生物对砷的富集与代谢规律。
Abstract:Arsenic is a toxic element that is widely distributed in natural environments, posing significant risks to ecosystems and human health through trophic transfer along food chains. Arsenic pollution has emerged as a critical environmental concern in estuarine and nearshore areas. This review provides an overview of the bioaccumulation and transformation patterns of arsenic across various marine organisms, including phytoplankton, zooplankton, polychaetes, shellfish, shrimp, crabs, and marine fish. Marine organisms can accumulate high concentrations of arsenic, predominantly in the forms of arsenobetaine and arsenosugars, reflecting unique bioaccumulation and transformation mechanisms. Through biotransformation processes, marine organisms can convert highly toxic inorganic arsenic into less toxic organic arsenic compounds. Organic arsenic exhibits greater bioavailability compared to inorganic arsenic, thereby contributing to higher concentrations of arsenic in marine organisms. Additionally, both endogenous and exogenous factors influencing arsenic accumulation and transformation in these organisms. Given the complexity and specificity of arsenic enrichment in marine systems, future research should prioritize investigate the molecular mechanisms of arsenic bioaccumulation and transformation across diverse marine species.
-
Keywords:
- Arsenic /
- Marine organisms /
- Bioaccumulation /
- Biotransformation
-
-
表 1 海洋生物体内总砷含量和所检出的砷化合物形态
Table 1 The concentrations of total arsenic and speciation in marine organisms
海洋生物类群
Marine organism
group砷浓度范围
(μg/g, 干重)
Arsenic concentration
range (μg/g, dry weight)砷形态
Arsenic speciation浮游植物Phytoplankton 0.1—35 As (Ⅲ)、As (Ⅴ)、MMA、DMA、TMA、TMAO、AsS 浮游动物 Zooplankton 0.2—24.4 As (Ⅲ)、As (Ⅴ)、MMA、DMA、AsS、AsB 多毛类Polychaete 0.07—2739 As (Ⅲ)、As (Ⅴ)、MMA、DMA、TETRA、AsB 腹足类Gastropod 0.42—118 As (Ⅲ)、As (Ⅴ)、MMA、DMA、AsB 双壳类Bivalve 0.06—100 As (Ⅲ)、As (Ⅴ)、MMA、DMA、AsS、AsC、AsB 头足类Cephalopoda 0.23—1300 As (Ⅲ)、As (Ⅴ)、MMA、DMA、AsB 甲壳类Crustacean 0.21—35.8 As (Ⅲ)、As (Ⅴ)、MMA、DMA、AsC、AsB 海胆类Echinoidea 2.84—53 As (Ⅲ)、As (Ⅴ)、MMA、DMA、AsB 上层鱼类
Pelagic fish2.09—134 As (Ⅲ)、As (Ⅴ)、MMA、DMA、AsC、AsB 底栖鱼类
Benthic fish5.6—449.5 As (Ⅲ)、As (Ⅴ)、MMA、DMA、AsC、AsB -
[1] Pan K, Wang W X. Trace metal contamination in estuarine and coastal environments in China [J]. Science of the Total Environment, 2012(421): 3-16.
[2] Sharma V K, Sohn M. Aquatic arsenic: Toxicity, speciation, transformations, and remediation [J]. Environment International, 2009, 35(4): 743-759. doi: 10.1016/j.envint.2009.01.005
[3] Byeon E, Kang H M, Yoon C, et al. Toxicity mechanisms of arsenic compounds in aquatic organisms [J]. Aquatic toxicology, 2021(237): 105901.
[4] Huang J H. Arsenic trophodynamics along the food chains/webs of different ecosystems: a review [J]. Chemistry and Ecology, 2016, 32(9): 803-828. doi: 10.1080/02757540.2016.1201079
[5] Mandal B K, Suzuki K T. Arsenic round the world: a review [J]. Talanta, 2002, 58(1): 201-235. doi: 10.1016/S0039-9140(02)00268-0
[6] Smedley P L, Kinniburgh D G. A review of the source, behaviour and distribution of arsenic in natural waters [J]. Applied Geochemistry, 2002, 17(5): 517-568. doi: 10.1016/S0883-2927(02)00018-5
[7] Kato L S, Ferrari R G, Leite J V M, et al. Arsenic in shellfish: A systematic review of its dynamics and potential health risks [J]. Marine Pollution Bulletin, 2020(161): 111693.
[8] Zhang W, Miao A, Wang N X, et al. Arsenic bioaccumulation and biotransformation in aquatic organisms [J]. Environment International, 2022(163): 107221.
[9] Kumari B, Kumar V, Sinha A K, et al. Toxicology of arsenic in fish and aquatic systems [J]. Environmental Chemistry Letters, 2017, 15(1): 43-64. doi: 10.1007/s10311-016-0588-9
[10] Wang Y, Wang S, Xu P, et al. Review of arsenic speciation, toxicity and metabolism in microalgae [J]. Reviews in Environmental Science and Bio/Technology, 2015, 14(3): 427-451. doi: 10.1007/s11157-015-9371-9
[11] Hussain M M, Wang J, Bibi I, et al. Arsenic speciation and biotransformation pathways in the aquatic ecosystem: The significance of algae [J]. Journal of Hazardous Materials, 2021(403): 124027.
