TEMPERATURE ON DIV1 INFECTION IN MACROBRACHIUM ROSENBERGII AND TRANSCRIPTOMIC ANALYSIS
-
摘要:
为探究温度对罗氏沼虾(Macrobrachium rosenbergii)感染十足目虹彩病毒1 (Decapod iridescent virus 1, DIV1)的影响及调控机制, 研究设置5组不同温度(26、28、30、32、34℃)对罗氏沼虾人工感染DIV1, 并统计其存活率, 结果显示温度34℃能够抑制罗氏沼虾体内的病毒复制, 减少死亡并延长其存活时间。对感染DIV1 24h和72h的罗氏沼虾肝胰腺、鳃及肌肉进行病毒载量测定, 结果表明感染DIV1的罗氏沼虾在72h内病毒迅速增殖, 但当水温升高至30℃及更高温度时其体内的病毒载量明显降低。此外, 采集罗氏沼虾不同温度下感染DIV1的肝胰腺进行转录组学分析, 结果表明共有8483个不同差异表达基因, 富集分析发现基因主要富集在花生四烯酸代谢(Arachidonic acid metabolism)、糖酵解/糖异生(Glycolysis / Gluconeogenesis)、α-亚油酸代谢(alpha-Linolenic acid metabolism)等与Warburg效应相关的代谢通路中, 推测这些基因和通路可能与病毒感染机制密切相关。对罗氏沼虾感染DIV1后的免疫基因CAT、Cu/ZnSOD、CTL、ACP的表达水平进行测定, 结果发现当温度为32℃时这些免疫基因的表达量显著高于其他温度, 表明高温能够促进罗氏沼虾的免疫基因表达量增加以抵御病毒入侵。研究通过分析不同温度对DIV1感染罗氏沼虾的影响, 初步揭示了温度对病毒复制的影响及调控机制, 为深入探究病毒感染的分子机制和开发抗病毒免疫技术奠定一定的基础。
Abstract:To investigate the effect and regulatory mechanism of temperature on Macrobrachium rosenbergii infected with Decapod iridescent virus 1 (DIV1), we set up five experimental groups at different temperatures (26, 28, 30, 32, and 34℃) for artificial DIV1 infection in this study, and calculated its survival rate. The results showed that the temperature of 34℃ significantly inhibited virus replication in M. rosenbergii, decreased mortality, and extended survival duration. The viral load in the hepatopancreas, gill, and muscle of M. rosenbergii infected with DIV1 was determined at 24h and 72h. The results found that the virus rapidly proliferated within 72hours, however, a notable reduction in the viral load decreased significantly when the water temperature increased to 30℃ or above. In addition, transcriptomic analysis was conducted on hepatopancreas of M. rosenbergii infected with DIV1 at different temperatures, and a total of 8483 differentially expressed genes were identified. Enrichment analysis revealed that these differentially expressed genes were mainly enriched in Arachidonic acid metabolism, Glycolysis/Gluconeogenesis, alpha-Linolenic acid metabolism and other metabolic pathways related to Warburg effect. It is speculated that these pathways and genes may be closely related to the mechanism of viral infection. Furthermore, the expression levels of immune genes CAT, Cu/ZnSOD, CTL, and ACP in M. rosenbergii infected with DIV1, revealing significantly higher expression at temperature of 32℃ compared to other temperatures. This indicates that high temperature can promote an increase in immune gene expression in M. rosenbergii to resist virus invasion. This study provides a comprehensive analysis of the temperature effects on DIV1 infection in M. rosenbergii, elucidating the effects and regulatory mechanism of temperature on virus replication. These findings lay a foundation for further exploration into the molecular mechanism of virus infection and the development of antiviral immune technology.
