团头鲂nanos3基因的克隆鉴定

朱林, 王厚鹏, 朱作言, 孙永华, 叶鼎

朱林, 王厚鹏, 朱作言, 孙永华, 叶鼎. 团头鲂nanos3基因的克隆鉴定[J]. 水生生物学报, 2019, 43(3): 457-464. DOI: 10.7541/2019.056
引用本文: 朱林, 王厚鹏, 朱作言, 孙永华, 叶鼎. 团头鲂nanos3基因的克隆鉴定[J]. 水生生物学报, 2019, 43(3): 457-464. DOI: 10.7541/2019.056
ZHU Lin, WANG Hou-Peng, ZHU Zuo-Yan, SUN Yong-Hua, YE Ding. MOLECULAR CLONING AND IDENTIFICATION OF NANOS3 IN BLUNT SNOUT BREAM (MEGALOBRAMA AMBLYCEPHALA)[J]. ACTA HYDROBIOLOGICA SINICA, 2019, 43(3): 457-464. DOI: 10.7541/2019.056
Citation: ZHU Lin, WANG Hou-Peng, ZHU Zuo-Yan, SUN Yong-Hua, YE Ding. MOLECULAR CLONING AND IDENTIFICATION OF NANOS3 IN BLUNT SNOUT BREAM (MEGALOBRAMA AMBLYCEPHALA)[J]. ACTA HYDROBIOLOGICA SINICA, 2019, 43(3): 457-464. DOI: 10.7541/2019.056

团头鲂nanos3基因的克隆鉴定

基金项目: 中国科学院战略性先导科技专项(A)(XDA08010106); 国家自然科学基金(31671501)资助
详细信息
    作者简介:

    朱林(1990—), 男, 山东潍坊人; 硕士研究生; 主要从事鱼类发育和生物技术研究。E-mail: zhulin2009ouc@163.com

    通信作者:

    叶鼎, 副研究员; E-mail: yeding@ihb.ac.cn

  • 中图分类号: Q344+.1

MOLECULAR CLONING AND IDENTIFICATION OF NANOS3 IN BLUNT SNOUT BREAM (MEGALOBRAMA AMBLYCEPHALA)

