THE TROPHIC STRUCUTRE OF FISH ASSEMBLAGES IN THE CHISHUI RIVER BASED ON STABLE ISOTOPE ANALYSIS
-
摘要:
为探究赤水河鱼类食物网特征, 本研究根据2023年丰水期(6月)和枯水期(12月)不同江段采集的鱼类样本的碳、氮稳定同位素值(δ13C和δ15N), 采用MixSIAR模型和SIBER等方法对赤水河鱼类营养级及群落营养结构的时空变化特征等进行了分析。结果表明, 赤水河鱼类的δ13C值和δ15N值变化范围分别为–29.36‰— –15.81‰和6.27‰—16.66‰, 上游和中游段丰水期δ13C值和δ15N值显著高于枯水期(P<0.05), 而下游段季节变化不明显(P>0.05); 鱼类δ13C和δ15N值整体表现出随着河流向下游延伸先增加后降低的趋势, 中游段鱼类δ13C和δ15N值显著高于其他江段(P<0.05)。鱼类营养级范围为1.21—4.46, 丰水期平均营养级显著高于枯水期(P<0.05), 中游段鱼类平均营养级显著高于其他江段(P<0.05)。不同摄食功能群营养级差异显著, 鱼食性鱼类的营养级显著高于其他摄食功能群(P<0.05)。营养结构特征指标分析显示, 赤水河鱼类群落营养结构时空差异显著。时间上, 除下游江段外, 其他江段的氮值范围(NR)、生态位总面积(TA)、平均最邻近距离(MNND)和最邻近距离标准差(SDNND)等指标均表现为丰水期高于枯水期, 表明丰水期鱼类资源利用更为广泛、生态位分化更为明显、食物网结构更为复杂; 空间上, 随着河流向下游延伸, 氮值范围(NR)、碳值范围(CR)和生态位总面积(TA)逐渐增加, 表明群落营养多样性逐渐增加、食物网结构渐趋复杂。研究为理解赤水河生态系统结构与功能提供了重要视角, 同时也为赤水河鱼类多样性保护与生态修复提供了科学依据。
Abstract:This study aimed to analyse the temporal and spatial variations in the trophic structures of fish assemblages in the Chishui River, the last undammed tributary of the upper Yangtze River. Fish samples were collected from different sections (the headwater, the upstream, the midstream and the downstream) along the longitudinal gradient during the flood season (June) and dry season (December) of 2023. Stable carbon and nitrogen isotope values (δ13C and δ15N) were measured for 2016 fish specimens, belonging to 3 orders, 13 families and 83species. Temporal and spatial variations were analyzed by using MixSIAR and SIBER. Results showed that the δ13C values of fish species ranged from -29.36‰ to -15.81‰, while δ15N values ranged from 6.27‰ to 16.66‰. The δ13C and δ15N values in the upstream and midstream were significantly higher in the flood season than that in the dry season (P<0.05), while those in the downstream showed non-significant seasonal differences. Along the longitudinal gradient, the δ13C and δ15N values increased gradually first and then decreased in the downstream, with the maximum values occurring in the midstream. Trophic levels of fish assemblages ranged from 1.21 to 4.46, with average trophic levels significantly higher in the flood season than those in the dry season (P<0.05). Fish assemblages in the midstream exhibited significantly higher average trophic levels than those in other sections (P<0.05). The analysis of trophic structure indicators revealed significant temporal and spatial differences in fish assemblages. Temporally, for most sections (except for the downstream), higher Nitrogen Range (NR), Total Area (TA), Mean Nearest Neighbor Distance (MNND), and Standard Deviation of Nearest Neighbor Distance (SDNND) were observed in the flood season, suggesting greater trophic niche differentiation and more complex food webs than that in the dry season. Spatially, NR, Carbon Range (CR), and TA increased gradually along the longitudinal gradient, suggesting greater trophic diversity and increasingly complex food web downstream. Significant differences were observed among different feeding guilds, with the piscivore fishes exhibited the highest trophic level. These findings provide critical insights into the ecosystem structure and function of the Chishui River and offer scientific guidance for fish biodiversity conservation and ecological restoration efforts.
-
Keywords:
- the Chishui River /
- Carbon and nitrogen stable isotopes /
- Food web /
- Trophic level
-
-
表 1 采样区域位置范围
Table 1 Geographic coordinate range of the sampling areas
区域
Sample area位置范围
Range of location经纬度
Latitude and longitude源头段Headwater 文阁村−斑鸠井 105.0528°E, 27.6977°N—
105.2087°E, 27.7590°N上游段Upstream 野奶角−赤水镇 105.3944°E, 27.7515°N—
105.5374°E, 27.7535°N中游段Midstream 沙滩驿站−
太平渡106.0557°E, 28.1416°N—
106.2547°E, 28.0800°N下游段Downstream 实录−贯湾 105.7866°E, 28.7557°N—
105.8116°E, 28.8039°N表 2 赤水河丰水期和枯水期鱼类δ13C和δ15N值
Table 2 The δ13C and δ15N values of fish species in the Chishui River during the flood and dry seasons
种类
Species食性
Feeding guild丰水期Flood season 枯水期Dry season δ13C δ15N 样本量
n体长Body
length (mm)δ13C δ15N 样本量
n体长Body
length (mm)宽鳍鱲Zacco platypus 杂食性 –21.47±0.85 11.32±0.76 22 110—123 –23.37±1.80 10.50±0.84 10 100—115 马口鱼Opsariichthys bidens 鱼食性 –20.89±1.10 12.74±0.57 21 159—203 –21.60±0.89 11.72±0.62 16 147—180 草鱼Ctenopharyngodon idellus 草食性 –21.02±1.00 7.40±1.15 5 132—175 –17.80±2.30 5.47±0.61 4 153—227 飘鱼Pseudolaubuca sinensis 底栖动物食性 –22.36±0.88 11.54±1.14 13 189—274 –23.33±0.68 10.47±0.56 10 177—230 寡鳞飘鱼
Pseudolaubuca engraulis杂食性 –23.09±0.31 10.37±1.22 2 145—212 — — — — 伍氏华鳊
Sinibrama wui杂食性 — — — — –22.20±0.53 12.42±0.17 4 92—130 汪氏近红鲌
Ancherythroculter wangi★底栖动物食性 — — — — –26.81±0.01 12.04±0.01 2 207—209 高体近红鲌
Ancherythroculter kurematsui★底栖动物食性 –22.69±0.81 12.60±0.54 17 154—206 –23.14±0.62 11.87±1.03 28 151—203 黑尾近红鲌
Ancherythroculter nigrocauda★底栖动物食性 –23.83±0.52 12.62±0.55 12 185—236 –23.57±0.37 12.95±0.78 12 200—250 半䱗Hemiculterella sauvagei★ 杂食性 –22.22±0.80 11.15±0.86 26 100—128 –23.07±0.69 10.48±0.98 16 102—141 张氏䱗Hemiculter tchangi★ 杂食性 –22.09±1.59 9.98±1.27 9 114—221 –23.09±1.46 10.23±1.80 10 170—208 贝氏䱗Hemiculter bleekeri 杂食性 –22.93 11.21 1 108 — — — — 红鳍原鲌
Cultrichthys erythropterus鱼食性 –23.08±0.49 11.94±0.96 6 191—228 — — — — 翘嘴鲌Culter alburnus 鱼食性 –22.23±0.32 13.50±0.50 4 292—426 –23.60±1.88 11.86±1.14 16 228—275 蒙古鲌Culter mongolicus 鱼食性 –22.77±1.62 13.25±1.41 12 219—317 –22.25±1.72 11.14±1.92 18 232—250 达氏鲌Culter dabryi 鱼食性 –24.54±0.53 11.12±1.36 5 181—195 — — — — 厚颌鲂
Megalobrama pellegrini★杂食性 –23.82±0.56 9.77±0.62 12 164—374 –23.72±0.76 10.33±0.60 26 175—232 长体鲂
Megalobrama elongata★杂食性 –22.74 9.88 1 159 –23.76±0.02 7.85±0.01 2 172—174 银鲴Xenocypris argentea 着生藻类食性 –21.12 10.04 1 172 — — — — 黄尾鲴Xenocypris davidi 杂食性 –21.54±1.30 10.46±1.29 8 200—253 –21.44±0.97 9.48±0.63 10 240—281 细鳞鲴Xenocypris microlepis 着生藻类食性 –20.95±0.99 10.25±0.60 7 161—227 –20.96±0.01 10.43±0.12 2 297—299 圆吻鲴
Distoechodon tumirostris着生藻类食性 –20.26±1.97 9.47±0.80 8 203—334 –20.87±1.37 9.07±0.88 18 192—275 似鳊Pseudobrama simony 着生藻类食性 –21.32±1.89 10.38±1.22 11 103—186 –20.09±0.71 10.10±0.91 22 128—153 鲢
Hypophthalmichthys molitrix浮游食性 –25.77±2.17 8.69±0.60 5 196—268 –24.80±0.49 5.26±0.57 6 248—274 鳙Aristichthys nobilis 浮游食性 –24.36±0.51 9.91±0.85 3 118—132 — — — — 唇䱻Hemibarbus labeo 底栖动物食性 –22.00±1.32 11.66±1.27 52 126—207 –22.84±1.43 11.44±1.14 52 145—214 花䱻Hemibarbus maculates 底栖动物食性 — — — — –22.28±1.64 11.43±0.47 8 122—175 麦穗鱼Pseudorasbora parva 杂食性 –21.17±1.10 12.00±1.66 7 65—97 — — — — 华鳈Sarcocheilichthys sinensis 杂食性 –23.79±0.06 10.96±0.79 2 102—108 –24.12±1.22 9.95±1.08 14 75—142 银鮈Squalidus argentatus 杂食性 –22.58±1.49 11.72±0.77 44 68—121 –22.80±0.52 11.16±1.50 33 78—204 棒花鱼Abbottina rivularis 杂食性 –22.49±1.81 11.29±0.27 4 72—105 –21.25±0.01 10.89±0.01 2 87—89 钝吻棒花鱼
Abbottina obtusirostris杂食性 –20.64±0.36 11.29±0.27 6 59—68 — — — — 吻鮈Rhinogobio typus 底栖动物食性 –23.10±1.08 11.51±1.07 19 123—277 –23.16±1.01 11.38±1.17 36 134—285 圆筒吻鮈
Rhinogobio cylindricus★杂食性 –24.68±0.83 9.53±0.24 3 216—256 –23.34±0.45 11.31±0.84 12 211—285 裸腹片唇鮈
Platysmacheilus nudiventris★杂食性 –21.14±0.75 12.17±0.96 16 60—95 –23.22±0.01 12.26±0.15 2 82—84 蛇鮈Saurogobio dabryi 杂食性 –22.15±1.35 11.00±1.72 29 116—203 –23.03±1.09 10.25±1.31 38 118—190 斑点蛇鮈Saurogobio punctatus 杂食性 –21.83±1.42 10.79±1.73 44 139—225 –21.84±0.99 11.01±0.89 56 145—204 高体鳑鲏Rhodeus ocellatus 着生藻类食性 –21.43±1.46 9.56±0.88 3 40—61 –20.88±0.08 11.10±0.02 2 74—76 大鳍鱊Acheilognathus macropterus 杂食性 –22.53±0.65 10.48±0.76 3 76—84 — — — — 中华倒刺鲃
Spinibarbus sinensis杂食性 –20.82±1.50 10.49±1.28 30 209—292 –22.73±1.48 8.77±1.23 66 216—410 宽口光唇鱼
Acrossocheilus monticolus★杂食性 –22.20±0.98 11.41±1.02 29 150—207 –22.95±1.12 11.09±0.91 42 157—175 云南光唇鱼
Acrossocheilus yunnanensis杂食性 –22.38±0.83 10.60±0.69 28 165—243 –23.12±0.52 10.25±0.58 21 165—191 白甲鱼Onychostoma sima 着生藻类食性 –19.98±1.70 9.35±0.72 21 173—277 –22.44±1.38 8.86±1.25 40 168—324 宽唇华缨鱼
Sinocrossocheilus labiata★着生藻类食性 –18.93±1.10 8.23±0.85 8 68—87 –21.56±0.12 8.65±0.82 4 76—82 金沙鲈鲤
Percocypris pingi★鱼食性 –19.98 11.66 1 257 — — — — 伦氏孟加拉鲮
Bangana rendahli★着生藻类食性 –23.7±3.36 11.32±0.10 2 240—271 –23.44±0.25 10.29±0.53 4 168—170 鲮Cirrhinus molitorella* 着生藻类食性 –23.56 8.98 1 224 — — — — 泉水鱼
Pseudogyrinocheilus procheilus着生藻类食性 –22.63±1.17 9.25±1.00 34 157—208 –23.70±0.46 9.39±0.72 28 140—200 墨头鱼Garra pingi 着生藻类食性 –22.30±1.52 9.91±0.91 26 122—288 –23.52±0.67 9.40±0.73 15 153—321 昆明裂腹鱼
Schizothorax grahami★着生藻类食性 –22.10±1.00 9.77±1.10 12 214—285 –21.46±1.40 8.92±0.93 13 245—405 四川裂腹鱼
Schizothorax kozlovi★杂食性 –24.59±0.72 11.90±0.19 2 191—205 –22.98±0.32 10.94±0.35 6 188—192 岩原鲤Procypris rabaudi★ 杂食性 –21.99±1.24 11.44±0.94 44 180—350 –23.08±1.41 11.06±1.03 36 173—198 鲤Cyprinus carpio 杂食性 –23.22±1.54 8.06±1.59 5 171—268 –21.54±1.16 8.34±0.99 4 168—315 散鳞镜鲤