[12] Caumette G, Koch I, Estrada E, et al. Arsenic speciation in plankton organisms from contaminated lakes: Transformations at the base of the freshwater food chain [J]. Environmental Science & Technology, 2011, 45(23): 9917-9923.
[13] Liu T, Lin H, Zhang L. Arsenic bioaccumulation and biotransformation in the marine copepod Tigriopus japonicus under chronic dietborne and waterborne exposure [J]. Journal of Hazardous Materials, 2024(474): 134655.
[14] Fattorini D, Notti A, Halt M N, et al. Levels and chemical speciation of arsenic in polychaetes: a review [J]. Marine Ecology, 2005, 26(3-4): 255-264. doi: 10.1111/j.1439-0485.2005.00057.x
[15] Zhang W, Guo Z, Song D, et al. Arsenic speciation in wild marine organisms and a health risk assessment in a subtropical bay of China [J]. Science of The Total Environment, 2018(626): 621-629.
[16] Rahman M A, Hasegawa H, Peter Lim R. Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain [J]. Environmental Research, 2012, 116: 118-135. doi: 10.1016/j.envres.2012.03.014
[17] Ghosh D, Ghosh A, Bhadury P. Arsenic through aquatic trophic levels: effects, transformations and biomagnification—a concise review [J]. Geoscience Letters, 2022, 9(1): 20. doi: 10.1186/s40562-022-00225-y
[18] Zhang L, Huang L, Ye Z, et al. Integrating transcriptome and metabolome analyses revealed salinity induces arsenobetaine biosynthesis in marine medaka (Oryzias melastigma) [J]. Environmental Science & Technology, 2024, 58(40): 17629-17640.
[19] Caumette G, Koch I, Reimer K J. Arsenobetaine formation in plankton: a review of studies at the base of the aquatic food chain [J]. Journal of Environmental Monitoring, 2012, 14(11): 2841-2853. doi: 10.1039/c2em30572k
[20] Popowich A, Zhang Q, Le X C. Arsenobetaine: The ongoing mystery [J]. National Science Review, 2016, 3(4): 451-458. doi: 10.1093/nsr/nww061
[21] Jiang Y, Purchase D, Jones H, et al. Technical note: effects of arsenate (AS5+) on growth and production of glutathione (GSH) and phytochelatins (PCS) in Chlorella vulgaris [J]. International Journal of Phytoremediation, 2011, 13(8): 834-844. doi: 10.1080/15226514.2010.525560
[22] Zhang J, Ding T, Zhang C. Biosorption and toxicity responses to arsenite (As[III]) in Scenedesmus quadricauda [J]. Chemosphere, 2013, 92 (9): 1077-1084.
[23] Naveed S, Yu Q, Zhang C, et al. Extracellular polymeric substances alter cell surface properties, toxicity, and accumulation of arsenic in Synechocystis PCC6803 [J]. Environmental Pollution, 2020(261): 114233.
[24] Zhang J, Zhou F, Liu Y, et al. Effect of extracellular polymeric substances on arsenic accumulation in Chlorella pyrenoidosa [J]. Science of the Total Environment, 2020(704): 135368.
[25] Naveed S, Li C, Lu X, et al. Microalgal extracellular polymeric substances and their interactions with metal(loid)s: A review [J]. Critical Reviews in Environmental Science and Technology, 2019, 49(19): 1769-1802. doi: 10.1080/10643389.2019.1583052
[26] Duncan E G, Maher W A, Foster S D. Contribution of arsenic species in unicellular algae to the cycling of arsenic in marine ecosystems [J]. Environmental Science & Technology, 2015, 49(1): 33-50.
[27] Karadjova I B, Slaveykova V I, Tsalev D L. The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater [J]. Aquatic Toxicology, 2008, 87(4): 264-271. doi: 10.1016/j.aquatox.2008.02.006
[28] Zhang S, Rensing C, Zhu Y G. Cyanobacteria-mediated arsenic redox dynamics is regulated by phosphate in aquatic environments [J]. Environmental Science & Technology, 2014, 48(2): 994-1000.
[29] Zhang S Y, Sun G X, Yin X X, et al. Biomethylation and volatilization of arsenic by the marine microalgae Ostreococcus tauri [J]. Chemosphere, 2013, 93(1): 47-53. doi: 10.1016/j.chemosphere.2013.04.063
[30] Duncan E G, Maher W A, Foster S D, et al. Influence of culture regime on arsenic cycling by the marine phytoplankton Dunaliella tertiolecta and Thalassiosira pseudonana [J]. Environmental Chemistry, 2013, 10(2): 91-101. doi: 10.1071/EN12191
[31] Wang N X, Huang B, Xu S, et al. Effects of nitrogen and phosphorus on arsenite accumulation, oxidation, and toxicity in Chlamydomonas reinhardtii [J]. Aquatic Toxicology, 2014(157): 167-174.
[32] Wurl O, Zimmer L, Cutter G A. Arsenic and phosphorus biogeochemistry in the ocean: Arsenic species as proxies for P-limitation [J]. Limnology and Oceanography, 2013, 58(2): 729-740. doi: 10.4319/lo.2013.58.2.0729
[33] Wang N X, Chen Z Y, Zhou W Q, et al. Influence of humic acid and fluvic acid on the altered toxicities of arsenite and arsenate toward two freshwater algae [J]. Aquatic Toxicology, 2022(249): 106218.