Funds: Supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA08010106); the National Natural Science Foundation of China (31671501)
    Corresponding author:
  • 摘要: 为了标记团头鲂(Megalobrama amblycephala)的原始生殖细胞(Primordial Germ Cells, PGCs), 首次克隆并鉴定了团头鲂nanos3基因(mananos3)。mananos3全长1027 bp, 包括48 bp 5′UTR (5′untranslated Region), 490 bp 3′UTR和489 bp开放阅读框(Open Reading Frame, ORF)。该基因编码162个氨基酸。通过序列比对发现Mananos3蛋白和其他物种Nanos蛋白一样, 存在一个保守的RNA结合功能域, 该功能域包含一个锌指基序(Motif)。系统发育树结果显示, Mananos3与鲤(Cyprinus carpio)的Nanos3最为相近。半定量和定量PCR结果表明, mananos3具有较高的母源表达, 并在胚胎发育早期高量表达, 而在1000细胞期之后表达量逐渐降低。在成体组织中, mananos3仅在卵巢中检测到表达。mananos3和斑马鱼(Danio rerio) nanos3 (zfnanos3)的3′UTR均可以介导绿色荧光蛋白特异标记团头鲂和斑马鱼胚胎发育早期的PGCs, 但是mananos3的3′UTR能够更特异地标记团头鲂的PGCs。通过比对mananos3和zfnanos3的3′UTR发现, mananos3 的3′UTR中有一个非经典的miR430识别位点(GCACTA)。通过对该位点的突变研究证实其有利于nanos3在非PGCs组织中的降解。综上所述, 团头鲂mananos3的3′UTR序列中的非经典miR430识别位点(GCACTA)可能与介导报告基因在PGCs中特异表达相关。
    Abstract: Nanos3 is one of the components of germ plasm which is generally considered to be the determinant of primordial germ cells (PGCs) in most of the ovipara. The miR430 bind to the 3′untranslated region (UTR) of nanos3 to mediate the degradation of its mRNA in somatic cells, while in PGCs, the Dnd1 binds to the 3′UTR region of nanos3 to protect it from degradation through miR430. Therefore, the 3′UTR of nanos3 was generally used to mediate the specific expression of fluorescent protein in PGCs. In this study, we cloned and characterized the cDNA of the nanos3 homolog in Megalobrama amblycephala (mananos3). Mananos3 is of 1027 bp length including 48 bp 5′UTR, 490 bp 3′UTR and 489 bp opening reading frame. It encodes a peptide with 162aa. By peptide alignment, there was a conserved RNA binding domain with one zinc finger motif. Phylogenetic analysis revealed that Mananos3 has the highest similarity with its homolog in common carp. Semi-quantitative and Real-time qPCR showed that nananos3 was highly maternally expressed. During early embryonic stage, it was high expressed before 1k-cell stage and then gradually decreased. Mananos3 was specifically expressed in ovary among different selected tissues. Both 3′UTR of mananos3 and zebrafish nanos3 (zfnanos3) can mediate the specific expression of green fluorescent protein (EGFP) in PGCs while it appeared that 3′UTR of mananos3 has higher efficiency and specificity. Finally, the alignment of the 3′UTR of mananos3 and zfnanos3 revealed a potential non-classical recognition site (GCACTA) for miR430 that promotes the degradation of mRNA in non-PGCs tissues.
  • Nanos通常被认为对生殖细胞的存活和全能性的维持起重要作用。动物中一般存在1—4个nanos基因[1]。该基因编码高度保守的RNA结合蛋白。该蛋白C端拥有2个连续的半胱氨酸-半胱氨酸-组氨酸-半胱氨酸(Cys-Cys-His-Cys, CCHC)锌指基序[2, 3]

    Nanos基因在非脊椎动物和脊椎动物中均得到了鉴定和研究。果蝇(Drosophila melanogaster)中只有1个nanos基因, 该基因在介导腹部形成、原始生殖细胞(Primordial Germ Cells, PGCs)特化和迁移以及生殖干细胞的维持等方面发挥重要作用[4, 5]。在小鼠(Mus musculus)中, nanos2和nanos3在PGCs和未分化的精原细胞中表达, nanos2突变导致雄性精原细胞的缺失, 而nanos3突变导致精巢和卵巢中的生殖细胞均缺失[6]。在硬骨鱼类中, 斑马鱼(Danio rerio)nanos有3个基因: nanos1nanos2nanos3。Nanos1在成熟卵巢的早期卵母细胞中有表达; nanos2在成鱼精卵巢的生殖干细胞中表达, 对于维持生殖干细胞必不可少[7, 8]; nanos3在生殖质和PGCs中特异性表达[9], 对PGCs的形成和迁移以及卵母细胞的产生及维持至关重要[7, 9]

    在鱼类中, nanos3的3′UTR常被用于介导荧光蛋白在PGCs中特异性表达, 用于PGCs的活体标记[10]。利用胚胎注射EGFP-nanos3′UTR mRNA的方法, 在斑马鱼[10]、鲤(Cyprinus carpio)[11]、青鳉(Oryzias latipe)[12]、日本鳗鲡(Anguilla japonica)[13]、牙鲆(Paralichthys olivaceus)[14]中实现了PGCs的可视化标记。

