OPTIMIZATION OF BP NEURAL NETWORK FOR CHLOROPHYLL-A CONCENTRATION INVERSION BASED ON SPARROW SEARCH ALGORITHM: A CASE STUDY OF XIAOJIANG
-
摘要:
针对传统反向传播(Back Propagation, BP)神经网络在叶绿素a浓度反演中对初始值敏感、容易陷入局部最优的问题, 文章提出基于麻雀搜索算法(Sparrow Search Algorithm, SSA)优化SSA-BP反演模型。结合大疆RTK300无人机搭载AFX-10高光谱相机的遥感数据与小江回水区同步地面采样数据, 构建新型反演模型。结果显示: (1)Savitzky-Golay(SG)平滑显著优化光谱数据质量, 使SSA-BP模型决定系数(R2)提升至0.98; (2)相较于传统BP神经网络, SSA-BP模型反演精度全面提升, 其中渠马水域平均绝对误差(MAE)降低了59.14%, 均方根误差(RMSEP)降低了60.78%, 相对百分比差异(RPD)提高了57.32%; (3)SSA-BP模型克服了传统BP模型在低浓度区域(R2从0.94降至0.76)的性能衰减, 在不同叶绿素a浓度梯度下均保持稳定高精度, R2最高达到0.98。研究证实SSA-BP模型显著提升无人机高光谱遥感反演叶绿素a的精度与适应性, 为内陆水体生态环境监测提供可靠技术手段。
Abstract:Chlorophyll-a concentration is a crucial parameter characterizing water ecological environment quality. To address the issues of traditional Back Propagation (BP) neural networks, which are highly sensitive to initial values and tendency to local optima in chlorophyll-a inversion, this study proposes an SSA-BP inversion model optimized by using the Sparrow Search Algorithm (SSA). A novel inversion model was constructed by integrating remote sensing data from the DJI RTK300 UAV equipped with an AFX-10hyperspectral camera and synchronous ground sampling data from the Xiaojiang backwater area. The results demonstrate that: (1) The application of Savitzky-Golay (SG) smoothing significantly improved spectral data quality, increasing the determination coefficient (R2) of the SSA-BP model to 0.98; (2) Compared with traditional BP neural networks, the SSA-BP model showed comprehensive improvement in inversion accuracy, with the Quma water area exhibiting a 59.14% reduction in Mean Absolute Error (MAE), 60.78% decrease in Root Mean Square Error of Prediction (RMSEP), and 57.32% increase in Relative Percent Difference (RPD); (3) The SSA-BP model overcame the performance degradation of traditional BP models in low-concentration regions (where R2 decreased from 0.94 to 0.76), maintaining stable high precision across different chlorophyll-a concentration gradients, with the highest R2 reaching 0.98. This research confirms that the SSA-BP model significantly enhances the accuracy and adaptability of UAV hyperspectral remote sensing in chlorophyll-a inversion, providing a reliable technical approach for ecological environment monitoring in inland water bodies.
-
-
表 1 BP和SSA-BP模型及光谱预处理方法比较
Table 1 Comparison of BP and SSA-BP models and spectral pretreatment methods
区域
Region模型
Model评价指标
Evaluation Index预处理方法Pretreatment Method 归一化 D1 MCX MSC SG SNV MAE 2.3572 3.0845 1.7763 2.106 1.3199 1.8712 RMSEP 2.4932 4.3058 2.1856 2.6287 1.5979 2.6898 SSA-BP R2 0.95514 0.82758 0.96742 0.94652 0.97487 0.95473 RPD 4.7254 2.4104 6.144 4.3788 6.3136 4.704 MAPE 0.053826 0.06776 0.03602 0.04388 0.03254 0.04375 QM MAE 2.1446 7.8347 3.0951 3.0401 3.2305 5.7849 RMSEP 2.8452 8.9763 3.6434 4.1275 4.0741 6.7402 BP R2 0.90973 0.67639 0.73801 0.91032 0.93604 0.72059 RPD 3.3422 1.8805 1.9604 4.3334 4.0132 1.952 MAPE 0.043334 0.21282 0.06716 0.07729 0.13373 0.12939 MAE 1.9676 2.954 2.4532 1.9519 1.4026 2.1022 RMSEP 