-
-
图 3 不同温度下感染DIV1 24h (A)和72h (B)罗氏沼虾的肝胰腺、鳃和肌肉组织中病毒载量的变化
不同字母表示组间差异显著(P<0.05)
Figure 3. Changes of viral load in hepatopancreas, gill, and muscle tissues of M. rosenbergii infected with DIV1 at different temperatures for 24h (A) and 72h (B)
Different letters indicate significant differences in groups (P<0.05)
表 1 罗氏沼虾感染DIV1的转录组测序数据(过滤后)
Table 1 Transcriptome analysis data of hepatopancreas of M. rosenbergii infected with DIV1 (after filtering)
Sample Raw read number Trimmed read number Trimmed bases Raw Q20 rate (%) Raw Q30 rate (%) Useful read (%) C1 40656152 40270600 6071846179 97.97 93.98 99.05 C2 45844954 45362930 6839330599 97.82 93.66 98.95 C3 41687698 41320418 6229797577 98.09 94.29 99.12 T26-1 50214336 49673918 7484682542 98.13 94.42 98.92 T26-2 52973998 52477322 7911017426 98.38 95.04 99.06 T26-3 48144434 47595962 7173781641 98.08 94.32 98.86 T28-1 51755682 51295874 7733108510 98.32 94.85 99.11 T28-2 57000770 56368302 8499234370 98.12 94.38 98.89 T28-3 47886244 47449286 7153565373 98.18 94.39 99.09 T30-1 53964458 53491966 8062804860 98.45 95.21 99.12 T30-2 45954522 45543808 6865548233 98.31 94.81 99.11 T30-3 52823954 52240446 7873885256 98.18 94.6 98.9 T32-1 53489536 53001530 7991157162 98.36 94.95 99.09 T32-2 56704528 56141238 8461995874 98.32 94.91 99.01 T32-3 54654938 54195174 8171456679 98.45 95.17 99.16 T34-1 50771510 50347114 7589411546 98.46 95.18 99.16 T34-2 49617766 49172430 7411627603 98.45 95.24 99.10 T34-3 49058398 48590290 7324474436 98.30 94.83 99.05 表 2 转录组测序数据与参考基因组的比对结果
Table 2 The alignment results with transcriptome analysis data and the reference genome
Sample Clean reads Total mapped
(%)Multiple mapped
(%)Uniquely
mapped (%)Mapped to
gene (%)Mapped to
InterGene (%)Mappe to
exon (%)C1 40270600 95.25 15.48 84.52 81.91 18.09 91.33 C2 45362930 95.69 15.57 84.43 81.78 18.22 91.46 C3 41320418 95.47 15.28 84.72 83.02 16.98 91.56 T26-1 49673918 94.19 14.86 85.14 68.91 31.09 87.51 T26-2 52477322 95.51 14.69 85.31 77.01 22.99 88.87 T26-3 47595962 95.23 16.36 83.64 73.20 26.80 86.50 T28-1 51295874 95.61 15.09 84.91 77.57 22.43 88.77 T28-2 56368302 95.70 17.06 82.94 77.30 22.70 89.94 T28-3 47449286 96.09 16.52 83.48 81.28 18.72 90.47 T30-1 53491966 95.36 13.22 86.78 81.49 18.51 90.10 T30-2 45543808 95.28 13.89 86.11 79.79 20.21 90.35 T30-3 52240446 95.07 20.53 79.47 72.44 27.56 88.57 T32-1 53001530 95.58 12.10 87.90 80.67 19.33 91.18 T32-2 56141238 95.92 20.38 79.62 79.01 20.99 90.01 T32-3 54195174 95.60 11.92 88.08 82.18 17.82 91.41 T34-1 50347114 95.47 11.43 88.57 81.52 18.48 90.96 T34-2 49172430 94.74 11.30 88.70 78.30 21.70 91.07 T34-3 48590290 95.00 13.84 86.16 80.25 19.75 91.06 表 3 不同温度感染组的富集通路及基因(部分)
Table 3 Enrichment pathways and genes in the infected groups at different temperatures.(Part)
Sample Up Down Total Enrichment pathway Enrichment gene C-vs-T26 499 787 1,286 Pentose and glucuronate interconversions DER、RDH、
Bco、HPSE、
art、CYP2、
ACP、Gba、
NAGA、PSAP、
CROT、Crot、
PEX、CROTRetinol metabolism Glycosaminoglycan degradation Ascorbate and aldarate metabolism Biosynthesis of unsaturated fatty acids Arachidonic acid metabolism Lysosome Peroxisome PPAR signaling pathway C-vs-T28 404 519 923 Retinol metabolism RDH、Bco、
CYP、art、
Cyp、UGP、
Gale、CAT、
SOD、Ctl、
Aga、Tspan4、
PicotBiosynthesis of unsaturated fatty acids Arachidonic acid metabolism Amino sugar and nucleotide sugar metabolism alpha-Linolenic acid metabolism Peroxisome Lysosome PPAR signaling pathway C-vs-T30 816 998 1,814 Amino sugar and nucleotide sugar metabolism PGM、Uap、
GALE、UGP、
Ctl、ANPEP、
Gclc、Casp、
GPX、SOD、
CYP、Pla、
RPS、RPLRetinol metabolism Glutathione metabolism Fructose and mannose metabolism Arachidonic acid metabolism Starch and sucrose metabolism Biosynthesis of unsaturated fatty acids Lysosome Peroxisome Ribosome C-vs-T32 1,148 1243 2,391 Ribosome AMY、TSPO、
Lrp、SLC、
CPA、PRCP、
Acp、PCK、
GMPPB、Ctl、
Gfus、PyK、Carbohydrate digestion and absorption Cholesterol metabolism Protein digestion and absorption PPAR signaling pathway Adipocytokine signaling pathway Amino sugar and nucleotide sugar metabolism Glycolysis / Gluconeogenesis Starch and sucrose metabolism Retinol metabolism C-vs-T34 1,105 964 2,069 Ribosome biogenesis in eukaryotes Rpp、UTP、
POP、REXO、
NOB、POLR、
RPI、HPSE、
Galns、LIPF、
TSPO、Tace、
NotchRNA polymerase RNA degradation Amino sugar and nucleotide sugar metabolism Arachidonic acid metabolism Glycosaminoglycan degradation Cytosolic DNA-sensing pathway Cholesterol metabolism Lysosome Notch signaling pathway -
[1] Qiu L, Chen X, Zhao R H, et al. Description of a natural infection with decapod iridescent virus 1 in farmed giant freshwater prawn, Macrobrachium rosenbergii [J]. Viruses, 2019, 11(4): 354. doi: 10.3390/v11040354
[2] 绳秀珍, 吴明顺, 叶海斌, 等. 十足目虹彩病毒1的研究进展 [J]. 水产学报, 2022, 46(5): 721-729.] Sheng X Z, Wu M S, Ye H B, et al. Research progresses on Decapoda iridescent virus 1 [J]. Journal of Fisheries of China, 2022, 46(5): 721-729. [
[3] Le Moullac G, Haffner P, Environmental factors affecting immune responses in Crustacea [J]. Aquaculture, 2000, 191 ((1/2/3): 121-131.
[4] 罗淑娅. 水温对对虾白斑综合症病毒(WSSV)感染克氏螯虾的影响 [D]. 厦门: 国家海洋局第三海洋研究所, 2010: 27-53.] Luo S Y. Effect of water temperature on the infection of White spotsyndrome virus (WSSV) in Procambarus clarki [D]. Xiamen: Third Institute of Oceanography, Ministry of Natural Resources, 2010: 27-53. [
[5] 冯亚萍, 孔杰, 罗坤, 等. 不同温度下凡纳滨对虾和中国明对虾对白斑综合征病毒(WSSV)耐受性比较 [J]. 渔业科学进展, 2018, 39(2): 120-127.] Feng Y P, Kong J, Luo K, et al. The difference of tolerance to white spot syndrome virus between litopenaeus vannamei and fenneropenaeus chinensis at different temperatures [J]. Progress in Fishery Sciences, 2018, 39(2): 120-127. [
[6] Jiravanichpaisal P, Söderhäll K, Söderhäll I. Effect of water temperature on the immune response and infectivity pattern of white spot syndrome virus (WSSV) in freshwater crayfish [J]. Fish & Shellfish Immunology, 2004, 17(3): 265-275.