    团头鲂(Megalobrama amblycephala)属鲤形目, 鲤科, 鲂属, 又名武昌鱼。其具有养殖成本低、生长迅速、食性广、养殖成活率高、肉质鲜美等特点, 是我国重要的经济鱼类之一[15]。为了开展团头鲂原始生殖细胞操作相关的研究, 我们克隆和分析了团头鲂的nanos3基因, 并利用该基因的3′UTR序列进行特异性标记PGCs实验。我们发现, 和斑马鱼nanos3的3′UTR相比, 利用团头鲂自身的nanos3-3′UTR能够更加特异地标记团头鲂的PGCs。这项研究工作为将来开展基于团头鲂PGCs的遗传操作提供便利。

    本研究所用雌、雄团头鲂均养殖于中国科学院水生生物研究所官桥水产养殖基地, 在繁殖季节采用人工授精的方法获取团头鲂的胚胎, 置于(22±1)℃的环境发育。成体组织取自2龄的团头鲂。AB品系的斑马鱼均来自于国家斑马鱼资源中心(武汉, http://zfish.cn)。斑马鱼饲养于14h﹕10h光暗周期及28.5℃恒温条件下。用于显微注射的胚胎由雌、雄斑马鱼自然产卵而得。

    总RNA的提取  获取团头鲂不同发育时期胚胎及幼鱼和成体不同组织, 采用Trizol (Invitrogen)法提取胚胎、幼鱼及成鱼各组织的总RNA, 用超微量分光光度计(Thermo, NanoDrop 2000)和1.0%琼脂糖凝胶电泳检测总RNA的浓度及纯度, 将RNA溶于无核酸酶水中, 置于–80℃冰箱中保存备用。

    团头鲂nanos3基因全长cDNA的克隆  根据斑马鱼和鲤鱼nanos3基因的序列比对, 在保守功能域设计引物nanos-F和nanos-R (表 1)。以团头鲂卵巢组织总RNA为模板, 根据Revert Aid First Strand cDNA Synthesis Kit (Thermo Fisher Scientific)说明书反转录获得cDNA。以此cDNA为模板进行PCR扩增, 获得团头鲂nanos3基因的中间片段。根据获得的中间片段, 设计RACE(Rapid-amplification of cDNA ends)扩增引物(表 1)。3′RACE和5′RACE利用System for Rapid Amplification of cDNA Ends试剂盒(Thermo Fisher Scientific)并按照说明书进行。

    表  1  团头鲂nanos3基因cDNA全长的克隆及表达所用到的引物
    Table  1.  Primers used for nanos3 full length cDNA cloning and expression
    引物名称Primer name 序列Sequence (5′—3′) 用途Usage
    nanos-F CCTTGGAAGGACTACATGGG 同源片段扩增
    nanos-R CAAACTTGTACACAAGCCAG
    nanos-3gsp1 GAGACCAAGCAGAAAAGAAGCC 3′RACE扩增
    nanos-3gsp2 CAAACATAATGGTGAGGCTGAGG
    nanos-3gsp3 CCTACAGCTCCGTGTACGCC
    nanos-5RT CTTTCTGTAAAAACTGTCC 5′RACE扩增
    nanos-5gsp1 GGTTGGTTCCCTCTTGTCATCTC
    nanos-5gsp2 GGCTTCTTTTCTGCTTGGTCTC
    nanos-5gsp3 CATTGCGGTCTTTGAGGTAGTG
    AAP GGCCACGCGTCGACTAGTACGGGIIGGGIIGGGIIG 3′和5′RACE扩增
    AUAP GGCCACGCGTCGACTAGTAC
    nanos-real time-F ACACTATCTCAAAGACCGCAATG 定量PCR
    nanos-real time-R GCGGGCAGAACCTTTTAGTG
    β-actin-F GATGATGAAATTGCCGCACTG 内参引物
    β-actin-R ACCAACCATGACACCCTGATGT
    XhoⅠ-mananos3UTR-S CCGCTCGAGACGGGACATTTCTGACCCAC 表达载体构建
    XbaⅠ-mananos3UTR-A GCTCTAGATTTTTTTTTTTTTTTTTTTTTTTGATATG
    mananos-mut1-F GTTTGATTTTGCACTTCTTCT 构建突变载体引物
    mananos-mut2-F GTTTGATTTTCTACTACTTCT
    mananos-mut-R CGTGAAAGCACACATGCATAC
    下载: 导出CSV 
    | 显示表格

