南方碱蓬耐盐基因的挖掘及候选基因的功能验证

李俊奇, 樊佳鑫, 钟颂焕, 沈周洋, 高天翔, 瞿印权, 张秀梅

李俊奇, 樊佳鑫, 钟颂焕, 沈周洋, 高天翔, 瞿印权, 张秀梅. 南方碱蓬耐盐基因的挖掘及候选基因的功能验证[J]. 水生生物学报. DOI: 10.7541/2025.2024.0485
引用本文: 李俊奇, 樊佳鑫, 钟颂焕, 沈周洋, 高天翔, 瞿印权, 张秀梅. 南方碱蓬耐盐基因的挖掘及候选基因的功能验证[J]. 水生生物学报. DOI: 10.7541/2025.2024.0485
LI Jun-Qi, FAN Jia-Xin, ZHONG Song-Huan, SHEN Zhou-Yang, GAO Tian-Xiang, QU Yin-Quan, ZHANG Xiu-Mei. EXPLORATION OF SALT TOLERANCE GENES AND FUNCTIONAL VALIDATION OF CANDIDATE GENES IN SUAEDA AUSTRALIS[J]. ACTA HYDROBIOLOGICA SINICA. DOI: 10.7541/2025.2024.0485
Citation: LI Jun-Qi, FAN Jia-Xin, ZHONG Song-Huan, SHEN Zhou-Yang, GAO Tian-Xiang, QU Yin-Quan, ZHANG Xiu-Mei. EXPLORATION OF SALT TOLERANCE GENES AND FUNCTIONAL VALIDATION OF CANDIDATE GENES IN SUAEDA AUSTRALIS[J]. ACTA HYDROBIOLOGICA SINICA. DOI: 10.7541/2025.2024.0485
李俊奇, 樊佳鑫, 钟颂焕, 沈周洋, 高天翔, 瞿印权, 张秀梅. 南方碱蓬耐盐基因的挖掘及候选基因的功能验证[J]. 水生生物学报. CSTR: 32229.14.SSSWXB.2024.0485
引用本文: 李俊奇, 樊佳鑫, 钟颂焕, 沈周洋, 高天翔, 瞿印权, 张秀梅. 南方碱蓬耐盐基因的挖掘及候选基因的功能验证[J]. 水生生物学报. CSTR: 32229.14.SSSWXB.2024.0485
LI Jun-Qi, FAN Jia-Xin, ZHONG Song-Huan, SHEN Zhou-Yang, GAO Tian-Xiang, QU Yin-Quan, ZHANG Xiu-Mei. EXPLORATION OF SALT TOLERANCE GENES AND FUNCTIONAL VALIDATION OF CANDIDATE GENES IN SUAEDA AUSTRALIS[J]. ACTA HYDROBIOLOGICA SINICA. CSTR: 32229.14.SSSWXB.2024.0485
Citation: LI Jun-Qi, FAN Jia-Xin, ZHONG Song-Huan, SHEN Zhou-Yang, GAO Tian-Xiang, QU Yin-Quan, ZHANG Xiu-Mei. EXPLORATION OF SALT TOLERANCE GENES AND FUNCTIONAL VALIDATION OF CANDIDATE GENES IN SUAEDA AUSTRALIS[J]. ACTA HYDROBIOLOGICA SINICA. CSTR: 32229.14.SSSWXB.2024.0485

南方碱蓬耐盐基因的挖掘及候选基因的功能验证

基金项目: 国家重点研发计划重点专项(2023YFD2401903); 浙江省自然科学基金探索青年项目(LQ24D060004); 浙江省大学生科技创新活动计划(新苗人才计划) (2024R411A006)资助
详细信息
    作者简介:

    李俊奇(2005—), 男, 本科生; E-mail: 15706866177@163.com

    通信作者:

    瞿印权(1992—), 男, 硕士生导师; 主要从事于植物基因组学研究。E-mail: 2022171@zjou.edu.cn

  • 中图分类号: Q943.2

EXPLORATION OF SALT TOLERANCE GENES AND FUNCTIONAL VALIDATION OF CANDIDATE GENES IN SUAEDA AUSTRALIS

Funds: Supported by the National Key Research and Development Program of China (2023YFD2401903); theYouth Project of Zhejiang Natural Sciences Foundation (LQ24D060004); the Program of “Xinmiao”(Potential) Talents in Zhejiang Province (2024R411A006)
    Corresponding author:
  • 摘要:

    研究通过生理生化指标、转录组测序技术和功能验证分析, 系统探讨了南方碱蓬(Suaeda australis)的耐盐机制。在不同盐浓度处理(ST1和ST2)下, 南方碱蓬叶片中抗氧化酶(CAT、SOD、POD)的活性显著增加, 同时丙二醛(MDA)和过氧化氢(H2O2)含量也有所升高, 表明高盐胁迫条件下, 南方碱蓬通过增强抗氧化系统来减轻氧化损伤。转录组分析结果显示, 共2434个基因发生差异表达, 其中1568个基因上调, 866个基因下调。进一步进行GO和KEGG富集分析发现, 差异表达基因主要涉及抗氧化反应、渗透调节、信号转导及碳代谢等关键生物过程。此外, 共鉴定出146个盐胁迫响应相关的转录因子。RTq-PCR验证结果与转录组数据一致, 进一步证实了这些基因在盐胁迫响应中的关键作用。特别是MYB家族基因Sau00119, 其在ST2中显著上调, 揭示其在南方碱蓬耐盐机制中发挥着关键作用。研究为理解南方碱蓬的耐盐机制提供了新的见解, 并为耐盐植物的遗传改良提供了潜在的基因靶点。

    Abstract:

    Suaeda australis, a key halophytic species in southern China’s coastal ecosystems, plays a vital role in stabilizing fragile ecosystems due to its remarkable salt tolerance. Addressing escalating coastal soil salinization, this study systematically investigated the molecular mechanisms underlying its salt adaptation through integrated physiological, transcriptomic, and functional validation approaches. Under different salt concentration treatments (ST1 and ST2), S. australis exhibited significantly enhanced activities of antioxidant enzymes (CAT, SOD, POD) alongside elevated malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels, indicating activation of antioxidant defenses to mitigate oxidative damage under high-salinity stress. Transcriptome profiling identified 2434 differentially expressed genes (1568 upregulated and 866 downregulated). Gene Ontology (GO) and KEGG enrichment analyses revealed these genes to be predominantly associated with antioxidant responses, osmotic regulation, signal transduction, and carbon metabolism. Additionally, a total of 146 transcription factors related to salt stress response were identified. The RTq-PCR validation results were consistent with transcriptome data, further confirming the critical role of these genes in the salt stress response. Notably, the MYB family gene Sau00119 was significantly upregulated in ST2, highlighting its crucial role in the salt tolerance mechanism of S. australis. These findings provide new insights into the salt tolerance mechanism of S. australis and offers potential gene targets for the genetic improvement of salt tolerant plants.

  • 图  1   不同盐浓度下抗氧化酶活性、丙二醛及过氧化氢含量的测定

    Figure  1.   Determination of antioxidant enzymes, MDA, and H2O2 at different salt concentrations

    图  2   ST1 vs ST2样本间的Pearson相关系数

    Figure  2.   Pearson correlation coefficient between ST1 and ST2samples

    图  3   盐处理下差异表达基因的总热图

    Figure  3.   Total heat map of differentially expressed genes under salt treatment

    图  4   差异基因的KEGG富集分析

    Figure  4.   KEGG enrichment analysis of differential genes

    图  5   差异基因的GO富集分析

    Figure  5.   GO enrichment analysis of differential genes

    图  6   南方碱蓬ST1和ST2样本之间6个差异表达基因的表达模式比较(RT-qPCR和 RNA-seq)

    Figure  6.   Comparisons of expression patterns of six DEGs obtained by RTq-PCR and RNA-seq analysis between ST1 and ST2samples of Suaeda australis

    图  7   Sau00119的亚细胞定位

    通过GFP信号和DAPI染色确定Sau00119-GFP与细胞核共定位; GFP作为阴性对照

    Figure  7.   Subcellular localization of Sau00119

    The colocalization of Sau00119-GFP and nuclei was determined by the GFP signal and DAPI staining; GFP was used as a negative control

