沙鳅亚科鱼类线粒体DNA控制区结构分析及系统发育关系的研究
STUDIES ON THE STRUCTURE OF THE MITOCHONDRIAL DNA CONTROL REGION AND PHYLOGENETIC RELATIONSHIPS OF THE SUBFAMILY BOTIINAE
-
摘要: 对沙鳅亚科鱼类3属14个代表种的线粒体DNA控制区序列的结构进行了分析。通过与鲤形目鱼类的控制区序列进行比较,将沙鳅亚科鱼类的控制区分为终止序列区、中央保守区和保守序列区三个区域。同时识别了沙鳅亚科中一系列保守序列,并给出了它们的一般形式。以胭脂鱼为外类群,对比条鳅亚科、花鳅亚科、以及平鳍鳅科的代表性种类,采用NJ、MP和ML法构建沙鳅亚科的分子系统树。分子系统发育分析表明,沙鳅亚科为一单系,包括3个属:沙鳅属、副沙鳅属和薄鳅属,各属均构成单系。根据分子系统学、形态学的结果及地理分布推断,沙鳅亚科中沙鳅属可能为最为原始的属,副沙鳅属其次,而薄鳅属最特化。Abstract: Belonging to Cobitidae of Cypriniformes,the subfamily Botiinae is a group of small or middle freshwater fishes dwellingin slow to moderately swift waters, and many of them are common aquarium species1 The classification of Botiinae fishes is con2troversial among different authors1Fang(1936)and Nalbant(1963) divided Botiinae into two genera, Botia and Leptobotia, whileChen(1980) separated it into three, Botia, Parabotia and Leptobotia1 Up to now, there was no study conducted on the structureof mitochondrial DNA control region and the molecular phylogenetic relationship of the subfamily Botiinae1 In the present study,the structure of the control region sequences was analyzed for fourteen species representing the three genera of Botiinae1 Similarto other fishes, the control region of Botiinae is composed of three domains, the extended termination associated sequence(ETAS) domain, the Central conserved domain(CD) and the Conserved sequence block(CSB) 1 The ETAS domain is very rich(73.3 %) in the contents of A and T, while the CD domain is much rich(36. 3 %) in G and C1 A termination2associated se2quence TAS(TACATA)and its reverse complementary sequence(ATGTAT)were found in the ETAS domain, and the conservedsequence in this domain is ETAS 11 The CD domain is highly conserved, and three conserved sequences were identified, CSB2F, CSB2E and CSB2D1 Three conserved sequences were identified in the CSB domain, CSB21, CSB22 and CSB23.With Myxocyprinus asiaticus as outgroup, compared with members of Nemacheilinae, Cobitinae and Homalopteridae aswell, the phylogenetic relationship of Botiinae was analyzed using the neighbor2joining(NJ) method in MEG A2.1, the maximumparsimony(MP) method in PAUP34.0b10 and the maximum likelihood(ML) method in TREE2PUZZ LE 5.01 The results showedthat the subfamily Botiinae is monophyletic and the confidence levels in the three analysis methods were 88 %in NJ, 57 %in MPand 97 % in ML respectively. It also supported that Botiinae contains three genera, Botia, Parabotia and Leptobotia, sinceeach of these genera formed a monophyly, which were supported with 100 %, 65 %and 78 %of bootstrap values in NJ method and100 %, 75 %and 70 %of Quartet puzzling values in ML method1 In MP analysis, the bootstrap value supporting monophylyof thegenus Parabotia was less than 50 %, while for Botia and Leptobotia, the values were 100 %and 56 %.Based on the results of molecular phylogenetic analysis, morphological comparison and geographical distribution of Botiinaefishes, it was suggested that Botia is the most primitive genus, Parabotia the second, and Leptobotia the most specialized.
