Cd2+处理对菹草叶片保护酶活性和细胞超微结构的毒害影响

徐勤松, 施国新, 杜开和, 张小兰, 曾晓敏

徐勤松, 施国新, 杜开和, 张小兰, 曾晓敏. Cd2+处理对菹草叶片保护酶活性和细胞超微结构的毒害影响[J]. 水生生物学报, 2003, 27(6): 584-589.
引用本文: 徐勤松, 施国新, 杜开和, 张小兰, 曾晓敏. Cd2+处理对菹草叶片保护酶活性和细胞超微结构的毒害影响[J]. 水生生物学报, 2003, 27(6): 584-589.
XU Qin-Song, SHI Guo-Xin, DU Kai-He, ZHANG Xiao-Lan, ZENG Xiao-Min. TOXIC EFFECT OF Cd2+TREATMENT ON PROTECTIVE ENZYME ACTIVITY AND ULTRASTRUCTRUE IN LEAF CELLS OF POTAMOGETON CRISPUS.[J]. ACTA HYDROBIOLOGICA SINICA, 2003, 27(6): 584-589.
Citation: XU Qin-Song, SHI Guo-Xin, DU Kai-He, ZHANG Xiao-Lan, ZENG Xiao-Min. TOXIC EFFECT OF Cd2+TREATMENT ON PROTECTIVE ENZYME ACTIVITY AND ULTRASTRUCTRUE IN LEAF CELLS OF POTAMOGETON CRISPUS.[J]. ACTA HYDROBIOLOGICA SINICA, 2003, 27(6): 584-589.

Cd2+处理对菹草叶片保护酶活性和细胞超微结构的毒害影响

基金项目: 

教育部科学技术研究重点项目(01043)

国家自然科学基金(39770046)资助

TOXIC EFFECT OF Cd2+TREATMENT ON PROTECTIVE ENZYME ACTIVITY AND ULTRASTRUCTRUE IN LEAF CELLS OF POTAMOGETON CRISPUS.