[34] Papry R I, Fujisawa S, Zai Y, et al. Freshwater phytoplankton: Salinity stress on arsenic biotransformation [J]. Environmental Pollution, 2021(270): 116090.
[35] Papry R I, Omori Y, Fujisawa S, et al. Arsenic biotransformation potential of marine phytoplankton under a salinity gradient [J]. Algal Research, 2020(47): 101842.
[36] Murray L A, Raab A, Marr I L, et al. Biotransformation of arsenate to arsenosugars by Chlorella vulgaris [J]. Applied Organometallic Chemistry, 2003, 17(9): 669-674. doi: 10.1002/aoc.498
[37] Ma Q, Chen L, Zhang L. Effects of phosphate on the toxicity and bioaccumulation of arsenate in marine diatom Skeletonema costatum [J]. Science of The Total Environment, 2023(857): 159566.
[38] Ma Q, Zhang L. The influences of dissolved inorganic and organic phosphorus on arsenate toxicity in marine diatom Skeletonema costatum and dinoflagellate Amphidinium carterae [J]. Journal of Hazardous Materials, 2023(453): 131432.
[39] Posadas E, Muñoz A, García-González M-C, et al. A case study of a pilot high rate algal pond for the treatment of fish farm and domestic wastewaters [J]. Journal of Chemical Technology & Biotechnology, 2015, 90(6): 1094-1101.
[40] Wang Z, Gui H, Luo Z, et al. Dissolved organic phosphorus enhances arsenate bioaccumulation and biotransformation in Microcystis aeruginosa [J]. Environmental Pollution, 2019(252): 1755-1763.
[41] Maeda S, Mawatari K, Ohki A, et al. Arsenic metabolism in a freshwater food chain: Blue-green alga (Nostoc sp.)→ shrimp (Neocaridina denticulata)→ carp (Cyprinus carpio) [J]. Applied Organometallic Chemistry, 1993, 7(7): 467-476. doi: 10.1002/aoc.590070705
[42] Wang Z, Luo Z, Yan C, et al. Impacts of environmental factors on arsenate biotransformation and release in Microcystis aeruginosa using the Taguchi experimental design approach [J]. Water Research, 2017(118): 167-176.
[43] Caumette G, Koch I, House K, et al. Arsenic cycling in freshwater phytoplankton and zooplankton cultures [J]. Environmental Chemistry, 2014, 11(5): 496-505. doi: 10.1071/EN14039
[44] Rahman M A, Hasegawa H. Arsenic in freshwater systems: Influence of eutrophication on occurrence, distribution, speciation, and bioaccumulation [J]. Applied Geochemistry, 2012, 27(1): 304-314. doi: 10.1016/j.apgeochem.2011.09.020
[45] Byeon E, Yoon C, Lee J-S, et al. Interspecific biotransformation and detoxification of arsenic compounds in marine rotifer and copepod [J]. Journal of Hazardous Materials, 2020(391): 122196.
[46] Liu T, Zhang L. Multigenerational effects of arsenate on development and reproduction in marine copepod Tigriopus japonicus [J]. Chemosphere, 2023(342): 140158.
[47] Chen C Y, Folt C L. Bioaccumulation and diminution of arsenic and lead in a freshwater food web [J]. Environmental Science & Technology, 2000, 34(18): 3878-2884.
[48] Mendoza-Chávez Y J, Uc-Castillo J L, Cervantes-Martínez A, et al. Paracyclops chiltoni inhabiting water highly contaminated with arsenic: Water chemistry, population structure, and arsenic distribution within the organism [J]. Environmental Pollution, 2021( 284) : 117155.
[49] Wang N-X, Liu Y Y, Wei Z-B, et al. Waterborne and dietborne toxicity of inorganic arsenic to the freshwater zooplankton Daphnia magna [J]. Environmental Science & Technology, 2018, 52(15): 8912-8919.
[50] Zheng S, Wang R, Kainz M J, et al. How phytoplankton biomass controls metal(loid) bioaccumulation in size-fractionated plankton in anthropogenic-impacted subtropical lakes: A comprehensive study in the Yangtze River Delta, China [J]. Water Research, 2022(224): 119075.
[51] Hong S, Choi S D, Khim J S. Arsenic speciation in environmental multimedia samples from the Youngsan River Estuary, Korea: A comparison between freshwater and saltwater [J]. Environmental Pollution, 2018(237): 842-850.
[52] Kirby J, Maher W, Chariton A, et al. Arsenic concentrations and speciation in a temperate mangrove ecosystem, NSW, Australia [J]. Applied Organometallic Chemistry, 2002, 16(4): 192-201. doi: 10.1002/aoc.283
[53] Battuello M, Sartor R M, Brizio P, et al. The influence of feeding strategies on trace element bioaccumulation in copepods (Calanoida) [J]. Ecological Indicators, 2017(74): 311-320.
[54] Viana J L M, Steffler D A, Hernández A H, et al. Bioaccumulation and speciation of arsenic in plankton from tropical soda lakes along a salinity gradient [J]. Science of the Total Environment, 2023(895): 165189.
[55] Hechavarría-Hernández A, Viana J L M, Barbiero L, et al. Spatial and seasonal variation of arsenic speciation in Pantanal soda lakes [J]. Chemosphere, 2023(329): 138672.