    扩增的PCR产物经DNA纯化试剂盒(Thermo Fisher Scientific)纯化回收DNA后连接至pMD18-T (TaKaRa), 经转化、挑克隆和测序(武汉天一辉远生物科技有限公司), 获得相应片段的阳性克隆。所获得的片段序列经Lasergene软件拼接分析获得团头鲂nanos3基因全长cDNA序列。

    nanos3基因氨基酸序列比对及系统进化分析  使用Lasergene软件预测团头鲂nanos3基因编码的氨基酸序列, 采用BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi)和Clustal W (https://www.genome.jp/tools-bin/clustalw)将预测的氨基酸序列与NCBI的其他物种Nanos3进行蛋白质序列比对。同时, 基于各个物种Nanos3蛋白序列, 使用MEGA5.1软件构建NJ (Neighbor-joining方法)系统发育树[16]。所用到各物种的氨基酸序列GenBank登录号如下: 团头鲂(M. amblycephala): MH215557; 金线鲃(Sinocyclocheilus grahami): XP_016139847; 鲤(C. carpio): XP_018955255; 银鲫(Carassius gibelio): AKP99418; 斑马鱼(D. rerio): NP_571953; 大西洋鲑(Salmo salar); XP_013985774; 虹鳟(Oncorhynchus mykiss): NP_001268351; 青鳉(O. latipes): NP_001116380; 罗非鱼(Oreochromis niloticus): XP_005467279; 人(Homo sapiens): NP_001092092; 小鼠(Mus musculus): NP_918948; 果蝇(Drosophila melanogaster): NP_476658; 爪蟾(Xenopus laevis): XP_018107247。

    团头鲂nanos3 mRNA在不同发育时期和成体组织中的表达分析  根据已获得的团头鲂nanos3基因序列, 设计半定量及定量引物(表 1)。以β-actin作为内参, 采用半定量(定量)方法检测团头鲂nanos3基因mRNA在不同发育时期及成鱼不同组织中的表达情况。

    pCS2-SP6﹕EGFP-mananos3-3′UTR 质粒的构建、mRNA合成及显微注射实验  以团头鲂卵巢cDNA为模板, 以XhoⅠ-mananos3UTR-S和XbaⅠ-mananos3UTR-A为引物(表 1)进行PCR扩增。其产物经双酶切后插入到pCS2+的载体上得到pCS2-SP6﹕EGFP-mananos3-3′UTR质粒。质粒pCS2-SP6﹕EGFP-zfnanos3-3′UTR和pCS2-SP6﹕ EGFP-mananos3-3′UTR, 分别使用NotⅠ和XbaⅠ线性化后, 通过mMessage mMachine sp6 UltraKit (Thermo Fisher Scientific)体外转录试剂盒合成和纯化mRNA。合成的mRNA用超微量分光光度计测浓度和纯度, 用琼脂糖凝胶电泳检测mRNA的质量。将合成的mRNA分别注射进入1细胞期团头鲂和斑马鱼的胚胎中, 在斑马鱼发育至1 dpf和团头鲂发育至2 dpf时, 于荧光显微镜下观察各自PGCs被标记效率并作统计。

    mananos3-3′UTR 点突变质粒的构建及显微注射实验  利用BioEdit7.0和Clustal W将团头鲂和斑马鱼的3′UTR进行序列比对, 比对后分别设计突变引物mananos-mut1-F/mananos-mut2-F与mananos-mut-R, 并利用反向PCR构建pCS2-SP6﹕EGFP-mananos3-3′UTR_mut1和pCS2-SP6﹕EGFP-mananos3-3′UTR_mut2突变质粒。质粒经XbaⅠ线性化后用mMessage mMachine sp6 UltraKit (Thermo Fisher Scientific)体外转录试剂盒合成然后纯化mRNA, 注射1细胞期的斑马鱼胚胎, 在斑马鱼发育至1 dpf时, 观察胚胎荧光情况并作统计。

    本研究利用RT-PCR和RACE方法成功获得团头鲂的nanos3基因全长 cDNA序列(GenBank登录号MH215557), 其全长为1027 bp, 包括48 bp的 5′非编码区(5′UTR), 490 bp的3′非编码区(3′UTR)和489 bp的开放阅读框(ORF)。该基因编码162个氨基酸。氨基酸序列比对结果显示, 团头鲂Nanos3蛋白同其他物种的Nanos3蛋白具有较高的相似性, 与鲤科鱼类中的金线鲃(S. grahami)、鲤(C. carpio)、银鲫(C. gibelio)和斑马鱼(D. rerio)相似性较高, 依次为77.2%、77.1%、75.9%和69.2%; 同鲑科鱼类[大西洋鲑鱼(S. salar)和虹鳟(O. mykiss)]和哺乳类[人类(H. sapiens)和小鼠(M. musculus)]的相似性较低, 在34%—48.1%(图 1A)。但是, 它们均拥有1个保守的RNA结合功能域。在该功能域里面包含一个锌指基序“CCHC CCHC”。基于蛋白质序列, 利用MEGA5.1软件构建NJ系统发育树(图 1B), 结果显示团头鲂的Nanos3蛋白同鲤鱼和斑马鱼的Nanos3聚为一支。这表明团头鲂的Nanos3与鲤鱼和斑马鱼的Nanos3最为相近。

    图  1  团头鲂Nanos3氨基酸序列比对及系统进化分析
    A. 团头鲂与所选物种nanos3基因的氨基酸序列比对及结构分析;在全部所选物种中均保守的氨基酸残基用黑色标记; 方框标示RNA结合结构域; “▲”标示锌指基序; B. 团头鲂nanos3基因基于氨基酸序列构建的NJ系统进化树; 团头鲂在进化树中的位置被“▲”标记。所选物种中文及英文名称请见材料方法
    Figure  1.  The Alignment of predicted amino acid sequence of Megalobrama amblycephala Nanos3 with its homologs in selected vertebrates (A) and Neighbor-Joining phylogenetic tree (NJ tree) of Nanos3 homologs of selected vertebrates (B)
    A. Conserved amino acid residues among all selected vertebrates are marked black; the RNA binding domain is marked with box; the zinc finger motif is indicated by“▲”; B. Megalobrama amblycephala in NJ tree is marked with “▲”. Please refer to the section of materials and methods for selected vertebrates

    我们利用半定量和荧光定量PCR方法检测了团头鲂不同发育时期胚胎以及成鱼不同组织中nanos3 mRNA表达水平。我们发现团头鲂的nanos3具有母源表达, 在胚胎发育早期(shield时期以前)均具有较高的表达。在bud时期之后, nanos3 mRNA的表达量逐渐减少。从受精后3—15d, 在幼鱼中很难检测到nanos3的表达 (图 2A)。nanos3在团头鲂胚胎发育各时期的表达特征同该基因在其他鱼类胚胎发育中的表达特征相似[1719], 这暗示了nanos3在鱼类中可能具有相对保守的表达调控机制。在成鱼各组织中, nanos3 mRNA在卵巢中高表达, 在肝、肾、肌肉、心脏、腮、脑、肠、脾和精巢等组织中不表达(图 2B)。以上结果表明, 团头鲂nanos3不仅是一个母源基因, 还是一个卵巢特异高量表达基因。