2.4408 3.4461 3.2868 2.2003 2.051 2.8688 SSA-BP R2 0.92249 0.62817 0.84753 0.90903 0.94879 0.90369 RPD 4.0574 1.6399 2.7661 3.3235 4.5566 3.276 MAPE 0.10975 0.25805 0.20731 0.16217 0.12099 0.12754 GY MAE 2.864 4.1071 2.5727 2.9092 1.6346 2.5189 RMSEP 3.7608 4.9562 2.9529 3.8957 2.3909 3.1298 BP R2 0.83707 0.62619 0.85016 0.79983 0.91853 0.85359 RPD 2.4909 1.6429 2.5866 2.3262 3.5046 2.903 MAPE 0.22711 0.29904 0.17983 0.20639 0.13894 0.28308 MAE 0.53218 1.065 0.68832 0.39329 0.3053 0.4573 RMSEP 0.59886 1.3948 0.87756 0.45195 0.39288 0.53745 SSA-BP R2 0.88499 0.53494 0.77597 0.91034 0.96852 0.83141 RPD 2.9526 1.4945 2.3422 3.7329 6.227 2.4378 MAPE 0.061797 0.12891 0.08751 0.04979 0.03456 0.04939 HS MAE 0.57029 1.2976 0.57965 0.86522 0.58747 0.91092 RMSEP 0.75499 1.4863 0.81558 1.099 0.83065 1.1727 BP R2 0.72308 0.4345 0.77105 0.72215 0.76364 0.7368 RPD 2.0086 1.3976 2.0904 2.8485 2.0589 2.5097 MAPE 0.069112 0.16383 0.06806 0.08869 0.07557 0.09026 -
[1] Mishra S, Mishra D R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters [J]. Remote Sensing of Environment, 2012(117): 394-406.
[2] 罗婕纯一, 秦龙君, 毛鹏, 等. 水质遥感监测的关键要素叶绿素a的反演算法研究进展 [J]. 遥感技术与应用, 2021, 36(3): 473-488.] Luo J C Y, Qin L J, Mao P, et al. Research progress in the retrieval algorithms for chlorophyll-a, a key element of water quality monitoring by remote sensing [J]. Remote Sensing Technology and Application, 2021, 36(3): 473-488. [
[3] 李泽军. 从水体叶绿素含量评价于桥水库富营养化程度 [J]. 河北水利水电技术, 2001(6): 44-45.] Li Z J. Rich nutrition estimate of Yuqiao reservoir from the content of water body chlorobhyll [J]. Hebei Water Sciences and Engineering Technology, 2001(6): 44-45. [
[4] 陈艳, 刘绥华, 王堃, 等. 基于Landsat卫星影像的草海水质遥感反演及营养状态评价 [J]. 水生态学杂志, 2020, 41(3): 24-31.] Chen Y, Liu S H, Wang K, et al. Remote sensing of Caohai Lake water quality using landsat satellite images [J]. Journal of Hydroecology, 2020, 41(3): 24-31. [
[5] 沈蔚, 纪茜, 邱耀炜, 等. 基于高光谱遥感的长江口叶绿素a浓度反演推算 [J]. 水生态学杂志, 2021, 42(3): 1-6.] Shen W, Ji Q, Qiu Y W, et al. Estimation of chlorophyll-a concentrations in the Yangtze River Estuary obtained from hyperspectral remote sensing images [J]. Journal of Hydroecology, 2021, 42(3): 1-6. [
[6] 王思梦, 秦伯强. 湖泊水质参数遥感监测研究进展 [J]. 环境科学, 2023, 44(3): 1228-1243.] Wang S M, Qin B Q. Research progress on remote sensing monitoring of lake water quality parameters [J]. Environmental Science, 2023, 44(3): 1228-1243. [
[7] 李苗, 臧淑英, 吴长山. 基于TM影像的克钦湖叶绿素a浓度反演 [J]. 农业环境科学学报, 2012, 31(12): 2473-2479.] Li M, Zang S Y, Wu C S. Inversion of Chlorophyll-a Concentration Based on TM Remote Sensing Image in Keqin Lake [J]. Journal of Agro-Environment Science, 2012, 31(12): 2473-2479. [
[8] 封红娥, 李家国, 朱云芳, 等. GF-1与Landsat8水体叶绿素a浓度协同反演——以太湖为例 [J]. 国土资源遥感, 2019, 31(4): 182-189.] Feng H E, Li J G, Zhu Y F, et al. Synergistic inversion method of chlorophyll a concentration in GF-1 and Landsat8 imagery: A case study of the Taihu Lake [J]. Remote Sensing for Land and Resources, 2019, 31(4): 182-189. [