Cyprinu carpio L. mirror*杂食性 –22.29 12.08 1 195 — — — — 鲫Carassius auratus 杂食性 –22.11±1.93 11.00±1.57 28 144—253 –22.29±1.23 9.53±2.17 36 146—270 湘云鲫Triploid crucian carp* 杂食性 –21.77 9.59 1 173 — — — — 胭脂鱼Myxocyprinus asiaticus 底栖动物食性 –21.19±0.66 9.21±1.69 2 320—347 — — — — 贝氏高原鳅
Trilophysa bleekeri底栖动物食性 –24.10±0.96 12.96±0.88 3 63—80 — — — — 红尾副鳅
Paracobitis variegatus底栖动物食性 –21.46±0.74 11.57±1.18 5 80—145 — — — — 花斑副沙鳅Parabotia fasciata 底栖动物食性 –21.87±1.63 13.32±0.66 2 186—192 — — — — 长薄鳅Leptobotia elongate★ 鱼食性 –22.04±0.02 11.39±0.35 3 212—246 — — — — 中华沙鳅Botia superciliaris 底栖动物食性 –22.23±0.44 12.52±0.62 6 106—118 — — — — 泥鳅Misgurnus anguillicaudatus 杂食性 –18.55 10.73 1 151 — — — — 大鳞副泥鳅
Paramisgurnus dabryanus杂食性 –23.28 10.73 1 127 — — — — 犁头鳅Lepturichthys fimbriata 着生藻类食性 –24.24 11.3 1 92 — — — — 四川华吸鳅
Sinogastromyzon szechuanensis★着生藻类食性 — — — — –23.31±0.86 11.02±0.71 20 55—89 西昌华吸鳅
Sinogastromyzon sichangensis★着生藻类食性 –22.21±1.19 10.73±0.83 6 47—62 — — — — 侧沟爬岩鳅Beaufortia liui★ 杂食性 — — — — –22.70±0.01 10.21±0.03 2 62—47 黄颡鱼Pelteobagrus fulvidraco 杂食性 –21.94±1.77 12.25±0.89 6 119—337 –20.05±0.05 12.07±0.10 2 152—154 光泽黄颡鱼Pelteobagrus nitidus 杂食性 –23.15±1.81 11.37±1.21 12 105—160 –23.36±1.49 10.56±1.14 26 127—179 瓦氏黄颡鱼
Pelteobagrus vachelli杂食性 –21.52±1.38 11.30±0.96 28 212—368 –22.26±1.29 11.10±1.01 51 200—243 粗唇鮠
Leiocassis crassilabris杂食性 –21.98±1.39 11.74±0.79 43 150—253 –22.56±1.11 11.66±0.94 44 154—247 切尾拟鲿
Pseudobagrus truncates杂食性 –21.94±1.09 11.78±0.90 21 146—220 –23.04±0.64 10.65±0.40 12 140—149 大鳍鳠Mystus macropterus 杂食性 –21.43±1.37 12.19±1.04 32 254—320 –21.94±1.29 12.32±0.99 49 253—317 鲇Silurus asotus 鱼食性 –20.78±1.58 12.69±0.88 14 371—530 — — — — 南方鲇Silurus meridionalis 鱼食性 –23.25±0.23 12.02±0.26 3 249—283 — — — — 白缘䱀Liobagrus marginatus 底栖动物食性 –22.33 11.67 1 115 — — — — 中华纹胸鮡
Glyptothorax sinensis底栖动物食性 –22.74±0.93 11.93±0.54 5 71—106 — — — — 青石爬鮡
Euchiloglanis davidi★杂食性 –23.52 11.99 1 89 — — — — 鳜Siniperca chuatsi 鱼食性 –21.47±0.97 13.16±1.06 29 208—248 –22.17±0.95 13.12±0.50 37 186—218 斑鳜Siniperca scherzeri 鱼食性 –22.5 13.86 1 210 — — — — 大眼鳜Siniperca kneri 鱼食性 –22.61±0.02 12.78±0.47 2 155—166 — — — — 梭鲈Sander lucioperca* 鱼食性 –24.23 12.45 1 455 — — — — 子陵吻虾虎鱼
Rhinogobius giurinus底栖动物食性 –22.55±0.89 11.88±0.99 26 56—97 — — — — 注: 同列数据肩标不同小写字母差异显著(P<0.05)Note: ★ indicates fish species endemic to the upper Yangtze River; * indicates exotic fish species; —indicates species those absented from catches in this season 表 3 不同江段丰水期和枯水期鱼类群落营养生态位指标变化
Table 3 Changes in the trophic niche indicators of fish assemblages among different river sections during the flood and dry seasons