    图  2  团头鲂nanos3在胚胎发育不同时期和成体不同组织表达谱
    A. 团头鲂nanos3在早期胚胎发育及幼鱼阶段15 dpf之前的表达水平; B. 团头鲂nanos3在成鱼不同组织中的表达水平。在荧光定量PCR中, 所有时期胚胎样本或组织样本的mananos3 表达量均相对于团头鲂β-actin计算获得
    Figure  2.  The expression level of mananos3 during embryogenesis and among different adult tissues
    A. The expression level of mananos3 during embryonic stages and larva stages before 15 dpf; B. The expression level of mananos3 among different adult tissues. For RT-qPCR, the manons3 level was normalized to β-actin

    接下来, 我们分别在团头鲂和模式动物斑马鱼中研究了mananos3-3′UTR介导绿色荧光蛋白(EGFP)特异性标记PGCs的功能。我们将EGFP-mananos3- 3′UTR mRNA或者EGFP-zfnanos3-3′UTR mRNA分别注射进入斑马鱼和团头鲂1细胞期受精卵, 并统计了非PGCs组织具有较强荧光(High background)和较弱荧光(Low background)的胚胎数。我们发现所有注射有以上任意一种mRNA的胚胎均能够标记PGCs, 其区别主要在于背景荧光强度上, 即nanos3- 3′UTR介导mRNA在非PGCs组织中的降解效率(图 3C3D)。在注射有EGFP-zfnanos3-3′UTR mRNA的斑马鱼胚胎中, 绝大多数胚胎(98%, n=100)具有较弱的荧光背景; 而同样的mRNA注射进入团头鲂胚胎中, 大多数胚胎(96.4%, n=83)的荧光背景较强(图 3C3E)。在注射有EGFP-mananos3-3′UTR mRNA的团头鲂胚胎中, 有86.7%的胚胎(n=60)具有较弱的荧光背景, 而同样的mRNA注射进入斑马鱼胚胎中, 83.3%的胚胎(n=90)却具有较强的荧光背景(图 3D3F)。这些数据表明, 物种本身的nanos3-3′UTR能够更加特异地标记自身的PGCs。总之, mananos3- 3′UTR具有同其他硬骨鱼类nanos3-3′UTR相似的功能, 除可以有效标记团头鲂的PGCs外, 也可以标记斑马鱼的PGCs。

    图  3  团头鲂和斑马鱼的原始生殖细胞均能被EGFP-mananos3-3′UTR和EGFP-zfnanos3-3′UTR标记
    A、B. EGFP-zfnanos3-3′UTR和EGFP-mananos3-3′UTR的示意图; C. 注射有EGFP-zfnanos3-3′UTR的1 dpf斑马鱼胚胎; D. 注射有EGFP-mananos3-3′UTR的1 dpf斑马鱼胚胎; E. 注射有EGFP-zfnanos3-3′UTR的2 dpf团头鲂胚胎; F. 注射有EGFP-mananos3-3′UTR的2 dpf团头鲂胚胎。图片右上角统计了代表照片胚胎的数量占观察总数的百分比, n值为总胚胎数
    Figure  3.  Primordial germ cells (PGCs) of zebrafish and blunt snout bream were labeled by both EGFP-mananos3-3′UTR and EGFP-zfnanos3-3′UTR
    A, B. Diagram of the EGFP-zfnanos3-3′UTR and the EGFP-mananos3-3′UTR; C. 1 dpf zebrafish embryo injected with EGFP-zfnanos3UTR; D. 1 dpf zebrafish embryo injected with EGFP-zfnanos3-3′UTR; E. 2 dpf bunt snout bream embryo injected with EGFP-zfnanos3-3′UTR; F. 2dpf bunt snout bream embryo injected with EGFP-mananos3-3′UTR. The number at the right-up corner indicates the percentage of representative embryos. “n” is the total number of observed embryos