[9] 谢恩弘, 吴骏恩, 杨昆. 基于Sentinel-2影像的洱海叶绿素a质量浓度反演 [J]. 环境工程学报, 2022, 16(9): 3058-3069.] Xie E H, Wu J E, Yang K. Mass concentration inversion for chlorophyll a in Erhai lake based on Sentinel-2 [J]. Chinese Journal of Environmental Engineering, 2022, 16(9): 3058-3069. [
[10] 沈娟, 周治刚, 张彤辉, 等. 基于Sentinel-3A的北部湾海域叶绿素a浓度遥感反演研究 [J]. 遥感技术与应用, 2024, 39(1): 110-119.] Shen J, Zhou Z G, Zhang T H, et al. Inversion of Beibu Gulf chlorophyll a concentration based on Sentinel-3A Satellite [J]. Remote Sensing Technology and Application, 2024, 39(1): 110-119. [
[11] 徐鹏飞, 毛峰, 金平斌, 等. 基于GF1_WFV的千岛湖水体叶绿素a浓度时空变化 [J]. 中国环境科学, 2020, 40(10): 4580-4588.] Xu P F, Mao F, Jin P B, et al. Spatial-temporal variations of chlorophyll-a in Qiandao lake using GF1_WFV data [J]. China Environmental Science, 2020, 40(10): 4580-4588. [
[12] 吴迪, 于文金, 谢涛. 高分二号卫星数据在粤港澳大湾区水体有机污染监测中的应用 [J]. 热带地理, 2020, 40(4): 675-683.] Wu D, Yu W J, Xie T. Application of GF-2satellite data for monitoring organic pollution delivered to water bodies in the Guangdong-Hong Kong-Macao greater bay area [J]. Tropical Geography, 2020, 40(4): 675-683. [
[13] 黄启会, 贺中华, 梁虹, 等. 基于HJ-1A CCD数据的湖泊叶绿素a浓度反演——以贵阳市百花湖为例 [J]. 人民长江, 2019, 50(3): 66-72.] Huang Q H, He Z H, Liang H, et al. Inversion of chlorophyll-a concentration in baihua lake in Guiyang City based on HJ-1A CCD data [J]. Yangtze River, 2019, 50(3): 66-72. [
[14] 杜娟, 杨国范, 李佳奇. 基于环境小卫星的凌河叶绿素a浓度定量反演 [J]. 节水灌溉, 2014(9): 50-53.] Du J, Yang G F, Li J Q. Quantitative retrieval of Chlorophyll-A by remote sensing in Linghe River based on HJ-1B data [J]. Water Saving Irrigation, 2014(9): 50-53. [
[15] 张永杰, 王卷乐, 冉盈盈, 等. 基于实测光谱分析和MODIS数据鄱阳湖叶绿素a浓度估算 [J]. 长江流域资源与环境, 2013, 22(8): 1081-1089.] Zhang Y J, Wang J L, Ran Y Y, et al. Estimating chlorophyll-a concentration in Poyang lake using modis based on measured reflectance spectra [J]. Resources and Environment in the Yangtze Basin, 2013, 22(8): 1081-1089. [
[16] 姚华鑫, 肖潇, 陈品祥, 等. 新一代国产高光谱ZY1-02E卫星在内陆水体水质参数反演中的应用 [J]. 华北水利水电大学学报(自然科学版), 2024, 45(1): 11-20.] Yao H X, Xiao X, Chen P X, et al. Application of China’s new generation of ZY1-02E hyperspectral satellite in the inversion of water quality parameters in inland waters [J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2024, 45(1): 11-20. [
[17] 冯天时, 庞治国, 江威. 基于珠海一号高光谱卫星的巢湖叶绿素a浓度反演 [J]. 光谱学与光谱分析, 2022, 42(8): 2642-2648.] Feng T S, Pang Z G, Jiang W. Remote sensing retrieval of chlorophyll-a concentration in Lake Chaohu based on Zhuhai-1hyperspectral satellite [J]. Spectroscopy and Spectral Analysis, 2022, 42(8): 2642-2648. [
[18] 童小华, 谢欢, 仇雁翎, 等. 基于多光谱遥感的水质监测处理方法与分析 [J]. 同济大学学报(自然科学版), 2007, 35(5): 675-680.] Tong X H, Xie H, Qiu Y L, et al. Multi-spectral remote sensing data based processing method and analysis of water quality monitor [J]. Journal of Tongji University (Natural Science), 2007, 35(5): 675-680. [
[19] 林剑远, 张长兴. 航空高光谱遥感反演城市河网水质参数 [J]. 遥感信息, 2019, 34(2): 23-29.] Lin J Y, Zhang C X. Inversion of water quality parameters of urban river network using airborne hyperspectral remote sensing [J]. Remote Sensing Information, 2019, 34(2): 23-29. [