    图  8   南方碱蓬WT, OE, WTS和OES样本之间生理生化指标比较

    Figure  8.   Comparisons of physiological and biochemical traits among WT, OE, WTS, and OES samples of Suaeda australis

    表  1   引物序列及基因产物大小

    Table  1   Primer sequences and product size of genes

    基因
    Gene
    引物序列 (5′—3′)
    Primer sequences
    产物大小 (bp)
    Product length
    Sau03425 CGAGGAGGATGGTGGTGTTC
    GCCGCCTCAACCGTATCTTA
    581
    Sau00329 TGTCACAAACCGAGTTTCCCT
    TCCAAACCTACAACATCCCCA
    505
    Sau00640 AGCTGCAGTGTGAAGGGTAC
    GGAGAGGGGTTTGGTCTTGG
    GGAGAGGGGTTTGGTCTTGG
    GGAGAGGGGTTTGGTCTTGG
    508
    Sau00182 GCCTCATCCCCTCATCGATC
    ACAACACCACCACCACCATT
    540
    Sau00119 AGATGTGGGAAGAGTTGCCG
    CACACAGGGTTGGCTAGAGG
    582
    Sau10907 TACTTGAGGCCGGACATTCG
    TCTTGGTGGTTTAGACCCGA
    TCTTGGTGGTTTAGACCCGA
    572
    18S rRNA GGGTGTTGACCGAGAG
    GAGCTCAACCGGAGGT
    262
    注: 18S rRNA为内参基因Note: 18S rRNA represents housekeeping gene
    下载: 导出CSV
  • [1] 庄亚润, 孙真, 周凯, 等. 中国西北地区次生盐碱水无机氮转化与环境因子的相关关系 [J]. 中国水产科学, 2020, 27(12): 1438-1447.]

    Zhuang Y R, Sun Z, Zhou K, et al. Correlation between inorganic nitrogen transformation and environmental factors in secondary saline-alkali water in northwest China [J]. Journal of Fishery Sciences of China, 2020, 27(12): 1438-1447. [

    [2] 齐琪, 马书荣, 徐维东. 盐胁迫对植物生长的影响及耐盐生理机制研究进展 [J]. 分子植物育种, 2020, 18(8): 2741-2746.]

    Qi Q, Ma S R, Xu W D. Advances in the effects of salt stress on plant growth and the physiological mechanisms of salt tolerance [J]. Molecular Plant Breeding, 2020, 18(8): 2741-2746. [

    [3]

    Li L, Xu H, Zhang Q, et al. Estimation methods of wetland carbon sink and factors influencing wetland carbon cycle: a review [J]. Carbon Research, 2024, 3(1): 50. doi: 10.1007/s44246-024-00135-y

    [4]

    Sapkota Y, White J R. Carbon offset market methodologies applicable for coastal wetland restoration and conservation in the United States: A review [J]. Science of the Total Environment, 2020, 701: 134497. doi: 10.1016/j.scitotenv.2019.134497

    [5]

    Xi Y, Peng S, Ciais P, et al. Future impacts of climate change on inland Ramsar wetlands [J]. Nature Climate Change, 2021, 11(1): 45-51. doi: 10.1038/s41558-020-00942-2

    [6] 董乃勇, 刁琪, 王艳伟, 等. 滴灌水盐调控滨海盐碱地夏季造林土壤盐分与植物生长变化的研究 [J]. 现代园艺, 2024, 47(12): 21-25.] doi: 10.3969/j.issn.1006-4958.2024.12.007

    Dong N Y, Diao Q, Wang Y W, et al. Study on the regulation of soil salinity and plant growth in summer afforestation in coastal saline-alkali land by drip irrigation salt [J]. Modern Horticulture, 2024, 47(12): 21-25. [ doi: 10.3969/j.issn.1006-4958.2024.12.007

    [7] 张蛟, 崔士友, 冯芝祥. 种植碱蓬和秸秆覆盖对沿海滩涂极重度盐土盐分动态与脱盐效果的影响 [J]. 应用生态学报, 2018, 29(5): 1686-1694.]