    在斑马鱼中, miR430通过结合nanos3-3′UTR序列介导mRNA在体壁细胞中的降解[20, 21]。经典的miR430识别位点为GCACUU[22]。通过比对团头鲂和斑马鱼nanos3-3′UTR序列, 我们发现在团头鲂nanos3-3′UTR的173—178 nt位置具有一个潜在的miR430识别位点GCACUA (WT, “_”标识出了与经典miR430识别位点不同的碱基)(图 4A4B)。我们通过设计引物(表 1), 将mananos3-3′UTR的该位点分别突变为miR430经典的识别位点GCACUU (mut1)和不能识别的位点CUACUA (mut2, “_”指出了与经典miR430识别位点不同的碱基)(图 4B), 并以斑马鱼为模式动物进一步探究该位点是否有利于EGFP在非PGCs细胞中有效降解从而使PGCs能够被EGFP更特异的标记。通过观察1dpf的胚胎, 我们发现在注射有EGFP-mananos3-3′UTR WT的群体中, 具有高背景的胚胎占比73%(n=100); 在注射有EGFP-mananos3-3′UTR mut1 (突变位点理论上能够被miR430更好地识别)的群体中, 具有高背景的胚胎得到明显减少(40%, n=90); 而在注射有EGFP-mananos3-3′UTR mut2 (突变位点理论上不能被miR430识别)的群体中, 具有高背景的胚胎进一步增多(87%, n=120)(图 4C)。该数据表明团头鲂nanos3-3′UTR中的序列“GCACUA”可能是miR430识别的位点。

    图  4  团头鲂nanos3-3′UTR miR430结合位点的鉴定
    A. 团头鲂和斑马鱼nanos3-3′UTR的序列比对; B. miR-430结合位点碱基替换示意图; C. 在注射了EGFP融合的突变型mananos3-3′UTR的胚胎中, 对非PGCs组织中的EGFP表达情况进行统计分析。“*”标记了潜在的miR-430结合基序; “n”代表统计的胚胎总数
    Figure  4.  Identification of miR430 binding motif in mananos3-3′UTR
    A. Sequences alignment of 3′UTR of nanos3 homologs between zebrafish and blunt snout bream; B. diagram of base substitution in putative miR-430 binding motif; C. statistics analysis of EGFP repression in tissue of non-PGCs after injection of EGFP-fused mutated mananos3-3′UTR. “*” marks the putative miR-430 binding motif; “n” is the total number of observed embryos

    本研究首次克隆了团头鲂的nanos3 全长cDNA (mananos3, GenBank: MH215557)。序列分析发现预测的Mananos3氨基酸序列与鲤科鱼类相似性较高, 同鲑科鱼类、哺乳类、非脊椎动物和两栖类的相似性较低。在进化树上, 其与鲤和斑马鱼被聚到同一分支上。虽然nanos3在不同物种间的序列差异较大, 但是其RNA结合功能域的氨基酸序列高度保守。定量和半定量PCR结果显示, Mananos3具有母源表达, 并在胚胎发育早期高量表达, 而在PGCs特化完成后表达量逐渐减少。这种表达模式与斑马鱼[19]、家蚕(Bombyx mori)[17]、文昌鱼(Branchiostoma)[18]非常相似。综上, nanos3基因蛋白序列及其mRNA表达模式的保守性暗示nanos3在不同物种中可能具有相似的生物学功能。

    早在2006年, Saito等[10]就使用斑马鱼nanos3基因的3′UTR序列插入到EGFP开放阅读框下游, 介导EGFP在青鳉(Oryzias latipes)、泥鳅(Misgurnus anguillicaudatus)、金鱼(Carassius auratus)等8种鱼类的PGCs中特异稳定的表达。在本研究中, 我们同样发现mananos3-3′UTR和zfnanos3-3′UTR均可以标记团头鲂和斑马鱼的PGCs。通过比较发现, 利用mananos3-3′UTR标记团头鲂本身的PGCs能使其他组织中的荧光(背景噪声信号)更弱。因此, mananos3-3′UTR比zfnanos3-3′UTR更加适合团头鲂PGCs的特异性标记, 这为将来开展基于团头鲂PGCs的遗传操作提供便利。