-
Keywords:
- Botiinae /
- Mitochondrial DNA /
- Control region /
- Phylogeny
-
-
[1] Xiao W H, Zhang YP. Genetics and evolutionof mitochondrial DNAin fish [J]. Acta hydrobiologica sinica, 2000, 24(4):384-391[肖武汉,张亚平. 鱼类线粒体 DNA 的遗传与进化. 水生生物学报,2000,24(4):384-391]
[2] YangJ Q,Liu H Z.Mitochondrial cytochrome b gene sequence varia2tions of two Bagrid fishes in Changjiang River and Zhujiang River[J]. Acta Hydrobiologica Sinica,2003,27 (3):253-257[杨金权,刘焕章. 两种 科鱼类在长江和珠江流域 cytb 基因序列变异性分析. 水生生物学报,2003,27(3):253-257]
[3] Tang Q Y,Yang X P,Liu H Z.Biogeographical processof Spinibarbuscaldwelli revealed by sequence variations of mitochondrial cytochromeb gene[J]. Acta Hydrobiologica Sinica,2003,27(4):352-365[唐琼英,杨秀平,刘焕章. 刺 基于线粒体细胞色素 b 基因的生物地理学过程. 水生生物学报,2003,27(4):352-365]
[4] Liu H Z. The structure and evolution of mitochondrial DNA controlregion of fish: a case study to bitterlings [J].Prog. Nat. Sci.,2002, 12(3): 266-270[刘焕章. 鱼类线粒体 DNA 控制区的结构和进化:以 鱼类为例. 自然科学进展,2002,12 (3):266-270]
[5] Buroker N E, Brown J R, G ilbert T A, et al. Length heteroplasmyof sturgeon mitochondrial DNA: an illegitimate elongation model [J].Genetics, 1990,124:157-163
[6] Broughton R E, Dowling T E. Length variation in mitochondrial DNAof the minnow Cyprinella spiloptera [J]. Genetics, 1994,138:179-190
[7] Liu H, Teng C S, Teng H Y. Sequence variations in the mtiochon2drial DNA control region and their implications for the phylogeny ofthe Cypriniformes [J]. Can. J. Zool., 2002,80:569-581
[8] G illes A, Lecointre G, Miquelis A, et al. Partial Combination Ap2plied to Phylogeny of European Cyprinids Using the MitochondrialControl Region [J]. Mol.Phylogenet.Evol., 2001,19(1):22-33
[9] Liu H, Chen Y. Phylogeny of the East Asian cyprinids inferred fromsequences of the mitochondrial DNA control region [J].Can. J.Zool., 2003, 81:1938-1946
[10] Yang J S. Studies on the phylogeny and biolgeography of Parabotiafishes (Pisces: Cobitidae-Master degree Thesis [D] Institue of Hy2drobiology, Chinese Academy of Sciences. 2002 [杨军山. 副沙鳅属鱼类的系统发育与生物地理学研究. 硕士论文. 中国科学院水生所]
[11] Thompson J D, G ibson TJ, Plewniak F. The Clustal Xwindows in2terface: flexible strategies for multiple sequences alignment aided byquality analysis tools [J].Nucleic. Acids.Res., 1997,25 (4):4876-4882
[12] Galtier N, G ouy M, Gautier C. SEAVIEW and PHY LO2WIN: twographic tools for sequence alignment and molecular phylogeny [J].Comput. Appl. Biosci., 1996,12:543-548
[13] Kumar S, Tamura K, Jakobsen I B, et al. MEG A2: Molecular Evo2lution Genetics Analysis Software [M]. Arizona State University,Tempe. 2001
[14] Strimmer K, von Haeseler A. Quartet puzzling: a quartet maximumlikelihood method for reconstructing tree topologies [J]. Mol. Biol.Evol., 1996,13: 964-969
[15] Southern S O, Southern PJ, Dizon A. E. Molecular characterizationof a clone dolphin mitochondrial genome [J].J.Mol.Evol.,1988,28: 32-42
[16] Lee W, Conroy J, Howell W H, et al. Structure and evolution ofteleost mitochondrial control regions [J]. J. Mol. Evol., 1995,41:54-66
[17] Zhang Y, Zhang E, He S P. Studyon the structure of the control re2gion of the Bagridae in China and its phylogenetic significance [J].Acta Hydrobiologica Sinica, 2003,27(5): 463-467[张燕,张鹗,何舜平. 中国 科鱼类线粒体 DNA 控制区结构及其系统发育分析. 水生生物学报, 2003,27(5): 463-467]
[18] Sbisà E, Tanzariello F, Reyes A, et al. Mammalian mitochondrialD2loop region structural analysis: identification of new conserved se2quences and their functional and evolutionary implications [J]. Gene,1997,205: 125-140
[19] ChenJ X, Zhu SQ. Phylogenetic relationshipsof the subfamily in theloach family Cobitidae (Pisces-[J]. Acta Zootaxon. Sin., 1984,9(2): 201-207[陈景星,朱松泉,鳅科鱼类亚科的划分及其宗系发生的相互关系[J]. 动物分类学报,1984,9(2):201-207]
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量: