风力胁迫对具鞘微鞘藻结皮光合活性的影响

徐娟娟, 张德禄, 吴国樵, 王高鸿, 刘永定, 胡春香

徐娟娟, 张德禄, 吴国樵, 王高鸿, 刘永定, 胡春香. 风力胁迫对具鞘微鞘藻结皮光合活性的影响[J]. 水生生物学报, 2010, 34(3): 575-581.
引用本文: 徐娟娟, 张德禄, 吴国樵, 王高鸿, 刘永定, 胡春香. 风力胁迫对具鞘微鞘藻结皮光合活性的影响[J]. 水生生物学报, 2010, 34(3): 575-581.
XU Juan-Juan, ZHANG De-Lu, WU Guo-Qiao, WANG Gao-Hong, LIU Yong-Ding, HU Chun-Xiang. EFFECT OF WIND STRESS ON PHOTOSYNTHETIC ACTIVITY OF MICROCOLEUS VAGINATUS CRUSTS[J]. ACTA HYDROBIOLOGICA SINICA, 2010, 34(3): 575-581.
Citation: XU Juan-Juan, ZHANG De-Lu, WU Guo-Qiao, WANG Gao-Hong, LIU Yong-Ding, HU Chun-Xiang. EFFECT OF WIND STRESS ON PHOTOSYNTHETIC ACTIVITY OF MICROCOLEUS VAGINATUS CRUSTS[J]. ACTA HYDROBIOLOGICA SINICA, 2010, 34(3): 575-581.

风力胁迫对具鞘微鞘藻结皮光合活性的影响

基金项目: 

国家自然科学基金项目(批准号:30770395

30870470)

中国科学院知识创新领域前沿项目

武汉市科技局与内蒙古发改委重大科技产业化专项(批准号:200720112031)资助

EFFECT OF WIND STRESS ON PHOTOSYNTHETIC ACTIVITY OF MICROCOLEUS VAGINATUS CRUSTS

  • 摘要: 抵抗风力胁迫是荒漠藻类适应干旱区环境的重要生物学机制,也是藻结皮能够拓殖流沙的必要条件之一,但有关藻类对风力胁迫的响应机理国内外尚无研究报道。以具鞘微鞘藻(Microcoleus vaginatus Gom.)人工结皮为实验对象,研究了不同强度风力吹蚀对结皮含水量、藻类活力、生物量、及其光合活性的影响。结果表明:不论低于当地起沙风(3m/s)还是高于起沙风(5m/s和7m/s)的风力吹蚀,结皮中藻类生物量均明显下降,而且结皮生物量的变化与风速大小和吹蚀时间呈线性关系(y=14.78+0.035a-1.48b,a风速,b时间,r2=0.79)。进一步分析发现,风力吹蚀后结皮中藻类活力并没有降低但主要光合色素和天线色素的含量普遍降低,叶绿素荧光(Fv/Fm)、表观电子传递速率(ETR)和净光合速率(Pn)明显下降,并且风速越大,降幅越大。这些结果说明风力胁迫对藻结皮生长和光合活性的影响主要是通过影响光合色素代谢合成和电子传递速率引起的,对其生命力没有明显影响。
    Abstract: Algal crusts are the early stage of biological soil crusts development and succession in the arid and semi-arid regions, in which filamentous cyanobacteria are often dominant organisms, and these algae have been recognized to possess importance functions both in the stabilization of topsoil, retarding water evaporation, meliorating soil structure, and enhancing soil fertility. Of course, the environments they grow and survive determine that they are often subjected to harsh environmental conditions, such as windy, arid, sunny irradiation and extreme temperature fluctuation. Accordingly these organisms have developed variable strategies to adapt them. Up to data, their adaptation to drought, radiation and salt stress have been studied extensively, but few is done for wind force stress, and very little is known about its acclimation to this stress. Microcoleus vaginatus is the first dominant species and community- building species of more than 95% algal crusts on the world, with the most promising foreground in desertification control and application of algal crusts. The objective of this study is to explore the effects of wind stress on photosynthetic activity of M.vaginatus crusts. In this study, M. vaginatus isolated from Qubqi Desert was batch cultured, and inoculated onto the surface of local shifting sand in laboratory. After the algal crusts formation, they were taken to the outdoors for stress exercise for 10 days from 9:00 to 12:00 everyday. Then the man-made M.vaginatus crusts were exposed to different scales wind forces environments (3m/s, 5m/s and 7m/s), algal physiological responses were in situ studied. The results showed that alga biomass decreased significantly under windy conditions, it was significantly negatively correlated with blowing time, but positively correlated with wind force scale (y = 14.78 ? 1.48a + 0.035b, a blowing time, b wind force, r2=0.79). After 7 hours continuous blowing at different scales wind forces, the main photosynthetic pigments and antenna pigments contents, chlorophyll fluorescence (Fv / Fm), the apparent electron transfer rate (ETR) and net photosynthetic rate (Pn) decreased significantly, and the greater drop occurred at the stronger wind force. Above results indicated that wind force stressed algal growth and photosynthetic activity by impacting metabolism of pigments and photosynthetic electron transport rate, but algal cell vitality was not affected obviously.
  • [1]