[20] Vander Woude A, Ruberg S, Johengen T, et al. Spatial and temporal scales of variability of cyanobacteria harmful algal blooms from NOAA GLERL airborne hyperspectral imagery [J]. Journal of Great Lakes Research, 2019, 45(3): 536-546. doi: 10.1016/j.jglr.2019.02.006
[21] Saberioon M, Khosravi V, Brom J, et al. Examining the sensitivity of simulated EnMAP data for estimating chlorophyll-a and total suspended solids in inland waters [J]. Ecological informatics, 2023, 75: 102058. doi: 10.1016/j.ecoinf.2023.102058
[22] 马启良, 原居林, 张爱华, 等. 基于无人机高光谱技术的水质预测反演系统设计与实现 [J]. 湖州师范学院学报, 2022, 44(2): 56-62.] Ma Q L, Yuan J L, Zhang A H, et al. Design and implementation of water quality prediction and inversion system based on UAV hyperspectral technology [J]. Journal of Huzhou University, 2022, 44(2): 56-62. [
[23] 冯翠杰, 方晨琦, 袁亘宇, 等. 基于无人机高光谱和BP神经网络的城市水体污染监测 [J]. 环境工程学报, 2023, 17(12): 3996-4006.] doi: 10.12030/j.cjee.202308120 Feng C J, Fang C Q, Yuan G Y, et al. Water pollution monitoring based on unmanned aerial vehicle(UAV) hyperspectral and BP neural network [J]. Chinese Journal of Environmental Engineering, 2023, 17(12): 3996-4006. [ doi: 10.12030/j.cjee.202308120
[24] 马启良, 刘梅, 祁亨年, 等. 基于CSA-PLS算法的养殖水体水质快速高光谱预测反演模型研究 [J]. 海洋与湖沼, 2024, 55(2): 375-385.] Ma Q L, Liu M, Qi H N, et al. Fast hyperspectral prediction and inversion model of aquaculture water quality based on csa-pls Algorithm [J]. Oceanologia et Limnologia Sinica, 2024, 55(2): 375-385. [
[25] Rundquist D C, Han L, Schalles J F, et al. Remote measurement of algal chlorophyll in surface waters: the case for the first derivative of reflectance near 690 nm [J]. Photogrammetric Engineering and Remote Sensing, 1996, 62(2): 195-200.
[26] Gordon H R, Clark D K, Mueller J L, et al. Phytoplankton pigments from the Nimbus-7 coastal zone color scanner: comparisons with surface measurements [J]. Science, 1980, 210(4465): 63-66. doi: 10.1126/science.210.4465.63
[27] 曹红业, 龚涛, 袁成忠, 等. 基于RBF模型的太湖北部叶绿素a浓度定量遥感反演 [J]. 环境工程学报, 2016, 10(11): 6499-6504.] Cao H Y, Gong T, Yuan C Z, et al. Quantitative retrieval of chlorophyll-a concentration in northern part of Lake Taihu based on RBF model [J]. Chinese Journal of Environmental Engineering, 2016, 10(11): 6499-6504. [
[28] 朱云芳, 朱利, 李家国, 等. 基于GF-1 WFV影像和BP神经网络的太湖叶绿素a反演 [J]. 环境科学学报, 2017, 37(1): 130-137.] Zhu Y F, Zhu L, Li J G, et al. The study of inversion of chlorophyll a in Taihu based on GF-1 WFV image and BP neural network [J]. Acta Scientiae Circumstantiae, 2017, 37(1): 130-137. [
[29] 张雪, 郑小慎. 基于BP神经网络渤海湾表层叶绿素浓度反演方法探讨 [J]. 海洋技术学报, 2018, 37(6): 79-87.] Zhang X, Zheng X S. Discussion on retrieval method of surface chlorophyll concentration of the Bohai Bay based on BP neural network [J]. Journal of Ocean Technology, 2018, 37(6): 79-87. [
[30] Xue J, Shen B. A novel swarm intelligence optimization approach: sparrow search algorithm [J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
[31] 程晓钰. 机载高光谱数据处理关键技术研究[D]. 上海: 中国科学院大学(中国科学院上海技术物理研究所), 2019: 15-16.] Cheng X Y. Research on The Key Technologies of Airborne Hyperspectral Data Processing[D]. Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2019: 15-16.