指标Indicator 源头Headwater 上游Upstream 中游Midstream 下游Downstream 丰水期Flood 枯水期Dry 丰水期Flood 枯水期Dry 丰水期Flood 枯水期Dry 丰水期Flood 枯水期Dry NR 7.11 4.10 8.25 5.91 9.92 9.56 7.11 9.83 CR 7.51 5.35 7.56 5.19 7.60 8.01 12.03 11.01 TA 31.56 14.28 43.61 24.82 56.23 48.42 52.86 72.46 CD 2.11 1.61 1.54 1.54 1.38 1.86 1.87 1.91 MNND 0.38 0.14 0.16 0.11 0.20 0.12 0.17 0.11 SDNND 0.29 0.10 0.18 0.07 0.36 0.08 0.20 0.08 SEA 7.45 4.65 5.04 4.41 4.30 7.57 7.11 7.67 SEAc 7.56 4.77 5.06 4.43 4.32 7.60 7.13 7.69 表 4 不同摄食功能群营养生态位指标比较
Table 4 Comparison of trophic niche indicators of different feeding guilds
指标
Indicator浮游食性
Planktivore着生藻类食性
Periphytivore草食性
Herbivore杂食性
Omnivore底栖动物食性
Benthivore鱼食性
Piscivore丰水期
Flood枯水期
Dry丰水期
Flood枯水期
Dry丰水期
Flood枯水期
Dry丰水期
Flood枯水期
Dry丰水期
Flood枯水期
Dry丰水期
Flood枯水期
DryNR 2.90 1.44 6.60 4.69 2.83 1.26 7.82 8.69 6.18 6.12 7.57 7.68 CR 5.63 1.17 8.75 6.66 2.62 4.34 9.26 8.01 5.61 6.72 7.37 6.17 TA 8.11 0.62 34.87 23.07 3.64 1.40 49.32 48.84 28.58 25.77 43.55 30.29 CD 1.57 0.64 1.86 1.84 1.22 2.04 1.69 1.73 1.41 1.42 1.62 1.61 MNND 1.07 0.22 0.26 0.12 1.25 0.64 0.14 0.09 0.20 0.13 0.25 0.13 SDNND 1.02 0.24 0.21 0.07 0.29 0.13 0.14 0.06 0.22 0.10 0.31 0.08 SEA 4.83 0.50 6.18 5.79 3.53 1.65 5.65 6.12 4.17 4.35 5.28 5.22 SEAc 5.63 0.63 6.23 5.83 4.70 2.47 5.66 6.13 4.19 4.38 5.31 5.24 -
[1] Allan J D, Castillo M M, Capps K A. Energy Flow and Nutrient Cycling in Aquatic Communities [M]. Stream Ecology. Cham: Springer International Publishing, 2021: 357-381.
[2] Kwak I S, Park Y S. Food chains and food webs in aquatic ecosystems [J]. Applied Sciences, 2020, 10(14): 5012. doi: 10.3390/app10145012
[3] Mougi A. Predator interference and complexity-stability in food webs [J]. Scientific Reports, 2022, 12(1): 2464. doi: 10.1038/s41598-022-06524-w
[4] Queirós J P, Borras-Chavez R, Friscourt N, et al. Southern Ocean food-webs and climate change: A short review and future directions [J]. PLOS Climate, 2024, 3(3): e0000358. doi: 10.1371/journal.pclm.0000358
[5] 郑晓春, 戴小杰, 朱江峰, 等. 太平洋中东部海域大眼金枪鱼胃含物分析 [J]. 南方水产科学, 2015, 11(1): 75-80.] doi: 10.3969/j.issn.2095-0780.2015.01.011 Zheng X C, Dai X J, Zhu J F, et al. Analysis on stomach content of bigeye tuna (Thunnus obesus) in the eastern-central Pacific Ocean [J]. South China Fisheries Science, 2015, 11(1): 75-80. [ doi: 10.3969/j.issn.2095-0780.2015.01.011
[6] 窦硕增. 鱼类胃含物分析的方法及其应用 [J]. 海洋通报, 1992, 11(2): 28-31.] Dou S Z. Fish-stomach content analysis: methods and application [J]. Marine Science Bulletin, 1992, 11(2): 28-31. [
[7] Ibáñez C M, Riera R, Leite T, et al. Stomach content analysis in cephalopods: past research, current challenges, and future directions [J]. Reviews in Fish Biology and Fisheries, 2021, 31(3): 505-522. doi: 10.1007/s11160-021-09653-z
[8] Peterson B J, Fry B. Stable isotopes in ecosystem studies [J]. Annual Review of Ecology and Systematics, 1987(18): 293-320.