[7] Guo X M, Qiu L, Gao W, et al. Radical thermal therapy against infection with decapod iridescent virus 1 (DIV1) [J]. Aquaculture, 2022, 561: 738636. doi: 10.1016/j.aquaculture.2022.738636
[8] 何子豪. 多组学联合分析揭示十足目虹彩病毒1感染下日本囊对虾肠道的应答机制 [D]. 湛江: 广东海洋大学, 2021: 5-79.] He Z H. Multiomics joint analysis reveals the response mechanism of Penaeus japonicus’s intestine infected by decapod iridovirus 1 [D]. Zhanjiang: Guangdong Ocean University, 2021: 5-79. [
[9] Xue S, Liu Y, Zhang Y, et al. Sequencing and de novo analysis of the hemocytes transcriptome in Litopenaeus vannamei response to white spot syndrome virus infection [J]. PLoS One, 2013, 8(10): e76718. doi: 10.1371/journal.pone.0076718
[10] 廖栩峥. 凡纳滨对虾对十足目虹彩病毒1感染的应答机制研究 [D]. 湛江: 广东海洋大学, 2020: 6-52.] Liao X Z. Study on the response mechanism of Litopenaeus vannamei to decapod iridovirus 1 infection [D]. Zhanjiang: Guangdong Ocean University, 2020: 6-52. [
[11] 刘小央. 罗氏沼虾十足目虹彩病毒感染模型的建立及抗病毒药物筛选 [D]. 长春: 吉林农业大学, 2023: 12-48.] Liu X Y. Establishment of infection model of Macrobrachium rosenbergii decapod iridovirus and screening of antiviral drugs [D]. Changchun: Jilin Agricultural University, 2023: 12-48. [
[12] 张晶晶, 陈斌, 卓玉琛, 等. 大口黑鲈头肾抗大口黑鲈虹彩病毒(LMBV)应答的转录组学分析 [J]. 中国农学通报, 2024, 40(35): 148-155.] doi: 10.11924/j.issn.1000-6850.casb2024-0440 Zhang J J, Chen B, Zhuo Y C, et al. Transcriptome Analysis of Head Kidney Anti-LMBV Responses in Largemouth Bass (Micropterus salmoides) [J]. Chinese Agricultural Science Bulletin, 2024, 40(35): 148-155. [ doi: 10.11924/j.issn.1000-6850.casb2024-0440
[13] 包志明, 邹永烽, 曹攀辉, 等. 高温胁迫对克氏原螯虾肠道组织形态与转录组的影响 [J]. 南方水产科学, 2025, 21(1): 105-117.] doi: 10.12131/20240161 Zhi M B, Yong F Z, Pan H C, et al. Effect of high temperature stress on intestinal tissues morphology and transcriptome of Procambarus clarkii [J]. South China Fisheries Science, 2025, 21(1): 105-117. [ doi: 10.12131/20240161
[14] Qiu L, Chen M M, Wan X Y, et al. Characterization of a new member of Iridoviridae, Shrimp hemocyte iridescent virus (SHIV), found in white leg shrimp (Litopenaeus vannamei) [J]. Scientific Reports, 2017, 7(1): 11834. doi: 10.1038/s41598-017-10738-8
[15] 孙卫芳, 黄小帅, 胡晓娟, 等. 广东沿海地区凡纳滨对虾EHP、VPAHPND和SHIV感染情况调查与分析 [J]. 南方农业学报, 2019, 50(10): 2343-2349.] doi: 10.3969/j.issn.2095-1191.2019.10.27 Sun W F, Huang X S, Hu X J, et al. Detection and analysis of Enterocytozoon hepatopenaei(EHP), Vibrio parahaemolyticus acute hepatopancreatic necrosis disease (VPAHPND) and shrimp hemocyte iridescent virus (SHIV)from Litopenaeus vannamei in coastal areas of Guangdong Province [J]. Journal of Southern Agriculture, 2019, 50(10): 2343-2349. [ doi: 10.3969/j.issn.2095-1191.2019.10.27
[16] 郑晓叶, 许俊榆, 郑天伦, 等. 浙江省南美白对虾苗种五种流行病病原检测与分析 [J]. 中国动物检疫, 2018, 35(8): 17-22.] doi: 10.3969/j.issn.1005-944X.2018.08.005 Zheng X Y, Xu J Y, Zheng T L, et al. Detection and analysis on five kinds of pathogens in white shrimp (Penaeus vannamei) in Zhejiang Province [J]. China Animal Health Inspection, 2018, 35(8): 17-22. [ doi: 10.3969/j.issn.1005-944X.2018.08.005
[17] 李侃, 罗淑娅, 徐丽美. 温度影响对虾白斑综合症病毒增殖机制的研究 [J]. 应用海洋学学报, 2013, 32(1): 61-66.] Li K, Luo S Y, Xu L M. A study on the mechanism of temperature impact on the proliferation of white spot syndrome virus (WSSV) [J]. Journal of Applied Oceanography, 2013, 32(1): 61-66. [
[18] Granja C B, Aranguren L F, Vidal O M, et al. Does hyperthermia increase apoptosis in white spot syndrome virus (WSSV)-infected Litopenaeus vannamei? [J]. Diseases of Aquatic Organisms, 2003, 54(1): 73-78.
[19] Ji P F, Yao C L, Wang Z Y. Immune response and gene expression in shrimp (Litopenaeus vannamei) hemocytes and hepatopancreas against some pathogen-associated molecular patterns [J]. Fish & Shellfish Immunology, 2009, 27(4): 563-570.