[56] Pothier M P, Lenoble V, Garnier C, et al. Dissolved organic matter controls of arsenic bioavailability to bacteria [J]. Science of The Total Environment, 2020(716): 137118.
[57] Yin Q, Wang W-X. Multiple trace element accumulation in the mussel Septifer virgatus: Counteracting effects of salinity on uptake and elimination [J]. Environmental Pollution, 2018(242): 375-382.
[58] Howard A G, Comber S D W, Kifle D, et al. Arsenic speciation and seasonal changes in nutrient availability and micro-plankton abundance in Southampton water, U. K [J]. Estuarine, Coastal and Shelf Science, 1995, 40(4): 435-450. doi: 10.1006/ecss.1995.0030
[59] Andreote A P D, Dini-Andreote F, Rigonato J, et al. Contrasting the genetic patterns of microbial communities in Soda Lakes with and without cyanobacterial bloom [J]. Frontiers in Microbiology, 2018(9): 244.
[60] Waring J, Maher W, Foster S, et al. Occurrence and speciation of arsenic in common Australian coastal polychaete species [J]. Environmental Chemistry, 2005, 2(2): 108-118. doi: 10.1071/EN05027
[61] Waring J, Maher W. Arsenic bioaccumulation and species in marine polychaeta [J]. Applied Organometallic Chemistry, 2005, 19(8): 917-929. doi: 10.1002/aoc.938
[62] Gibbs P E, Langston W J, Burt G R, et al. Tharyx marioni (Polychaeta): a remarkable accumulator of arsenic [J]. Journal of the Marine Biological Association of the United Kingdom, 1983, 63 (2): 313-325.
[63] Fattorini D, Regoli F. Arsenic speciation in tissues of the mediterranean polychaete Sabella spallanzanii [J]. Environmental Toxicology and Chemistry, 2004, 23(8): 1881-1887. doi: 10.1897/03-562
[64] Casado-Martinez M, Smith B D, Luoma S N, et al. Metal toxicity in a sediment-dwelling polychaete: Threshold body concentrations or overwhelming accumulation rates [J]? Environmental Pollution, 2010, 158(10): 3071-3076. doi: 10.1016/j.envpol.2010.06.026
[65] Casado-Martinez M C, Smith B D, Luoma S N, et al. Bioaccumulation of arsenic from water and sediment by a deposit-feeding polychaete (Arenicola marina): A biodynamic modelling approach [J]. Aquatic Toxicology, 2010, 98(1): 34-43. doi: 10.1016/j.aquatox.2010.01.015
[66] Rainbow P S, Smith B D, Casado-Martinez M C. Biodynamic modelling of the bioaccumulation of arsenic by the polychaete Nereis diversicolor [J]. Environmental Chemistry, 2011, 8(1): 1-8. doi: 10.1071/EN10089
[67] Zhang W, Wang W X. Arsenic biokinetics and bioavailability in deposit-feeding clams and polychaetes [J]. Science of the Total Environment, 2018(616-617): 594-601.
[68] Gaion A, Scuderi A, Pellegrini D, et al. Bioconcentration and arsenic speciation analysis in ragworm, Hediste diversicolor (Muller 1776) [J]. Bulletin of Environmental Contamination and Toxicology, 2013, 90(1): 120-125. doi: 10.1007/s00128-012-0875-5
[69] Geiszinger A E, Goessler W, Francesconi K A. The marine polychaete Arenicola marina: its unusual arsenic compound pattern and its uptake of arsenate from seawater [J]. Marine Environmental Research, 2002, 53(1): 37-50. doi: 10.1016/S0141-1136(01)00106-4
[70] Geiszinger A E, Goessler W, Francesconi K A. Biotransformation of arsenate to the tetramethylarsonium ion in the marine polychaetes Nereis diversicolor and Nereis virens [J]. Environmental Science & Technology, 2002, 36(13): 2905-2910.
[71] Ventura-Lima J, Ramos P B, Fattorini D, et al. Accumulation, biotransformation, and biochemical responses after exposure to arsenite and arsenate in the estuarine polychaete Laeonereis acuta (Nereididae) [J]. Environmental Science and Pollution Research, 2011, 18(8): 1270-1278. doi: 10.1007/s11356-011-0478-4
[72] Nunes S M, Josende M E, Ruas C P, et al. Biochemical responses induced by co-exposition to arsenic and titanium dioxide nanoparticles in the estuarine polychaete Laeonereis acuta [J]. Toxicology, 2017(376): 51-58.
[73] Fattorini D, Bocchetti R, Bompadre S, et al. Total content and chemical speciation of arsenic in the polychaete Sabella spallanzanii [J]. Marine Environmental Research, 2004, 58(2): 839-843.
[74] Zhang W, Wang W X, Zhang L. Comparison of bioavailability and biotransformation of inorganic and organic arsenic to two marine fish [J]. Environmental Science & Technology, 2016, 50(5): 2413-2423.