    [3] Belnap J. The world at your feet: Desert biological soil crusts [J]. Frontiers in Ecology and the Environment, 2003, 1(5): 181-189

    [1]

    Moore P D. Life in the upper crust [J]. Nature, 1998, 393: 419-420

    [2]

    [4] Hu C X, Liu Y D, Zhang D L, et al. Gluing mechanism of desert algal crust [J]. Chinese Science Bulletin, 2002, 47(12): 931-937 [胡春香,刘永定,张德禄,等. 荒漠结皮的胶 结机理. 科学通报,2002, 47(12): 931-937]

    [2]

    Gillis A M. Crustful of nutrients [J]. Bio Science, 1994, 44: 735-736

    [3]

    [5] Potts M. Minireview: Mechanisms of desiccation tolerance in cyanobacteria [J]. Eur J Phycol, 1999, 34: 319-328

    [4]

    [6] Chen L Z, Li D H, Liu Y D. Salt tolerance of Microcoleus vaginatus Gom., a cyanobacterium isolated from desert algal crust, was enhanced byexogenous carbohydrates [J]. Journal of Arid Environments, 2003, 55: 645-656

    [5]

    [7] Harel Y, Ohad I, Kaplan A. Activation of photosynthesis and resistance to Photoinhibition in Cyanobacteria within biological desert crust [J]. Plant Physiology, 2004, 136: 3070-3079

    [6]

    [8] Wright D J, Smith S C, Joardar V, et al. UV irradiation and desiccation modulate the three-dimensional extracellular matrix of Nostoc commune (Cyanobacteria) [J]. J Biol Chem, 2005, 280(48): 40271-40281

    [7]

    [9] Hu C X, Liu Y D, Song L R, et al. Species composition and distribution of algae in semi-desert algal crusts [J]. Chinese Journal of Applied Ecology, 2000, 11(1): 61-65 [胡春香, 刘永定, 宋立荣, 等. 半荒漠藻结皮中藻类的种类组成和 分布. 应用生态学报, 2000, 11(1): 61-65]

    [8]

    [10] Hu C X, Liu Y D. Primary succession of algal community structure in desert soil [J]. Acta Botanica Sinica, 2003, 45(8): 917-924

    [9]

    [11] Hu C X, Liu Y D, Song L R, et al. Effect of desert soil algae on the stabilization of fine sands [J]. Journal of Applied Phycology, 2002, 14: 281-292

    [10]

    [12] Xie Z M, Chen L Z, Li D H, et al. The research on the function of soil filamentous cyanobacteria in desertification control [J]. Acta Hydrobiologica Sinica, 2007, 31(6): 886-890 [谢作明, 陈兰洲, 李敦海, 等. 土壤丝状蓝藻在荒漠治理 中的作用研究. 水生生物学报, 2007, 31(6): 886-890]

    [11]

    [13] Special Committees of Soil Agriculture and Chemistry, Soil Science Society of China. General analytical method of soil [M]. Beijing: Academic Press. 1965, 4-5 [中国土壤学会土 壤农化分析专业委员会编. 土壤常规分析方法. 北京: 科 学出版社. 1965, 4-5]

    [12]

    [14] Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes [A]. In: Packer L. Douce R (Eds.), Methods in enzymology [C]. New York: Academic Press. 1987, 148: 350-382

    [13]

    [15] Liu H, Mei X G. Examining cell viability of Taxus chinensis with TTC (2, 3, 5-triphenyl-2H-tetrazolium chloride) [J]. Plant Physiology Communication, 2001, 37(6): 537-539 [刘华, 梅兴国. TTC 法测定红豆杉细胞活力. 植物生理学 通讯, 2001, 37(6): 537-539]

    [14]

    [16] Siegelman H W, Kycia J H. Algal biliproteins. In: Hellebust J A and Graigie J S (Eds.), Handbook of phycological methods, physiological and biochemical methods. Cambridge: Cambridge University Press. 1978, 1-61

    [15]

    [17] Korner S, Nicklisch A. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes [J]. J Phycol, 2002, 38: 862-871

    [16]