[32] 王春玲, 史锴源, 明星, 等. 基于机器学习的水体化学需氧量高光谱反演模型对比研究 [J]. 光谱学与光谱分析, 2022, 42(8): 2353-2358.] Wang C L, Shi K Y, Ming X, et al. A comparative study of the COD hyperspectral inversion models in water based on the maching learning [J]. Spectroscopy and Spectral Analysis, 2022, 42(8): 2353-2358. [
[33] 王彩玲, 王一鸣. 基于高光谱与改进BP神经网络的水体生化需氧量(BOD)估算 [J]. 中国无机分析化学, 2023, 13(9): 986-992.] Wang C L, Wang Y M. Estimation of biochemical oxygen demand(BOD) content in water bodies based on hyperspectral and improved BP neural network [J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(9): 986-992. [
[34] 赵侃, 师芸, 牛敏杰, 等. 基于改进麻雀搜索算法优化BP神经网络的PM2.5浓度预测 [J]. 测绘通报, 2022(10): 44-48.] Zhao K, Shi Y, Niu M J, et al. Prediction of PM2.5 concentration based on optimized BP neural network with improved sparrow search algorithm [J]. Bulletin of Surveying and Mapping, 2022(10): 44-48. [
[35] 葛渊博, 卢文喜, 白玉堃, 等. 基于SSA-BP与SSA的地下水污染源反演识别 [J]. 中国环境科学, 2022, 42(11): 5179-5187.] doi: 10.3969/j.issn.1000-6923.2022.11.024 Ge Y B, Lu W X, Bai Y K, et al. Inversion and identification of groundwater pollution sources based on SSA-BP and SSA [J]. China Environmental Science, 2022, 42(11): 5179-5187. [ doi: 10.3969/j.issn.1000-6923.2022.11.024
[36] 陶志勇, 胡启振, 任晓奎. 基于二层分解技术和改进神经网络的河流溶解氧预测研究 [J]. 云南大学学报(自然科学版), 2022, 44(2): 262-270.] doi: 10.7540/j.ynu.20210194 Tao Z Y, Hu Q Z, Ren X K. Prediction of dissolved oxygen in river based on two level decomposition and improved neural network [J]. Journal of Yunnan University (Natural Sciences Edition), 2022, 44(2): 262-270. [ doi: 10.7540/j.ynu.20210194
[37] 任中杰. 基于SSA-BP-SVM模型的云龙湖水质反演研究 [J]. 南京信息工程大学学报, 2024, 16(2): 279-290.] Ren Z J. Water quality retrieval of Yunlong Lake based on SSA-BP-SVM model [J]. Journal of Nanjing University of Information Science & Technology, 2024, 16(2): 279-290. [
[38] 潘鑫, 杨子, 杨英宝, 等. 基于高分六号卫星遥感影像的太湖叶绿素a质量浓度反演 [J]. 河海大学学报(自然科学版), 2021, 49(1): 50-56.] Pan X, Yang Z, Yang Y B, et al. Mass concentration inversion analysis of chlorophyll a in Taihu Lake based on GF-6satellite data [J]. Journal of Hohai University (Natural Sciences), 2021, 49(1): 50-56. [
[39] 韦安娜, 田礼乔, 陈晓玲, 等. 基于穷举法的鄱阳湖叶绿素a浓度高光谱反演模型与应用研究——以GF-5卫星AHSI数据为例 [J]. 华中师范大学学报(自然科学版), 2020, 54(3): 447-453.] Wei A N, Tian L Q, Chen X L, et al. Retrieval and application of chlorophyll-a concentration in the Poyang Lake based on exhaustion method: a case study of Chinese Gaofen-5 Satellite AHSI data [J]. Journal of Central China Normal University (Natural Sciences), 2020, 54(3): 447-453. [
[40] 黄启会, 贺中华, 梁虹, 等. 基于高光谱数据的百花湖叶绿素a浓度估算 [J]. 环境科学与技术, 2019, 42(1): 134-141.] Huang Q H, He Z H, Liang H, et al. Estimation of chlorophyll-a concentration in baihua lake water based on hyspectral data [J]. Environmental Science & Technology, 2019, 42(1): 134-141. [
[41] 李优. 三峡库区回水区叶绿素a浓度遥感反演方法研究[D]. 北京: 中国地质大学(北京), 2017: 28-30.] Li Y. Remote Sensing Retrieval Model for Chlorophyll-a Concentration of Water in Backwater Area, Three Gorges Reservoir[D]. Beijing: China University of Geosciences (Beijing), 2017: 28-30.