  • 摘要: 以不同浓度Cd2+处理5d的菹草为实验材料,测定了叶片SOD,POD,CAT等生理生化指标的变化,并用透射电镜观察了Cd2+对叶细胞超微结构,尤其是对叶绿体,线粒体和细胞核的损伤情况.结果表明:SOD活性,叶绿素含量随Cd2+处理浓度的增加而下降,而CAT和POD活性都是在1mg/L浓度下达到峰值,而后降低.SOD对Cd2+毒害最敏感,其次为POD和CAT.电镜观察发现:随Cd2+浓度的增加,对细胞超微结构的损伤程度也加剧.表现为叶绿体膨大,被膜断裂、消失和叶绿体解体;线粒体变形,脊突膨大和空泡化;细胞核核仁分散,核膜断裂,核空泡化.并探讨了Cd2+对植物的毒害机制.
    Abstract: Heavy metals are common pollutants in aquatic ecosystems due to atmospheric sedimentation geological leakage, untreated industrial effluents. Compared to most other pollutants, they are not biodegradable and persistent in the environment for a very long period, Their accumulation in organism and bio magnification through food chain pose the great potential threat to aquatic organisms and to human health. So heavy metal pollution has become one of the most troublesome environmental problems and also received more and more attention. On the other hand, submerged macrophytes are directly exposed to heavy metals in water body and are more easily subjected to their toxicity In the present study, Potamogeton crispus, widespread in watin body in China, is cultivated in nutrition media containing different concentration of Cd2+ for 5d to investigate the toxic effect of Cd2+ on macrophtes, including:chlorophyll content, changes of protect enzyme activity(SOD, POD, CAT)and the ultrastructural damages to leaf cells, mainly to chloroplasts, mitochondria and nuclei. The results show that:SOD activity and chlorophyll content decrease nearly linearly with augmentation of Cd2+ concentration by 26. 44%and 60.55%, respectively, When the concentration was 50mg/L, statistical analysis indicate the changes of both indexes had reached significant levels( rSOD =-0.9766; rchl = -0.9132 ); Both POD and CAT activity reached the peak value at 1mg/L, 101.70% and 186.39% higher than that of the control, respectively. When treated with 20mg/L,cd2+ POD activity declined by 12.87% and 48.27% at 50mg/L as compared to the control Although the CAT activity began to decline when the treatment concentration rises further it still much higher than that of the control, by 86. 88% over the normal value even at 50mg/L within the exposing concentration range, It illustrated CAT has a quite strong tolerance to Cd2+ pollution. Among the three enzymes, SOD is the most sensitive, followed by POD and CAT. Transmission electron microscopy observation indicate that the higher the pollutant concentration is, the more serious the damages to the leaf cells is, such as swelling of chloroplasts at 1mg/L metal concentration, disruption and disappearance of chloroplast envelop at 10 and 20mg/L, and 50mg/L see the disintegration of chloroplasts;deforming and vacuolization of mitochondria at 1mg/L and 10mg/L concentration, respectively. The disintegration of nucleolus is found when treated with 10mg/L Cd2+, 50mg/L induced the disruption of nuclear membrane and vacuolization of nucleus. Disintegration of chloroplasts, vacuolization of mitochondria and vacuolization of nucleus are irreversible damage to organelles and their normal physiological functions are lost. The changes of leaf cells ultrastructure are consistent with the damage of their membrane systems, which may be caused by the disturbance of protect enzyme activity. It can be inferred that one main toxic mechanism of Cd2+ is to destroy the structural foundation that the normal metabolism necessarily need.