    [18] Chen L Z, Xie Z M, Li D H, et al. Recovery of photosyanthetic activity of Microcoleus vaginatus after water loss and rehydration [J]. Acta Hydrobiologica Sinica, 2006, 30(4): 404-407 [陈兰洲, 谢作明, 李敦海, 等. 失水-吸水过程 中微鞘藻光合活性的特性. 水生生物学报, 2006, 30(4): 404-407]

    [17]

    [19] Qiu B S, Gao K S. Photosynthetic characteristics of the terrestrial blue-green alga, Nostoc flagelliform [J]. European Journal of Phycology, 2001, 36: 147-156

    [18]

    [20] Gao K S, Qiu B S, Xia J R, et al. Effect of wind speed on loss of water from Nostoc flagelliForme colonies [J]. Journal of Applied Phycology, 1998, 10: 55-58

    [19]

    [21] De PhiIippis R, SiIi C, Paperi R, et al. ExopoIysaccharide- producing cyanobacteria and their possible exploitation: A review [J]. J Appl Phycol, 2001, 13: 293-299 [22] Yu Y J, Xin Y Y, Liu J Q, et al. Effect of wind and wind-sand current on the physiological status of different sand-fixing plants [J]. Acta Botanica Sinica, 1998, 40(10): 962-968 [于云江, 辛越勇, 刘家琼, 等. 风和风沙流对不 同固沙植物生理状况的影响. 植物学报, 1998, 40(10): 962-968]

    [20]

    [23] Yu Y J, Shi P J, Lu C X, et al. Response of the eco-physiological characteristics of some plant under blow sand [J]. Acta Phytoecologica Sinica, 2003, 27(1): 53-58 [于云江, 史培军, 鲁春霞, 等. 不同风沙条件对几种植物 生态生理特征的影响. 植物生态学报, 2003, 27(1): 53-58]

    [21]

    [24] Wang G H, Chen L Z, Li G B, et al. Improving photosynthesis of microalgae by changing the ratio of light-harvesting pigments [J]. Chinese Science Bulletin, 2005, 50(14): 1474-1479 [王高鸿, 陈兰洲, 李根保, 等. 改变捕光色素 比例用于提高微藻光合效率. 科学通报, 2005, 50(14): 1474-1479]

    [22]

    [25] Xue L G, Xu S J, Li S W, et al. Response of Spirulina platensis to enhanced UV-B stress [J]. Acta Hydrobiologica Sinica, 2007, 31(2): 201-207 [薛林贵, 徐世建, 李师翁, 等. 螺旋藻对增强的UV-B 胁迫的响应. 水生生物学报, 2007, 31(2): 201-207]

    [23]

    [26] Bi H, Zhang G M, Wang W. Changes of Phycocyanin in Spirulina platensis after ultraviolet light irradiation [J]. Journal of Agro-Environment Science, 2007, 26(3): 1033-1039 [毕海, 张光明, 王伟. 紫外辐照对钝顶螺旋 藻藻蓝蛋白的影响研究. 农业环境科学学报, 2007, 26(3): 1033-1039]

  • 期刊类型引用(6)

    1. 赵燕翘,连煜超,许文文,赵逸雪,韩高玲,赵洋. 中国人工蓝藻结皮研究进展. 中国沙漠. 2023(05): 214-222 . 百度学术
    2. 李玉领,唐东山,李向阳,李敦海,刘凯旋,陈萌萌. 沙蒿胶-微藻联合固沙效果的试验研究. 工业安全与环保. 2018(03): 56-60 . 百度学术
    3. 王建沅,周成旭,严小军,骆其君,蒋莹,马斌,谭应宏. 雨生红球藻在红光下的生长及营养盐消耗特征. 水生生物学报. 2014(06): 1135-1142 . 本站查看
    4. 叶功富,高伟,王亨,殷亮,黄石德,吴锡麟. 木麻黄光合生理特性对海岸线距离梯度的响应. 福建林学院学报. 2013(04): 291-297 . 百度学术
    5. 董毅,吴统贵,顾建明,虞木奎,成向荣,段溪,王臣. 夹竹桃光合及荧光特性对海岸线距离的响应. 东北林业大学学报. 2012(12): 60-62+70 . 百度学术
    6. 苏延桂,李新荣,陈应武,崔艳,鲁艳. 温度和CO_2浓度升高对荒漠藻结皮光合作用的影响. 应用生态学报. 2010(09): 2217-2222 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  877
  • HTML全文浏览量:  3
  • PDF下载量:  586
  • 被引次数: 6
出版历程
  • 收稿日期:  2008-04-02
  • 修回日期:  2009-08-23
  • 发布日期:  2010-05-24

目录

    /

    返回文章
    返回