[20] Su M A, Huang Y T, Chen I T, et al. An invertebrate Warburg effect: a shrimp virus achieves successful replication by altering the host metabolome via the PI3K-Akt-mTOR pathway [J]. PLoS Pathogens, 2014, 10(6): e1004196. doi: 10.1371/journal.ppat.1004196
[21] 林家俞, 秦洁洁, 蒋玲曦. 肿瘤微环境中免疫细胞的代谢研究进展 [J]. 上海交通大学学报(医学版), 2022, 42(8): 1122-1130.] Lin J Y, Qin J J, Jiang L X. Progress in metabolism of the immune cells in tumor microenvironment [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2022, 42(8): 1122-1130. [
[22] 杨志刚, 赵雪健, 成永旭. 镉和低pH胁迫对中华绒螯蟹免疫应答及相关基因表达的影响 [J]. 上海海洋大学学报, 2022, 31(2): 373-383.] Yang Z G, Zhao X J, Cheng Y X. Effects of cadmium and low pH stress on immune response and expression of related genes in the Chinese Mitten Crab(Eriocheir sinensis) [J]. Journal of Shanghai Ocean University, 2022, 31(2): 373-383. [
[23] 刘鹏飞, 刘庆慧, 吴垠, 等. 白斑综合征病毒感染凡纳滨对虾(Litopenaeus vannamei)TRx、LvP38、CAT、POD基因的表达 [J]. 渔业科学进展, 2015, 36(4): 89-93.] doi: 10.11758/yykxjz.20150412 Liu P F, Liu Q H, Wu Y, et al. Expression of TRx, LvP38, CAT and POD gene of litopenaeus vannamei response to WSSV infection [J]. Progress in Fishery Sciences, 2015, 36(4): 89-93. [ doi: 10.11758/yykxjz.20150412
[24] Ni D, Song L, Gao Q, et al. The cDNA cloning and mRNA expression of cytoplasmic Cu, Zn superoxide dismutase (SOD) gene in scallop Chlamys farreri [J]. Fish & Shellfish Immunology, 2007, 23(5): 1032-1042.
[25] Ren Q, Xu J, Yu Y, et al. C-type lectins containing an immunoglobulin domain have an anti-WSSV function in Procambarus clarkii [J]. Aquaculture, 2025, 595: 741620. doi: 10.1016/j.aquaculture.2024.741620
[26] 李红岩, 张祥敏, 杨帅奇. 海洋生物C型凝集素研究进展 [J]. 中国海洋大学学报(自然科学版), 2020, 50(9): 113-119.] Hong Y i, Xiang M Z, Shuai Q Y. Research Progress of C-Type Lectin in Marine Organisms [J]. Periodical of Ocean University of China, 2020, 50(9): 113-119. [
[27] 黄萌萌, 雷宇桐, 王高杨, 等. 三疣梭子蟹(Portunus trituberculatus)含新型关键识别基序DPY/WTD单结构域C型凝集素PtCTL-6的免疫功能研究 [J]. 海洋与湖沼, 2019, 50(6): 1302-1308.] doi: 10.11693/hyhz20190700131 Huang M M, Lei Y T, Wang G Y, et al. Characterization of single crd containing c-type lectin with novel motif DPY/WTD from Portunus trituberculatus [J]. Ocean and Lake, 2019, 50(6): 1302-1308. [ doi: 10.11693/hyhz20190700131
[28] 敖士齐, 翟乾, 纪鹏, 等. 亚甲基蓝对罗氏沼虾组织结构、抗氧化系统及免疫能力的影响 [J]. 淡水渔业, 2023, 53(1): 49-56.] doi: 10.3969/j.issn.1000-6907.2023.01.007 Ao S Q, Zhai Q, Ji P, et al. Effects of methylene blue on histological structure, antioxidant system and immune capacity in Macrobrachium rosenbergii [J]. Freshwater Fisheries, 2023, 53(1): 49-56. [ doi: 10.3969/j.issn.1000-6907.2023.01.007
[29] 张明明, 王雷, 王宝杰, 等. 凡纳滨对虾碱性磷酸酶和酸性磷酸酶基因的克隆、表达及盐度应答效应 [J]. 海洋科学, 2017, 41(1): 83-95.] doi: 10.11759//hykx20160112002 Zhang M M, Wang L, Wang B J, et al. cDNA cloning and gene expressionin response to salinity of alkaline phosphatase and acid phosphatase from Litopenaeus vannamei [J]. Marine Sciences, 2017, 41(1): 83-95. [ doi: 10.11759//hykx20160112002