  • [1] Sun S C, Wang H X, Li Q R. Preliminary studies on physiological changes and injury mechanism in aquatic vascular plants treated with cadmium [J]. Acta Phytophysiol Sin. 1985, 11(2):113-121[孙赛初, 王焕校, 李启任. 水生维管束植物受镉污染后的生理变化及受害机制初探, 植物生理学报, 1985, 11(2):113-121][2] Chen Y. Effects of cadmium on nitrate reductase and superoxide dismutase of submerged macrophytes [J]. Acta Scientiae Circumstantiae. 1998, 18(3):313-317[陈愚, 任久长, 蔡晓明. 镉对沉水植物硝酸还原酶和超氧化物歧化酶活性的影响, 环境科学学报, 1998, 18(3) :313-317][3] Wong Y S, Luo G H, Guan Q W. Peroxidation damage of oxygen free radicals induced by cadmium to plant [J]. Acta Bot Sin. 1997, 39(6) :522-526[黄玉山, 罗广华, 关NB054文. 镉诱导的自由基过氧化损伤, 植物学报, 1997, 39(6):522-526][4] Luo L X, Sun T H, Jin Y H. Effects of cadmium stress on lipid peroxidation in wheat leaves[J]. China Environmental Science. 1998, 18 (1):72-75[罗立新, 孙铁珩, 靳月华. 镉胁迫对小麦叶片细胞膜脂过氧化的影响, 中国环境科学, 1998, 18(1) :72-75][5] Zhang Z L. Laboratory Guide for Plant Physiology (2ed edition)[M]. Beijing: Higher Education Press, 1990, 88-91;154-155[张志良. 植物生理学实验指导(第二版), 北京:高等教育出版社, 1990, 88-91;154-155][6] Chria R, Marc V H, Dirk I. Superoxide dismutase and stress tolerance. Annu Rev Plant physiol Plant Mol Biol. 1992, 43:83[7] Luo L X, Sun T H, Jin Y H. Accumulation of superoxide radical in wheat leaves under cadmium stress [J]. Acta Scientiae Circumstantiae. 1998, 18(5):495-499[罗立新, 孙铁珩, 靳月华. 镉胁迫下小麦叶中超氧阴离子自由基的积累, 环境科学学报, 1998, 18(5):495-499][8] Yang J R, He J Q, Zhang G X, et al. Reaction of some enzyme activities in crops of different tolerance to the stress of Cd [J]. China Environmental Science. 1996, 16(2):113-117[杨居荣, 贺建群, 张国祥等. 不同耐性作物中几种酶活性对Cd胁迫的反应, 中国环境科学, 1996, 16(2) :113-117][9] Heath R L, Packer K. Photoperoxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatty acid peroxidation [J]. Arch. Biochem. Biophys. 1968, 125:189-198[10] Xu Q S, Shi G X, Gu G P, et al. Study of toxic effect of Hg2+ on Nymphaea tetragona Georgi [J]. Acta Bot Boreal-Occident Sin. 2000, 20(5):784-789[徐勤松, 施国新, 顾龚平等. 不同浓度Hg2+对睡莲的毒害影响研究, 西北植物学报, 2000, 20(5):784-789][11] Xu Q S, Shi G X, Du K H, et al. Studies on correlation between peroxidation damage by free radicals and ultrastructural changes of mesophyll cells in Ottelia alismoides(L. )Pers induced by Zn pollution [J]. Chinese Bulletin of Botany. 2001, 18(5):597-604[徐勤松, 施国新, 杜开和等. 锌胁迫下水车前叶细胞自由基过氧化损伤与超微结构变化之间关系的研究, 植物学通报, 2001, 18(5):597-604][12] Luna C M, Gonzalez Z A, Tripp V S. Oxidative damage caused by on excess of copper in oat leaves[J]. Plant Cell Physiol. 1994:11-15[13] Zhai Z H, Ding M X, Wang X Z, Wang Y C, et al. Cell Biology [M]. Beijing:Higher Education Press, 1996, 149;173[翟中和, 丁明孝, 王喜忠, 王永潮等著. 细胞生物学, 北京:高等教育出版社, 1996, 149;173][14] Li G F, Cai W P, Wu Y J. The relationship between structural status and photochemical activity of chloroplasts[J]. Acta Phytophysiol Sin. 1987, 13(3):295-301[李功藩, 蔡琬平, 吴亚君. 叶绿体结构状态与光化学活性的关系, 植物生理学报, 1987, 13(3):295-301][15] Xu Q S, Shi G X, Du K H. Ultrastructural location observation of Cd and Zn in leaf cells of Potamogeton crispus [J]. Acta hotanica Yunnanica. 2002, 24(2):241-245[徐勤松, 施国新, 杜开和. 重金属镉、锌在菹草叶细胞中的超微定位观察, 云南植物研究, 2002, 24(2):241-245][16] Peng M, Wang H X, Wu Y S. Ultrastructural changes induced by cadmium and lead in corn seedling cell [J]. China Environmental Science. 1991, 11(6):426-431[彭鸣, 王焕校, 吴玉树. 镉、铅诱导的玉米(zea mays L. )幼苗细胞超微结构的变化, 中国环境科学, 1991, 11(6):426-431][17] Chien L C, Wu S H. Cytological studies on the cold resistance of plants-morphological changes of the intracellular structures of wheat in the overwintering period. Acta Bot Sin. 1965, 13(1):1-15[简令成, 吴素萱. 植物抗寒性的细胞学研究-小麦越冬过程中细胞形态结构的变化, 植物学报, 1965, 13(1):1-15][18] Chen S Y. Injury of membrane lipid peroxidation to plant cell [J]. Plant Physiology Communications. 1991, 27(2):84-90[陈少裕. 膜脂过氧化作用对植物细胞的伤害, 植物生理学通讯, 1991, 27(2):84-90]

    Sun S C, Wang H X, Li Q R. Preliminary studies on physiological changes and injury mechanism in aquatic vascular plants treated with cadmium [J]. Acta Phytophysiol Sin. 1985, 11(2):113-121[孙赛初, 王焕校, 李启任. 水生维管束植物受镉污染后的生理变化及受害机制初探, 植物生理学报, 1985, 11(2):113-121][2] Chen Y. Effects of cadmium on nitrate reductase and superoxide dismutase of submerged macrophytes [J]. Acta Scientiae Circumstantiae. 1998, 18(3):313-317[陈愚, 任久长, 蔡晓明. 镉对沉水植物硝酸还原酶和超氧化物歧化酶活性的影响, 环境科学学报, 1998, 18(3) :313-317][3] Wong Y S, Luo G H, Guan Q W. Peroxidation damage of oxygen free radicals induced by cadmium to plant [J]. Acta Bot Sin. 1997, 39(6) :522-526[黄玉山, 罗广华, 关NB054文. 镉诱导的自由基过氧化损伤, 植物学报, 1997, 39(6):522-526][4] Luo L X, Sun T H, Jin Y H. Effects of cadmium stress on lipid peroxidation in wheat leaves[J]. China Environmental Science. 1998, 18 (1):72-75[罗立新, 孙铁珩, 靳月华. 镉胁迫对小麦叶片细胞膜脂过氧化的影响, 中国环境科学, 1998, 18(1) :72-75][5] Zhang Z L. Laboratory Guide for Plant Physiology (2ed edition)[M]. Beijing: Higher Education Press, 1990, 88-91;154-155[张志良. 植物生理学实验指导(第二版), 北京:高等教育出版社, 1990, 88-91;154-155][6] Chria R, Marc V H, Dirk I. Superoxide dismutase and stress tolerance. Annu Rev Plant physiol Plant Mol Biol. 1992, 43:83[7] Luo L X, Sun T H, Jin Y H. Accumulation of superoxide radical in wheat leaves under cadmium stress [J]. Acta Scientiae Circumstantiae. 1998, 18(5):495-499[罗立新, 孙铁珩, 靳月华. 镉胁迫下小麦叶中超氧阴离子自由基的积累, 环境科学学报, 1998, 18(5):495-499][8] Yang J R, He J Q, Zhang G X, et al. Reaction of some enzyme activities in crops of different tolerance to the stress of Cd [J]. China Environmental Science. 1996, 16(2):113-117[杨居荣, 贺建群, 张国祥等. 不同耐性作物中几种酶活性对Cd胁迫的反应, 中国环境科学, 1996, 16(2) :113-117][9] Heath R L, Packer K. Photoperoxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatty acid peroxidation [J]. Arch. Biochem. Biophys. 1968, 125:189-198[10] Xu Q S, Shi G X, Gu G P, et al. Study of toxic effect of Hg2+ on Nymphaea tetragona Georgi [J]. Acta Bot Boreal-Occident Sin. 2000, 20(5):784-789[徐勤松, 施国新, 顾龚平等. 不同浓度Hg2+对睡莲的毒害影响研究, 西北植物学报, 2000, 20(5):784-789][11] Xu Q S, Shi G X, Du K H, et al. Studies on correlation between peroxidation damage by free radicals and ultrastructural changes of mesophyll cells in Ottelia alismoides(L. )Pers induced by Zn pollution [J]. Chinese Bulletin of Botany. 2001, 18(5):597-604[徐勤松, 施国新, 杜开和等. 锌胁迫下水车前叶细胞自由基过氧化损伤与超微结构变化之间关系的研究, 植物学通报, 2001, 18(5):597-604][12] Luna C M, Gonzalez Z A, Tripp V S. Oxidative damage caused by on excess of copper in oat leaves[J]. Plant Cell Physiol. 1994:11-15[13] Zhai Z H, Ding M X, Wang X Z, Wang Y C, et al. Cell Biology [M]. Beijing:Higher Education Press, 1996, 149;173[翟中和, 丁明孝, 王喜忠, 王永潮等著. 细胞生物学, 北京:高等教育出版社, 1996, 149;173][14] Li G F, Cai W P, Wu Y J. The relationship between structural status and photochemical activity of chloroplasts[J]. Acta Phytophysiol Sin. 1987, 13(3):295-301[李功藩, 蔡琬平, 吴亚君. 叶绿体结构状态与光化学活性的关系, 植物生理学报, 1987, 13(3):295-301][15] Xu Q S, Shi G X, Du K H. Ultrastructural location observation of Cd and Zn in leaf cells of Potamogeton crispus [J]. Acta hotanica Yunnanica. 2002, 24(2):241-245[徐勤松, 施国新, 杜开和. 重金属镉、锌在菹草叶细胞中的超微定位观察, 云南植物研究, 2002, 24(2):241-245][16] Peng M, Wang H X, Wu Y S. Ultrastructural changes induced by cadmium and lead in corn seedling cell [J]. China Environmental Science. 1991, 11(6):426-431[彭鸣, 王焕校, 吴玉树. 镉、铅诱导的玉米(zea mays L. )幼苗细胞超微结构的变化, 中国环境科学, 1991, 11(6):426-431][17] Chien L C, Wu S H. Cytological studies on the cold resistance of plants-morphological changes of the intracellular structures of wheat in the overwintering period. Acta Bot Sin. 1965, 13(1):1-15[简令成, 吴素萱. 植物抗寒性的细胞学研究-小麦越冬过程中细胞形态结构的变化, 植物学报, 1965, 13(1):1-15][18] Chen S Y. Injury of membrane lipid peroxidation to plant cell [J]. Plant Physiology Communications. 1991, 27(2):84-90[陈少裕. 膜脂过氧化作用对植物细胞的伤害, 植物生理学通讯, 1991, 27(2):84-90]

计量
  • 文章访问数:  855
  • HTML全文浏览量:  0
  • PDF下载量:  408
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-08-07
  • 修回日期:  2003-05-19
  • 发布日期:  2003-11-24

目录

    /

    返回文章
    返回