[75] Gaion A, Sartori D, Scuderi A, et al. Bioaccumulation and biotransformation of arsenic compounds in Hediste diversicolor (Muller 1776) after exposure to spiked sediments [J]. Environmental Science and Pollution Research, 2014, 21(9): 5952-5959. doi: 10.1007/s11356-014-2538-z
[76] Casado-Martinez M C, Duncan E, Smith B D, et al. Arsenic toxicity in a sediment-dwelling polychaete: detoxification and arsenic metabolism [J]. Ecotoxicology, 2012, 21(2): 576-590. doi: 10.1007/s10646-011-0818-7
[77] Notti A, Fattorini D, Razzetti E M, et al. Bioaccumulation and biotransformation of arsenic in the Mediterranean polychaete Sabella spallanzanii experimental observations [J]. Environmental Toxicology and Chemistry, 2007, 26(6): 1186-1191. doi: 10.1897/06-362R.1
[78] Ventura-Lima J, Sandrini J Z, Cravo M F, et al. Toxicological responses in Laeonereis acuta (Annelida, Polychaeta) after arsenic exposure [J]. Environment International, 2007, 33(4): 559-564. doi: 10.1016/j.envint.2006.09.016
[79] Liu J, Cao L, Dou S. Bioaccumulation of heavy metals and health risk assessment in three benthic bivalves along the coast of Laizhou Bay, China [J]. Marine Pollution Bulletin, 2017, 117(1): 98-110.
[80] Liu Q, Liao Y, Shou L. Concentration and potential health risk of heavy metals in seafoods collected from Sanmen Bay and its adjacent areas, China [J]. Marine Pollution Bulletin, 2018(131): 356-364.
[81] Liu Y, Liu G, Yuan Z, et al. Presence of arsenic, mercury and vanadium in aquatic organisms of Laizhou Bay and their potential health risk [J]. Marine Pollution Bulletin, 2017, 125(1): 334-340.
[82] Price R E, Breuer C, Reeves E, et al. Arsenic bioaccumulation and biotransformation in deep-sea hydrothermal vent organisms from the Pacmanus hydrothermal field, Manus Basin, PNG [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2016(117): 95-106.
[83] Chandurvelan R, Marsden I D, Glover C N, et al. Assessment of a mussel as a metal bioindicator of coastal contamination: Relationships between metal bioaccumulation and multiple biomarker responses [J]. Science of the Total Environment, 2015(511): 663-675.
[84] Krishnakumar P K, Qurban M A, Stiboller M, et al. Arsenic and arsenic species in shellfish and finfish from the western Arabian Gulf and consumer health risk assessment [J]. Science of the Total Environment, 2016(566-567): 1235-1244.
[85] Maher W, Waring J, Krikowa F, et al. Ecological factors affecting the accumulation and speciation of arsenic in twelve Australian coastal bivalve molluscs [J]. Environmental Chemistry, 2018, 15(2): 46-57. doi: 10.1071/EN17106
[86] Bonsignore M, Salvagio Manta D, Mirto S, et al. Bioaccumulation of heavy metals in fish, crustaceans, molluscs and echinoderms from the Tuscany coast [J]. Ecotoxicology and Environmental Safety, 2018(162): 554-562.
[87] Kaya G, Turkoglu S. Bioaccumulation of heavy metals in various tissues of some fish species and green tiger shrimp (Penaeus semisulcatus) from İskenderun Bay, Turkey, and risk assessment for human health [J]. Biological Trace Element Research, 2017, 180(2): 314-326. doi: 10.1007/s12011-017-0996-0
[88] Foster S, Maher W. Arsenobetaine and thio-arsenic species in marine macroalgae and herbivorous animals: Accumulated through trophic transfer or produced in situ? [J]. Journal of Environmental Sciences, 2016(49): 131-139.
[89] Mok J S, Yoo H D, Kim P H, et al. Bioaccumulation of heavy metals in oysters from the Southern Coast of Korea: Assessment of potential risk to human health [J]. Bulletin of Environmental Contamination and Toxicology, 2015, 94(6): 749-755. doi: 10.1007/s00128-015-1534-4
[90] Nam S-H, Cui S, Oh H-J, et al. A study on arsenic speciation in Korean oyster samples using ion chromatography inductively coupled plasma mass spectrometry [J]. Bulletin of the Korean Chemical Society, 2015, 36(1): 250-257. doi: 10.1002/bkcs.10059
[91] Julshamn K, Valdersnes S, Duinker A, et al. Heavy metals and POPs in red king crab from the Barents Sea [J]. Food Chemistry, 2015(167): 409-417.
[92] Ghaeni M, Pour N A, Hosseini M. Bioaccumulation of polychlorinated biphenyl (PCB), polycyclic aromatic hydrocarbon (PAH), mercury, methyl mercury, and arsenic in blue crab Portunus segnis from Persian Gulf [J]. Environmental Monitoring and Assessment, 2015, 187(5): 253. doi: 10.1007/s10661-015-4459-9
[93] Liu F, Wang W X. Linking trace element variations with macronutrients and major cations in marine mussels Mytilus edulis and Perna viridis [J]. Environmental Toxicology and Chemistry, 2015, 34(9): 2041-2050. doi: 10.1002/etc.3027
[94] Maher W, Maher N, Taylor A, et al. The use of the marine gastropod, Cellana tramoserica, as a biomonitor of metal contamination in near shore environments [J]. Environmental Monitoring and Assessment, 2016, 188(7): 391. doi: 10.1007/s10661-016-5380-6
[95] Chen L, Wu H, Zhao J, et al. The role of GST omega in metabolism and detoxification of arsenic in clam Ruditapes philippinarum [J]. Aquatic Toxicology, 2018(204): 9-18.