    Zhang J, Cui S Y, Feng Z X. Effects of Suaeda glauca planting and straw mulching on soil salinity dynamics and desalination in extremely heavy saline soil of coastal areas [J]. Chinese Journal of Applied Ecology, 2018, 29(5): 1686-1694. [

    [8]

    Alam M R, Tran T K A, Stein T J, et al. Accumulation and distribution of metal(loid)s in the halophytic saltmarsh shrub, Austral seablite, Suaeda australis in New South Wales, Australia [J]. Marine Pollution Bulletin, 2021, 169: 112475. doi: 10.1016/j.marpolbul.2021.112475

    [9] 于胜祥, 郝刚, 金孝锋. 中国生物物种名录 (第一卷) [M]. 北京: 科学出版社, 2016: 205.]

    Yu S X, Hao G, Jin X F. List of Biological Species in China (Volume 1) [M]. Beijing: Science Press, 2016: 205. [

    [10]

    Ou Y, Sheng Y, Hu X, et al. Nonomuraea nitratireducens sp. nov., a new actinobacterium isolated from Suaeda australis Moq. Rhizosphere [J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70 (9): 5026-5031.

    [11]

    Kim H R, Park G N, Jung B K, et al. Antibacterial activity of Suaeda australis in halophyte [J]. Journal of the Korean Oil Chemists’ Society, 2016, 33(2): 278-285. doi: 10.12925/jkocs.2016.33.2.278

    [12] 黄晓昆, 黄晓冬, 卞美君. 南方碱蓬叶黄酮类化合物含量及其体外抗氧化活性研究 [J]. 安徽农业科学, 2010, 38(3): 1432-1434.] doi: 10.3969/j.issn.0517-6611.2010.03.130

    Huang X K, Huang X D, Bian M J. Study on the flavonoids compounds of Suaeda australis contents and its antioxidation activity in vitro [J]. Journal of Anhui Agricultural Sciences, 2010, 38(3): 1432-1434. [ doi: 10.3969/j.issn.0517-6611.2010.03.130

    [13]

    Zhang X, Yao Y, Li X, et al. Transcriptomic analysis identifies novel genes and pathways for salt stress responses in Suaeda salsa leaves [J]. Scientific Reports, 2020, 10(1): 4236. doi: 10.1038/s41598-020-61204-x

    [14]

    Voronin P Y, Myasoedov N A, Khalilova L A, et al. Water potential of the apoplast in substomatal cavity of the Suaeda altissima (L.) Pall. leaf under salt stress [J]. Russian Journal of Plant Physiology, 2021, 68(3): 519-525. doi: 10.1134/S1021443721030171

    [15]

    Rahman M M, Mostofa M G, Keya S S, et al. Adaptive mechanisms of halophytes and their potential in improving salinity tolerance in plants [J]. International journal of molecular sciences, 2021, 22(19): 10733. doi: 10.3390/ijms221910733

    [16] 臧威. 角果碱蓬盐碱胁迫响应及ScHSFA1d功能初探 [D]. 哈尔滨: 东北林业大学, 2021: 5.]

    Zang W. Response of Suaeda salsa to salt alkali stress and preliminary study on ScHSFA1d function [D]. Harbin: Northeast Forestry University, 2021: 5. [

    [17] 叶小齐, 吴明, 王琦, 等. 杭州湾4种植物盐胁迫下种子萌发能力与分布的关系 [J]. 浙江农林大学学报, 2012, 29(5): 739-743.] doi: 10.11833/j.issn.2095-0756.2012.05.017

    Ye X Q, Wu M, Wang Q, et al. Correlation of seed germination capacities under salt stress with four plant species distribution in the Hangzhou Bay Wetlands [J]. Journal of Zhejiang A& F University, 2012, 29(5): 739-743. [ doi: 10.11833/j.issn.2095-0756.2012.05.017

    [18] 穆亚南, 丁丽霞, 李楠, 等. 基于面向对象和随机森林模型的杭州湾滨海湿地植被信息提取 [J]. 浙江农林大学学报, 2018, 35(6): 1088-1097.] doi: 10.11833/j.issn.2095-0756.2018.06.012

    Mu Y N, Ding L X, Li N, et al. Classification of coastal wetland vegetation in Hangzhou Bay with an object-oriented, random forest model [J]. Journal of Zhejiang A& F University, 2018, 35(6): 1088-1097. [ doi: 10.11833/j.issn.2095-0756.2018.06.012

    [19]

    Li J, Hussain T, Feng X, et al. Comparative study on the resistance of Suaeda glauca and Suaeda salsa to drought, salt, and alkali stresses [J]. Ecological Engineering, 2019(140): 105593.