[9] 徐军, 王玉玉, 王康, 等. 水域生态学中生物稳定同位素样品采集、处理与保存 [J]. 水生生物学报, 2020, 44(5): 989-997.] doi: 10.7541/2020.114 Xu J, Wang Y Y, Wang K, et al. Protocols for sample collection, pretreatment, and preservation of aquatic organisms in stable isotope ecology [J]. Acta Hydrobiologica Sinica, 2020, 44(5): 989-997. [ doi: 10.7541/2020.114
[10] 肖协文, 王玉玉, 张欢, 等. 饶河枯水期主要鱼类营养级位置及其影响因素 [J]. 生态学报, 2015, 35(18): 6216-6223.] Xiao X W, Wang Y Y, Zhang H, et al. Trophic position and its impact on fish in Raohe River during the dry season, Jiangxi Province [J]. Acta Ecologica Sinica, 2015, 35(18): 6216-6223. [
[11] 段元帅, 谢军, 刘璐, 等. 基于稳定同位素技术的辽宁浑太河流域水生食物网研究 [J]. 水生生物学报, 2024, 48(1): 109-119.] doi: 10.7541/2023.2022.0474 Duan Y S, Xie J, Liu L, et al. Aquatic food web of the Hun-Tai River basin in Liaoning based on stable isotope analysis [J]. Acta Hydrobiologica Sinica, 2024, 48(1): 109-119. [ doi: 10.7541/2023.2022.0474
[12] 姚鸿伟, 林子木, 陈敏建, 等. 基于稳定同位素技术的洈水水库鱼类群落营养结构 [J]. 水生生物学报, 2024, 48(1): 120-129.] doi: 10.7541/2023.2023.0028 Yao H W, Lin Z M, Chen M J, et al. Trophic Structure of fish communities in Weishui Reservoir Based on stable isotope techniques [J]. Acta Hydrobiologica Sinica, 2024, 48(1): 120-129. [ doi: 10.7541/2023.2023.0028
[13] 吴金明, 赵海涛, 苗志国, 等. 赤水河鱼类资源的现状与保护 [J]. 生物多样性, 2010, 18(2): 162-168.] Wu J M, Zhao H T, Miao Z G, et al. Status and conservation of fish resources in the Chishui River [J]. Biodiversity Science, 2010, 18(2): 162-168. [
[14] 刘飞, 刘定明, 袁大春, 等. 近十年来赤水河不同江段鱼类群落年际变化特征 [J]. 水生生物学报, 2020, 44(1): 122-132.] doi: 10.7541/2020.015 Liu F, Liu D M, Yuan D C, et al. Interannual variations in fish assemblages in the Chishui river over the last decade [J]. Acta Hydrobiologica Sinica, 2020, 44(1): 122-132. [ doi: 10.7541/2020.015
[15] 曹文宣, 2000. 长江上游特有鱼类自然保护区的建设及相关问题的思考 [J]. 长江流域资源与环境, 9 (2): 131-132.] Cao W X. Construction of a Nature Reserve for Endemic Fish in the Upstream of the Yangtze River and Related Issues [J]. Resources and Environment in the Yangtze, 2000, 9 (2): 131-132. [
[16] 刘飞, 刘焕章. 长江上游赤水河示范区水生态修复的成效与挑战 [J]. 中国科学院院刊, 2023, 38(12): 1883-1893.] Liu F, Liu H Z. Effectiveness and challenges of aquatic ecological restoration of Chishui River in upper Yangtze River [J]. Bulletin of Chinese Academy of Sciences, 2023, 38(12): 1883-1893. [
[17] Liu F, Wang X, Wang M, et al. Diet partitioning and trophic guild structure of fish assemblages in Chishui River, the last undammed tributary of the upper Yangtze River, China [J]. River Research and Applications, 2019, 35(9): 1530-1539. doi: 10.1002/rra.3519
[18] Zhang F, Liu F, Qin Q, et al. Diet composition and trophic guild structure of fish assemblage in headwaters of the Chishui River, a tributary of the upper Yangtze River, China [J]. Environmental Biology of Fishes, 2018, 101(8): 1235-1248. doi: 10.1007/s10641-018-0771-x
[19] Qin Q, Zhang F, Liu F, et al. Food web structure and trophic interactions revealed by stable isotope analysis in the midstream of the Chishui River, a tributary of the Yangtze River, China [J]. Water, 2021, 13(2): 195. doi: 10.3390/w13020195
[20] 王忠锁, 姜鲁光, 黄明杰, 等. 赤水河流域生物多样性保护现状和对策 [J]. 长江流域资源与环境, 2007, 16(2): 175-180.] doi: 10.3969/j.issn.1004-8227.2007.02.009 Wang Z S, Jiang L G, Huang M J, et al. Biodiversity status and its conservation strategy in the Chishui River Basin [J]. Resources and Environment in the Yangtze Basin, 2007, 16(2): 175-180. [ doi: 10.3969/j.issn.1004-8227.2007.02.009
[21] 夏治俊, 余梵冬, 唐永忠, 等. 赤水河流域样点独特性对鱼类 β 多样性的贡献 [J]. 水产学报, 2023, 47(2): 029309.] Xia Z J, Yu F D, Tang Y Z, et al. Site uniqueness contributions to fish β diversity in the Chishui River basin, Southwestern China [J]. Journal of Fisheries of China, 2023, 47(2): 029309. [