[96] Zhao Y, Kang X, Ding H, et al. Bioaccumulation and biotransformation of inorganic arsenic in zhikong scallop (Chlamys farreri) after waterborne exposure [J]. Chemosphere, 2021(277): 130270.
[97] Zhang W, Guo Z, Zhou Y, et al. Biotransformation and detoxification of inorganic arsenic in Bombay oyster Saccostrea cucullata [J]. Aquatic Toxicology, 2015(158): 33-40.
[98] Zhang W, Guo Z, Wu Y, et al. Arsenic boaccumulation and biotransformation in clams (Asaphis violascens) exposed to inorganic arsenic: effects of species and concentrations [J]. Bulletin of Environmental Contamination and Toxicology, 2019, 103(1): 114-119. doi: 10.1007/s00128-018-2493-3
[99] Catharino M G M, Vasconcellos M B A, Kirschbaum A A, et al. Passive biomonitoring study and effect biomarker in oysters Crassostrea brasiliana (Lamark, 1819: Mollusca, Bivalvia) in Santos and Cananéia Estuaries in São Paulo State, Brazil [J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303(3): 2297-2302.
[100] Aguirre-Rubí J R, Ortiz-Zarragoitia M, Izagirre U, et al. Prospective biomonitor and sentinel bivalve species for pollution monitoring and ecosystem health disturbance assessment in mangrove–lined Nicaraguan coasts [J]. Science of the Total Environment, 2019(649): 186-200.
[101] Jacques B, Dames N, Botha A, et al. Trace elements in Mediterranean mussels from the South African West Coast [J]. Ecological Chemistry and Engineering S, 2016, 22(4): 489-498.
[102] Zhang W, Wang W X, Zhang L. Arsenic speciation and spatial and interspecies differences of metal concentrations in mollusks and crustaceans from a South China estuary [J]. Ecotoxicology, 2013, 22(4): 671-682. doi: 10.1007/s10646-013-1059-8
[103] Nędzarek A, Czerniejewski P, Tórz A. Microelements and macroelements in the body of the invasive Harris mud crab (Rhithropanopeus harrisii, Maitland, 1874) from the central coast of the South Baltic Sea [J]. Environmental Monitoring and Assessment, 2019, 191(8): 499. doi: 10.1007/s10661-019-7564-3
[104] Gu X, Ouyang W, Xu L, et al. Occurrence, migration, and allocation of arsenic in multiple media of a typical semi-enclosed bay [J]. Journal of Hazardous Materials, 2020(384): 121313.
[105] Baki M A, Hossain M M, Akter J, et al. Concentration of heavy metals in seafood (fishes, shrimp, lobster and crabs) and human health assessment in Saint Martin Island, Bangladesh [J]. Ecotoxicology and Environmental Safety, 2018(159): 153-63.
[106] Khristoforova N К, Tsygankov V Y, Boyarova M D, et al. The role of the biogeochemical conditions of the marine environment on the trace element content in pacific salmon [J]. Achievements in the Life Sciences, 2014, 8(1): 55-60. doi: 10.1016/j.als.2014.06.009
[107] Du S, Zhou Y, Zhang L. The potential of arsenic biomagnification in marine ecosystems: A systematic investigation in Daya Bay in China [J]. Science of the Total Environment, 2021(773): 145068.
[108] Dara M, Parisi M G, La Corte C, et al. Sabella spallanzanii mucus bacterial agglutinating activity after arsenic exposure. The equilibrium between predation safety and immune response stability [J]. Marine Pollution Bulletin, 2022( 181) : 113833.
[109] Wang Z, Gu X, Ouyang W, et al. Trophodynamics of arsenic for different species in coastal regions of the Northwest Pacific Ocean: In situ evidence and a meta-analysis [J]. Water Research, 2020(184): 116186.
[110] Cui B, Zhang Q, Zhang K, et al. Analyzing trophic transfer of heavy metals for food webs in the newly-formed wetlands of the Yellow River Delta, China [J]. Environmental Pollution, 2011, 159(5): 1297-1306. doi: 10.1016/j.envpol.2011.01.024
[111] Zhang L, Shi Z, Jiang Z, et al. Distribution and bioaccumulation of heavy metals in marine organisms in east and west Guangdong coastal regions, South China [J]. Marine Pollution Bulletin, 2015, 101(2): 930-937. doi: 10.1016/j.marpolbul.2015.10.041
[112] Zhao B, Wang X, Jin H, et al. Spatiotemporal variation and potential risks of seven heavy metals in seawater, sediment, and seafood in Xiangshan Bay, China (2011–2016) [J]. Chemosphere, 2018(212): 1163-1171.
[113] Banaee M, Zeidi A, Mikušková N, et al. Assessing metal toxicity on crustaceans in aquatic ecosystems: a comprehensive review [J]. Biological Trace Element Research, 2024, 202(12): 5743-5761. doi: 10.1007/s12011-024-04122-7
[114] Rodrigues De Almeida P, Ferrari R G, Kato L S, et al. A systematic review on metal dynamics and marine toxicity risk assessment using crustaceans as bioindicators [J]. Biological Trace Element Research, 2022, 200(2): 881-903. doi: 10.1007/s12011-021-02685-3
[115] Zhang W, Wang W X. Large-scale spatial and interspecies differences in trace elements and stable isotopes in marine wild fish from Chinese waters [J]. Journal of Hazardous Materials, 2012(215-216): 65-74.
[116] Amlund H, Francesconi K A, Bethune C, et al. Accumulation and elimination of dietary arsenobetaine in two species of fish, Atlantic salmon (Salmo salar L.) and Atlantic cod (Gadus morhua L.) [J]. Environmental Toxicology and Chemistry, 2006, 25(7): 1787-1794. doi: 10.1897/05-107R1.1
[117] Chen L, Song D, Zhang W, et al. The dynamic changes of arsenic bioaccumulation and antioxidant responses in the marine medaka Oryzias melastigma during chronic exposure [J]. Aquatic Toxicology, 2019(212): 110-119.
[118] Zhang W, Huang L, Wang W X. Arsenic bioaccumulation in a marine juvenile fish Terapon jarbua [J]. Aquatic Toxicology, 2011, 105(3): 582-588.
[119] Zhang W, Zhang L, Wang W X. Prey-specific determination of arsenic bioaccumulation and transformation in a marine benthic fish [J]. Science of The Total Environment, 2017(586): 296-303.
[120] Zhang W, Chen L, Zhou Y, et al. Biotransformation of inorganic arsenic in a marine herbivorous fish Siganus fuscescens after dietborne exposure [J]. Chemosphere, 2016(147): 297-304.
[121] Zhang W, Guo Z, Zhou Y, et al. Comparative contribution of trophic transfer and biotransformation on arsenobetaine bioaccumulation in two marine fish [J]. Aquatic Toxicology, 2016(179): 65-71.
[122] Zhang W, Song D, Tan Q G, et al. Physiologically based pharmacokinetic model for the biotransportation of arsenic in marine medaka (Oryzias melastigma) [J]. Environmental Science & Technology, 2020, 54(12): 7485-7493.
[123] Xiong H, Tan Q G, Zhang J, et al. Physiologically based pharmacokinetic model revealed the distinct bio-transportation and turnover of arsenobetaine and arsenate in marine fish [J]. Aquatic Toxicology, 2021(240): 105991.
[124] Song D, Chen L, Zhu S, et al. Gut microbiota promote biotransformation and bioaccumulation of arsenic in tilapia [J]. Environmental Pollution, 2022(305): 119321.
[125] Song D, Zhu S, Chen L, et al. The strategy of arsenic metabolism in an arsenic-resistant bacterium Stenotrophomonas maltophilia SCSIOOM isolated from fish gut [J]. Environmental Pollution, 2022(312): 120085.
[126] Zhu Y G, Xue X M, Kappler A, et al. Linking genes to microbial biogeochemical cycling: Lessons from arsenic [J]. Environmental Science & Technology, 2017, 51(13): 7326-7339.
[127] Zhu Y G, Yoshinaga M, Zhao F J, et al. Earth abides arsenic biotransformations [J]. Annual Review of Earth and Planetary Sciences, 2014(42): 443-467.
[128] Rosen B P. Biochemistry of arsenic detoxification [J]. FEBS Letters, 2002, 529(1): 86-92. doi: 10.1016/S0014-5793(02)03186-1
[129] Lett M C, Muller D, Lièvremont D, et al. Unified nomenclature for genes involved in prokaryotic aerobic arsenite oxidation [J]. Journal of Bacteriology, 2012, 194(2): 207-208. doi: 10.1128/JB.06391-11
[130] Zargar K, Hoeft S, Oremland R, et al. Identification of a novel arsenite oxidase gene, arxA, in the Haloalkaliphilic, arsenite-oxidizing bacterium Alkalilimnicola ehrlichii strain MLHE-1 [J]. Journal of Bacteriology, 2010, 192(14): 3755-3762. doi: 10.1128/JB.00244-10
[131] Ye J, Rensing C, Rosen B P, et al. Arsenic biomethylation by photosynthetic organisms [J]. Trends in Plant Science, 2012, 17(3): 155-162. doi: 10.1016/j.tplants.2011.12.003
[132] Islam K, Wang Q Q, Naranmandura H. Chapter three-Molecular Mechanisms of Arsenic Toxicity [M]//Fishbein J C, Heilman J M (Eds.), Advances in Molecular Toxicology. Elsevier. 2015: 77-107.
[133] Challenger F. Biological Methylation [M]. Advances in Enzymology and Related Areas of Molecular Biology. 1951: 429-491.