    [20]

    Li H, Wang H, Wen W, et al. The antioxidant system in Suaeda salsa under salt stress [J]. Plant Signaling & Behavior, 2020, 15(7): 1771939.

    [21] 贾林, 刘璐瑶, 王鹏山, 等. 盐地碱蓬的耐盐机理及改良土壤机理研究进展 [J]. 中国农学通报, 2021, 37(3): 73-80.] doi: 10.11924/j.issn.1000-6850.casb20191200947

    Jia L, Liu L Y, Wang P S, et al. Salt-tolerance and soil improvement mechanism of Suaeda salsa: research progress [J]. Chinese Agricultural Bulletin, 2021, 37(3): 73-80. [ doi: 10.11924/j.issn.1000-6850.casb20191200947

    [22]

    Zhang P, Wang R, Yang X, et al. The R2R-3MYB transcription factor AtMYB49 modulates salt tolerance in Arabidopsis by modulating the cuticle formation and antioxidant defence [J]. Plant, Cell & Environment, 2020, 43 (8): 1925-1943.

    [23]

    Yang B, Li Q, Cheng K, et al. Proteomics and metabolomics reveal the mechanism underlying differential antioxidant activity among the organs of two base plants of Shiliang tea (Chimonanthus salicifolius and Chimonanthus zhejiangensis) [J]. Food Chemistry, 2022, 385: 132698.

    [24]

    Cholich L A, Pistán M E, Torres A M, et al. Characterization and cytotoxic activity on glial cells of alkaloid-enriched extracts from pods of the plants Prosopis flexuosa and Prosopis nigra (Fabaceae) [J]. Revista de Biología Tropical, 2021, 69(1): 197-206.

    [25]

    Teoh E Y, Teo C H, Baharum N A, et al. Waterlogging stress induces antioxidant defense responses, aerenchyma formation and alters metabolisms of banana plants [J]. Plants, 2022, 11(15): 2052.

    [26]

    Fiala R, Fialová I, Vaculík M, et al. Effect of silicon on the young maize plants exposed to nickel stress [J]. Plant Physiology and Biochemistry, 2021, 166: 645-656. doi: 10.1016/j.plaphy.2021.06.026

    [27]

    Sharova E I, Smolikova G N, Medvedev S S. Determining hydrogen peroxide content in plant tissue extracts [J]. Russian Journal of Plant Physiology, 2024, 70(9): 216.

    [28] 李艳肖, 张春兰, 徐兴源, 等. 基于转录组学的蓖麻耐盐基因的挖掘 [J]. 植物遗传资源学报, 2023, 24(6): 1778-1794.]

    Li Y X, Zhang C L, Xu X Y, et al. Transcriptomics-assisted mining of salt-tolerant genes in Ricinus communis [J]. Journal of Plant Genetic Resources, 2023, 24(6): 1778-1794. [

    [29] 李卫锦, 钟才荣, 张颖, 等. 海马齿根系响应盐胁迫的转录组分析 [J]. 南方农业学报, 2022, 53(3): 693-703.] doi: 10.3969/j.issn.2095-1191.2022.03.011

    Li W J, Zhong C R, Zhang Y, et al. Analysis of the root transcriptomes in Sesuvium portulacastrum respond to salt stress [J]. Journal of Southern Agriculture, 2022, 53(3): 693-703. [ doi: 10.3969/j.issn.2095-1191.2022.03.011

    [30]

    Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements [J]. Nature Methods, 2015, 12(4): 357-360. doi: 10.1038/nmeth.3317

    [31]

    Pertea M, Kim D, Pertrea G M, et al. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown [J]. Nature Protocols, 2016, 11(9): 1650-1667. doi: 10.1038/nprot.2016.095

    [32]

    Liu S, Wang Z, Zhu R, et al. Three differential expression analysis methods for RNA sequencing: limma, EdgeR, DESeq2 [J]. Journal of Visualized Experiments, 2021(175): e62528.