[22] 伍律. 贵州鱼类志 [M]. 贵阳: 贵州人民出版社, 1989: 7-279.] Wu L. Fish Fauna of Guizhou [M]. Guiyang: Guizhou People Press, 1989: 7-279. [
[23] 丁瑞华. 四川鱼类志 [M]. 成都: 四川科学技术出版社, 1994: 276—278.] Ding R H. The fishes of Sichuan, China [M]. Chengdu: Sichuan Scientific & Technical Publishers, 1994: 276—278. [
[24] Post D M, Pace M L, Hairston N G Jr. Ecosystem size determines food-chain length in lakes [J]. Nature, 2000, 405(6790): 1047-1049. doi: 10.1038/35016565
[25] 刘淑君, 翟东东, 罗进勇, 等. 基于碳、氮稳定同位素分析的三角湖鱼类营养结构研究 [J]. 淡水渔业, 2024, 54(3): 3-11.] doi: 10.3969/j.issn.1000-6907.2024.03.001 Liu S J, Zhai D D, Luo J Y, et al. Studies on the trophic structure of fish in Sanjiao Lake based on carbon and nitrogen stable isotope analysis [J]. Freshwater Fisheries, 2024, 54(3): 3-11. [ doi: 10.3969/j.issn.1000-6907.2024.03.001
[26] Layman C A, Arrington D A, Montaña C G, et al. Can stable isotope ratios provide for community-wide measures of trophic structure? [J]. Ecology, 2007, 88(1): 42-48. doi: 10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2
[27] Parnell A C, Inger R, Bearhop S, et al. Source partitioning using stable isotopes: coping with too much variation [J]. PLOS One, 2010, 5(3): e9672. doi: 10.1371/journal.pone.0009672
[28] Vander Zanden M J, Shuter B J, Lester N, et al. Patterns of food chain length in lakes: a stable isotope study [J]. The American Naturalist, 1999, 154(4): 406-416. doi: 10.1086/303250
[29] 邓华堂, 段辛斌, 刘绍平, 等. 大宁河下游主要鱼类营养结构的时空变化 [J]. 生态学报, 2014, 34(23): 7110-7118.] Deng H T, Duan X B, Liu S P, et al. Temporal and spatial variations in the trophic structure of key species in downstream of the Daning River [J]. Acta Ecologica Sinica, 2014, 34(23): 7110-7118. [
[30] 周正, 黄宇波, 王斌梁, 等. 运用稳定同位素技术分析三峡坝前水域的食物网结构 [J]. 生态科学, 2020, 39(5): 82-90.] Zhou Z, Huang Y B, Wang B L, et al. The analysis of food web structure in the area in front of the Three Gorges Dam using the stable isotope technology [J]. Ecological Science, 2020, 39(5): 82-90. [
[31] 李学梅, 朱挺兵, 王旭歌, 等. 基于稳定同位素技术的长湖鱼类营养结构研究 [J]. 生物资源, 2021, 43(6): 545-551.] Li X M, Zhu T B, Wang X G, et al. Study on trophic structure of fish communities in Changhu Lake based on stable carbon and nitrogen isotopes [J]. Biotic Resources, 2021, 43(6): 545-551. [
[32] 刘素群, 申明华, 刘学勤. 基于碳氮稳定同位素的太湖鱼类营养生态位研究 [J]. 水生态学杂志, 2023, 44(5): 76-83.] Liu S Q, Shen M H, Liu X Q. Trophic Niche Analysis of Fish in Taihu Lake Using Stable Isotopes of Carbon and Nitrogen [J]. Journal of Hydroecology, 2023, 44(5): 76-83. [
[33] 秦立, 付宇文, 吴起鑫, 等. 赤水河流域土地利用结构对氮素输出的影响 [J]. 长江流域资源与环境, 2019, 28(1): 175-183.] Qin L, Fu Y W, Wu Q X, et al. Effects of land use structure on nitrogen export in Chishui River watershed of southwest China [J]. Resources and Environment in the Yangtze Basin, 2019, 28(1): 175-183. [
[34] Liu F, Wang J, Zhang F B, et al. Spatial organisation of fish assemblages in the Chishui River, the last free-flowing tributary of the upper Yangtze River, China [J]. Ecology of Freshwater Fish, 2021, 30(1): 48-60. doi: 10.1111/eff.12562
[35] 张多鹏, 刘洋, 李正飞, 等. 长江上游支流赤水河流域底栖动物物种多样性与保护对策 [J]. 生物多样性, 2023, 31(8): 22674.] doi: 10.17520/biods.2022674 Zhang D P, Liu Y, Li Z F, et al. Species diversity and recommended rehabilitative strategies of benthic macroinvertebrate in the Chishui River, a tributary of the Upper Yangtze River [J]. Biodiversity Science, 2023, 31(8): 22674. [ doi: 10.17520/biods.2022674
[36] 李云凯, 贡艺. 基于碳、氮稳定同位素技术的东太湖水生食物网结构 [J]. 生态学杂志, 2014, 33(6): 1534-1538.] Li Y K, Gong Y. Food web structure of the East Lake Taihu by analysis of stable carbon and nitrogen isotopes [J]. Chinese Journal of Ecology, 2014, 33(6): 1534-1538. [
[37] Post D M. The long and short of food-chain length [J]. Trends in Ecology & Evolution, 2002, 17(6): 269-277.