[134] Hong Y S, Song K H, Chung J Y. Health effects of chronic arsenic exposure [J]. Journal of Preventive Medicine and Public Health, 2014, 47(5): 245-252. doi: 10.3961/jpmph.14.035
[135] Vasken Aposhian H, Zakharyan R A, Avram M D, et al. A review of the enzymology of arsenic metabolism and a new potential role of hydrogen peroxide in the detoxication of the trivalent arsenic species [J]. Toxicology and Applied Pharmacology, 2004, 198(3): 327-335. doi: 10.1016/j.taap.2003.10.027
[136] Petrick J S, Ayala-Fierro F, Cullen W R, et al. Monomethylarsonous acid (MMAⅢ) is more toxic than arsenite in chang human hepatocytes [J]. Toxicology and Applied Pharmacology, 2000, 163(2): 203-207. doi: 10.1006/taap.1999.8872
[137] Styblo M, Del Razo L M, Vega L, et al. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells [J]. Archives of Toxicology, 2000, 74(6): 289-299. doi: 10.1007/s002040000134
[138] Kala S V, Neely M W, Kala G, et al. The MRP2/cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic [J]. Journal of Biological Chemistry, 2000, 275(43): 33404-33408. doi: 10.1074/jbc.M007030200
[139] Hayakawa T, Kobayashi Y, Cui X, et al. A new metabolic pathway of arsenite: arsenic–glutathione complexes are substrates for human arsenic methyltransferase Cyt19 [J]. Archives of Toxicology, 2005, 79(4): 183-191. doi: 10.1007/s00204-004-0620-x
[140] Naranmandura H, Suzuki N, Suzuki K T. Trivalent arsenicals are bound to proteins during reductive methylation [J]. Chemical Research in Toxicology, 2006, 19(8): 1010-1018. doi: 10.1021/tx060053f
[141] Yoshinaga M, Cai Y, Rosen B P. Demethylation of methylarsonic acid by a microbial community [J]. Environmental Microbiology, 2011, 13(5): 1205-1215. doi: 10.1111/j.1462-2920.2010.02420.x
[142] Stolz J F, Perera E, Kilonzo B, et al. Biotransformation of 3-nitro-4-hydroxybenzene arsonic acid (roxarsone) and release of inorganic arsenic by Clostridium species [J]. Environmental Science & Technology, 2007, 41(3): 818-823.
[143] Yoshinaga M, Rosen B P. A C·As lyase for degradation of environmental organoarsenical herbicides and animal husbandry growth promoters [J]. Proceedings of the National Academy of Sciences, 2014, 111(21): 7701-7706. doi: 10.1073/pnas.1403057111
[144] Nadar S V, Yoshinaga M, Kandavelu P, et al. Crystallization and preliminary X-ray crystallographic studies of the ArsI C-As lyase from Thermomonospora curvata [J]. Acta Crystallographica Section F, 2014, 70(6): 761-764.
[145] Yan Y, Xue X M, Guo Y Q, et al. Co-expression of cyanobacterial genes for arsenic methylation and demethylation in Escherichia coli offers insights into arsenic resistance [J]. Frontiers in Microbiology, 2017(8): 60.
[146] Xue X-M, Yan Y, Xiong C, et al. Arsenic biotransformation by a cyanobacterium Nostoc sp. PCC 7120 [J]. Environmental Pollution, 2017(228): 111-117.
[147] Edmonds J S, Francesconi K A. Arsenic-containing ribofuranosides: isolation from brown kelp Ecklonia radiata and nuclear magnetic resonance spectra [J]. Journal of the Chemical Society, Perkin Transactions 1, 1983: 2375-2382.
[148] Miyashita S I, Fujiwara S, Tsuzuki M, et al. Rapid biotransformation of arsenate into oxo-arsenosugars by a freshwater unicellular green alga, Chlamydomonas reinhardtii [J]. Bioscience, Biotechnology, and Biochemistry, 2011, 75(3): 522-530. doi: 10.1271/bbb.100751
[149] Xue X-M, Ye J, Raber G, et al. Arsenic methyltransferase is involved in arsenosugar biosynthesis by providing DMA [J]. Environmental Science & Technology, 2017, 51(3): 1224-1230.
[150] Miyashita S I, Fujiwara S, Tsuzuki M, et al. Cyanobacteria produce arsenosugars [J]. Environmental Chemistry, 2012, 9(5): 474-484. doi: 10.1071/EN12061
[151] Miyashita S I, Murota C, Kondo K, et al. Arsenic metabolism in cyanobacteria [J]. Environmental Chemistry, 2016, 13(4): 577-589. doi: 10.1071/EN15071
[152] García-Salgado S, Raber G, Raml R, et al. Arsenosugar phospholipids and arsenic hydrocarbons in two species of brown macroalgae [J]. Environmental Chemistry, 2012, 9(1): 63-66. doi: 10.1071/EN11164
[153] Arroyo-Abad U, Hu Z, Findeisen M, et al. Synthesis of two new arsenolipids and their identification in fish [J]. European Journal of Lipid Science and Technology, 2016, 118(3): 445-452. doi: 10.1002/ejlt.201400502
[154] Rumpler A, Edmonds J S, Katsu M, et al. Arsenic-containing long-chain fatty acids in cod-liver oil: A result of biosynthetic infidelity [J]? Angewandte Chemie International Edition, 2008, 47 (14): 2665-2667.
[155] Edmonds J S, Francesconi K A. The origin of arsenobetaine in marine animals [J]. Applied Organometallic Chemistry, 1988, 2(4): 297-302. doi: 10.1002/aoc.590020404
[156] Foster S, Maher W, Schmeisser E, et al. Arsenic species in a rocky intertidal marine food chain in NSW, Australia, revisited [J]. Environmental Chemistry, 2006, 3(4): 304-315. doi: 10.1071/EN06026
[157] Ye Z, Huang L, Zhao Q, et al. Key genes for arsenobetaine synthesis in marine medaka (Oryzias melastigma) by transcriptomics [J]. Aquatic Toxicology, 2022(253): 106349.