[42] 王会, 王永前, 李剑锋, 等. 基于无人机多光谱数据的三峡库区支流叶绿素a浓度估算——以小江为例 [J]. 成都信息工程大学学报, 2024, 39(2): 233-239.] Wang H, Wang Y Q, Li J F, et al. Estimation of chlorophyll a concentration in Three Gorges Reservoir branch based on UAV multispectral data —— a case study of Xiaojiang River [J]. Journal of Chengdu University Of Information Technology, 2024, 39(2): 233-239. [
[43] 郑丙辉, 张远, 富国, 等. 三峡水库营养状态评价标准研究 [J]. 环境科学学报, 2006, 26(6): 1022-1030.] Zheng B H, Zhang Y, Fu G, et al. On the assessment standards for nutrition status in the Three Gorge Reservoir [J]. Acta Scientiae Circumstantiae, 2006, 26(6): 1022-1030. [
[44] 朱冰川, 尤凯, 石浚哲, 等. 基于GOCI数据的太湖叶绿素a浓度反演和蓝藻水华遥感监测 [J]. 环境污染与防治, 2020, 42(8): 1021-1025.] Zhu B C, You K, Shi J Z, et al. Retrieval of chlorophyll-a and remote sensing monitoring of cyanobacteria blooms in Taihu Lake based on GOCI data [J]. Environmental Pollution & Control, 2020, 42(8): 1021-1025. [
[45] 黄宇波, 曹光荣, 范向军, 等. 汛期水库调度对小江水华的影响 [J]. 长江科学院院报, 2024, 41(1): 52-58.] doi: 10.11988/ckyyb.20221549 Huang Y B, Cao G R, Fan X J, et al. Influence of reservoir operation in flood season on water bloom of Xiaojiang River [J]. Journal of Changjiang River Scientific Research Institute, 2024, 41(1): 52-58. [ doi: 10.11988/ckyyb.20221549
-
期刊类型引用(28)
1. 王津,李亚翠,邢超,汪梦琦,费颖涵. 组合生态浮床对城市河流缓流水体净化试验研究. 环境生态学. 2024(10): 85-90 . 百度学术
2. 郑志杰,彭波,何鑫,黄向阳,吴小刚,陈晓飞. 生态浮床的水质净化效果及其甲藻抑制作用. 水生态学杂志. 2022(05): 67-72 . 百度学术
3. 向劲,程小飞,谢敏,李金龙,宋锐,彭治桃. 淡水精养池中浮游植物对微生物调水剂的生态响应. 水产学杂志. 2021(04): 66-72 . 百度学术
4. 冷春梅,王亚楠,高云芳,朱士文,董贯仓,李秀启. 滨海芦苇湿地氮磷消减过程中浮游生物群落演替. 环境保护科学. 2020(01): 101-105 . 百度学术
5. 闵文武,王金乐. 增氧机对养殖池塘浮游植物群落结构的影响. 贵州农业科学. 2020(12): 86-89 . 百度学术
6. 王振方,张玮,杨丽,徐玉萍,赵风斌,王丽卿. 异龙湖不同湖区浮游植物群落特征及其与环境因子的关系. 环境科学. 2019(05): 2249-2257 . 百度学术
7. 孟顺龙,徐跑,李丹丹,裘丽萍,胡庚东,范立民,宋超,吴伟,郑尧,陈家长. 团头鲂池塘工业化生态养殖系统中浮游植物群落结构分析. 上海海洋大学学报. 2018(01): 79-90 . 百度学术