[38] 周正. 长江流域不同水体食物网结构的比较[D]. 武汉: 中国科学院水生生物研究所, 2020: 25-38.] Zhou Z, Analysis of the food web structure in different waterbodies in the Yangtze River Basin[D]. Wuhan: Institute of Hydrobiology, Chinese Academy of Sciences, 2020: 25-38.
[39] 邓华堂, 巴家文, 段辛斌, 等. 运用稳定同位素技术分析大宁河主要鱼类营养层级 [J]. 水生生物学报, 2015, 39(5): 893-901.] doi: 10.7541/2015.118 Deng H T, Ba J W, Duan X B, et al. The analysis of the trophic levels of the major fish species in the Daning River using stable isotope technology [J]. Acta Hydrobiologica Sinica, 2015, 39(5): 893-901. [ doi: 10.7541/2015.118
[40] 王银平, 邓艳敏, 刘思磊, 等. 禁捕初期长江下游鱼类群落现状分析及禁渔效果初步评估 [J]. 水产学报, 2023, 47(2): 029315.] Wang Y P, Deng Y M, Liu S L, et al. Status analysis of fish community in the lower reaches of the Yangtze River at the beginning of 10-year fishing ban and assessment of fishing ban effect [J]. Journal of Fisheries of China, 2023, 47(2): 029315. [
[41] 林会洁, 秦传新, 黎小国, 等. 柘林湾海洋牧场不同功能区食物网结构 [J]. 水产学报, 2018, 42(7): 1026-1039.] Lin H J, Qin C X, Li X G, et al. Food web analysis in Zhelin Bay marine ranching [J]. Journal of Fisheries of China, 2018, 42(7): 1026-1039. [
[42] McIntyre P B, Flecker A S, Vanni M J, et al. Fish distributions and nutrient cycling in streams: can fish create biogeochemical hotspots [J]. Ecology, 2008, 89(8): 2335-2346. doi: 10.1890/07-1552.1
[43] 马吉顺. 季节性水位波动对鄱阳湖食物网结构的影响研究[D]. 武汉: 华中农业大学, 2024: 108-109.] Ma J S. Study on the impact of seasonal water level fluctuations on the food web structure of Poyang Lake[D]. Wuhan: Huazhong Agricultural University, 2024: 108-109.
[44] 吴湘香, 李云峰, 沈子伟, 等. 赤水河浮游植物群落结构特征及其与水环境因子的关系 [J]. 中国水产科学, 2014, 21(2): 361-368.] Wu X X, Li Y F, Shen Z W, et al. Relationship between phytoplankton community structure and aquatic environmental factors in the Chishui River, a protected tributary of the Yangtze River [J]. Journal of Fishery Sciences of China, 2014, 21(2): 361-368. [
[45] 唐玥, 童春富, 刘毛亚, 等. 上海金泽水库典型挺水植物碳、氮、磷化学计量特征的季节变化 [J]. 生态学报, 2020, 40(13): 4528-4537.] Tang Y, Tong C F, Liu M Y, et al. Seasonal variations of carbon, nitrogen, phosphorus stoichiometry of four emergent hydrophytes in Jinze Reservoir, Shanghai [J]. Acta Ecologica Sinica, 2020, 40(13): 4528-4537. [
[46] 李斌, 郑宇辰, 徐丹丹, 等. 长江上游弥陀漫滩水体鱼类食物网动态的季节性变化 [J]. 生态学报, 2023, 43(4): 1664-1675.] Li B, Zheng Y C, Xu D D, et al. Seasonal variation in the consumption of food by fish in the Mituo floodplain waters of the upper Yangtze River and implications for food web dynamics [J]. Acta Ecologica Sinica, 2023, 43(4): 1664-1675. [
[47] 张为, 杨斌. 赤水河干流水环境影响因素分析 [J]. 安徽农业科学, 2019, 47(5): 80-83.] doi: 10.3969/j.issn.0517-6611.2019.05.022 Zhang W, Yang B. Analysis of Influencing Factors on Main Stream Water Environment of Chishui River [J]. Journal of Anhui Agricultural Sciences, 2019, 47(5): 80-83. [ doi: 10.3969/j.issn.0517-6611.2019.05.022
[48] 张聪, 安艳玲, 蔡宏. 赤水河流域土地利用/覆被变化与生态环境效应 [J]. 贵州农业科学, 2014, 42(4): 211-215.] doi: 10.3969/j.issn.1001-3601.2014.04.054 Zhang C, An Y L, Cai H. Land Use/Land Cover Change and Its Environmental Effects in Chishui River Basin [J]. Guizhou Agricultural Sciences, 2014, 42(4): 211-215. [ doi: 10.3969/j.issn.1001-3601.2014.04.054
[49] Liu F, Wang Z, Xia Z, et al. Changes in fish resources 5 years after implementation of the 10-year fishing ban in the Chishui River, the first river with a complete fishing ban in the Yangtze River Basin [J]. Ecological Processes, 2023, 12(1): 51.