    [33]

    Xu S, Hu E, Cai Y, et al. Using clusterProfiler to characterize multiomics data [J]. Nature protocols, 2024, 19(11): 3292-3320. doi: 10.1038/s41596-024-01020-z

    [34]

    Qu Y, Chen X, Mao X, et al. Transcriptome analysis reveals the role of GA(3) in regulating the asynchronism of floral bud differentiation and development in heterodichogamous Cyclocarya paliurus (Batal. ) Iljinskaja [J]. International Journal of Molecular Sciences, 2022, 23(12): 6763. doi: 10.3390/ijms23126763

    [35]

    Song W, Gao X, LI H, et al. Transcriptome analysis and physiological changes in the leaves of two Bromus inermis L. genotypes in response to salt stress [J]. Frontiers in Plant Science, 2023(14): 1313113.

    [36]

    Abebe H, Tu Y. Impact of salt and alkali stress on forage biomass yield, nutritive value, and animal growth performance: A comprehensive review [J]. Grasses, 2024, 3(4): 355-368. doi: 10.3390/grasses3040026

    [37]

    El-Shazoly R M, Hamed H M A, El-Sayed M M. Individual or successiveseed priming with nitric oxide and calcium toward enhancing salt tolerance of wheat crop through early ROS detoxification and activation of antioxidant defense [J]. BMC Plant Biology, 2024, 24(1): 730. doi: 10.1186/s12870-024-05390-0

    [38]

    Aydm A. The growth, leaf antioxidant enzymes and amino acid content of tomato as affected by grafting on wild tomato rootstocks 1 (S. pimpinellifolium and S. habrochaites) under salt stress [J]. Scientia Horticulturae, 2024, 325: 112679. doi: 10.1016/j.scienta.2023.112679

    [39]

    Chen L, Meng Y, Bai Y, et al. Starch and sucrose metabolism and plant hormone signaling pathways play crucial roles in aquilegia salt stress adaption [J]. International Journal of Molecular Sciences, 2023, 24(4): 3948. doi: 10.3390/ijms24043948

    [40]

    Zhang X, Chen L, Shi Q, et al. SlMYB102, an R2R3-type MYB gene, confers salt tolerance in transgenic tomato [J]. Plant Science, 2020, 291: 110356. doi: 10.1016/j.plantsci.2019.110356

    [41]

    Zhu N, Cheng S, Liu X, et al. The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice [J]. Plant Science, 2015, 236: 146-156. doi: 10.1016/j.plantsci.2015.03.023

    [42]

    Liu X, Zhou G, Chen S, et al. Genome-wide analysis of the AP2/ERF gene family in Tritipyrum and the response of TtERF_B2-50 in salt-tolerance [J]. BMC genomics, 2023, 24(1): 541. doi: 10.1186/s12864-023-09585-x

    [43]

    Peng Z, Rehman A, Li X, et al. Comprehensive evaluation and transcriptome analysis reveal the salt tolerance mechanism in semi-wild cotton (Gossypium purpurascens) [J]. International Journal of Molecular Sciences, 2023, 24(16): 12853. doi: 10.3390/ijms241612853

    [44]

    Wang C, Lei J, Jin X, et al. A sweet potato MYB transcription factor IbMYB330 enhances tolerance to drought and salt stress in transgenic tobacco [J]. Genes, 2024, 15(6): 693. doi: 10.3390/genes15060693

    [45]

    Wang S, Shi M, Zhang Y, et al. FvMYB24, a strawberry R2R3-MYB transcription factor, improved salt stress tolerance in transgenic Arabidopsis [J]. Biochemical and Biophysical Research Communications, 2021, 569: 93-99. doi: 10.1016/j.bbrc.2021.06.085

图(8)  /  表(1)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  4
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-25
  • 修回日期:  2025-03-06
  • 网络出版日期:  2025-04-09

目录

    /

    返回文章
    返回