8. Shunlong MENG,Pao XU,Dandan LI,Liping QIU,Gengdong HU,Limin FAN,Chao SONG,Wei WU,Yao ZHENG,Jiazhang CHEN. Community Structure of Phytoplankton in Pond Industrial Eco-aquaculture System for Megalobrama amblycephala. Agricultural Biotechnology. 2018(06): 192-199+201 . 必应学术
9. 毛红梅,税永红,周添,余鹏. 富营养化水体原位生态修复技术研究进展. 成都纺织高等专科学校学报. 2017(04): 156-159 . 百度学术
10. 常雅军,姚东瑞,韩士群,陈婷,刘晓静. 基于基质吸附法与生物协同作用的强化生态浮床对不同富营养化水体的净化效果. 江苏农业学报. 2017(02): 346-352 . 百度学术
11. 刘勇. 不同生态浮床对景观水质的净化效果. 南方农业学报. 2016(06): 916-920 . 百度学术
12. 曹文平. 纤维素物质在生态浮床中的应用与发展. 工业安全与环保. 2016(01): 36-37+88 . 百度学术
13. 付峥嵘,杨琳芳,陈大强,杨濡溢,曾冠军,李南,詹闯. 生态浮床(岛)修复富营养化景观水体研究进展. 绿色科技. 2016(04): 60-62+65 . 百度学术
14. 刘娅琴,付子轼,邹国燕,孔令彬. 生态浮床对宁夏引黄灌区污染河道生态系统的影响. 上海农业学报. 2016(06): 92-99 . 百度学术
15. 李建松,王广军,龚望宝,谢骏,余德光,郁二蒙,魏南,夏耘. 草鱼养殖池塘蓝藻暴发时水体细菌群落特征分析. 上海海洋大学学报. 2016(04): 541-550 . 百度学术
16. 张曼玉,赵欣欣,胡凯,曹文平. 湿地槽式生态浮床修复富营养化水体中的氮素污染物. 节水灌溉. 2015(05): 63-65 . 百度学术
17. 范立民,陈家长,吴伟,孟顺龙,宋超,胡庚东,裘丽萍,瞿建宏,徐跑. 水葫芦栽培对池塘浮游细菌群落结构影响初探. 上海海洋大学学报. 2015(04): 513-522 . 百度学术
18. 董旭峰,宋祥甫,刘娅琴,周文宗,陈桂发. 猪场废水资源化处理系统中枝角类群落结构的周年动态. 生态学杂志. 2015(02): 477-482 . 百度学术
19. 刘娅琴,邹国燕,宋祥甫,潘琦,付子轼,刘福兴. 不同营养状态水体中生态浮床对浮游植物群落的影响. 环境科学研究. 2015(04): 629-637 . 百度学术
20. 王超,王永泉,王沛芳,王文娜,张微敏,侯俊,钱进. 生态浮床净化机理与效果研究进展. 安全与环境学报. 2014(02): 112-116 . 百度学术
21. 王小冬,朱浩,时旭,吴宗凡,田昌凤,刘兴国,徐皓,管崇武. 高位循环水池塘与普通池塘高温时节浮游植物群落的比较. 江苏农业科学. 2014(12): 279-283 . 百度学术
22. 李艳枫,刘凌,陈宁,夏倩,邢西刚,燕文明,张喜,王浠浠. 一种新型的复合生态浮床及其对浮游植物群落结构的影响. 水资源保护. 2014(02): 46-51 . 百度学术
23. 郑立国,杨仁斌,王海萍,宋建军. 组合型生态浮床对水体修复及植物氮磷吸收能力研究. 环境工程学报. 2013(06): 2153-2159 . 百度学术
24. 郑立国,杨仁斌,王海萍,宋建军. 组合型生态浮床对上覆水和沉积物之间氮磷的影响. 环境科学. 2013(08): 3064-3070 . 百度学术
25. 时圣玉,李海福,苏芳莉. 河流沉坠式人工生态浮岛固定方式试验. 中国水土保持科学. 2012(04): 100-103 . 百度学术
26. 叶艳婷,胡胜华,王燕燕,吴振斌. 东湖主要湖区浮游植物群落结构特征及其与环境因子的关系. 安徽农业科学. 2011(23): 14213-14216 . 百度学术
27. 李丽,杨扬,杨凤娟,潘鸿. 污染水体条件下生态浮床的植物生长特性与作用. 安全与环境学报. 2011(03): 14-19 . 百度学术
28. 刘娅琴,邹国燕,宋祥甫,付子轼,刘福兴,潘琦,范洁群. 富营养水体浮游植物群落对新型生态浮床的响应. 环境科学研究. 2011(11): 1233-1241 . 百度学术
其他类型引用(23)