    EGFP-nanos3-3′UTR之所以能够特异性标记PGCs, 主要是由于两个方面的分子机制共同作用。一方面, 在体细胞中, miR430能够识别并结合到nanos3-3′UTR上的特殊位点从而介导mRNA的降解[20]。另一方面, 在PGCs中, 生殖细胞特异的RNA结合蛋白Dnd1能够结合到nanos3-3′UTR上富含尿嘧啶区域从而保护mRNA免受miR430介导的RNA降解[21]。在本研究中, 我们在团头鲂nanos3-3′UTR中发现了一个非经典的nanos3 miR430结合位点GCACUA, 对其进行点突变后, 发现该序列的改变可以影响Mananos3-3′UTR对斑马鱼PGCs的标记效率。所以我们推测, mananos3同样存在通过miR430介导的mRNA降解及在生殖细胞中收到Dnd1蛋白保护的转录后调控机制, 并且mananos3-3′UTR与miR430结合位点可能包含GCACUA。

  • 图  1   团头鲂Nanos3氨基酸序列比对及系统进化分析

    A. 团头鲂与所选物种nanos3基因的氨基酸序列比对及结构分析;在全部所选物种中均保守的氨基酸残基用黑色标记; 方框标示RNA结合结构域; “▲”标示锌指基序; B. 团头鲂nanos3基因基于氨基酸序列构建的NJ系统进化树; 团头鲂在进化树中的位置被“▲”标记。所选物种中文及英文名称请见材料方法

    Figure  1.   The Alignment of predicted amino acid sequence of Megalobrama amblycephala Nanos3 with its homologs in selected vertebrates (A) and Neighbor-Joining phylogenetic tree (NJ tree) of Nanos3 homologs of selected vertebrates (B)

    A. Conserved amino acid residues among all selected vertebrates are marked black; the RNA binding domain is marked with box; the zinc finger motif is indicated by“▲”; B. Megalobrama amblycephala in NJ tree is marked with “▲”. Please refer to the section of materials and methods for selected vertebrates

    图  2   团头鲂nanos3在胚胎发育不同时期和成体不同组织表达谱

    A. 团头鲂nanos3在早期胚胎发育及幼鱼阶段15 dpf之前的表达水平; B. 团头鲂nanos3在成鱼不同组织中的表达水平。在荧光定量PCR中, 所有时期胚胎样本或组织样本的mananos3 表达量均相对于团头鲂β-actin计算获得

    Figure  2.   The expression level of mananos3 during embryogenesis and among different adult tissues

    A. The expression level of mananos3 during embryonic stages and larva stages before 15 dpf; B. The expression level of mananos3 among different adult tissues. For RT-qPCR, the manons3 level was normalized to β-actin

    图  3   团头鲂和斑马鱼的原始生殖细胞均能被EGFP-mananos3-3′UTR和EGFP-zfnanos3-3′UTR标记

    A、B. EGFP-zfnanos3-3′UTR和EGFP-mananos3-3′UTR的示意图; C. 注射有EGFP-zfnanos3-3′UTR的1 dpf斑马鱼胚胎; D. 注射有EGFP-mananos3-3′UTR的1 dpf斑马鱼胚胎; E. 注射有EGFP-zfnanos3-3′UTR的2 dpf团头鲂胚胎; F. 注射有EGFP-mananos3-3′UTR的2 dpf团头鲂胚胎。图片右上角统计了代表照片胚胎的数量占观察总数的百分比, n值为总胚胎数

    Figure  3.   Primordial germ cells (PGCs) of zebrafish and blunt snout bream were labeled by both EGFP-mananos3-3′UTR and EGFP-zfnanos3-3′UTR

    A, B. Diagram of the EGFP-zfnanos3-3′UTR and the EGFP-mananos3-3′UTR; C. 1 dpf zebrafish embryo injected with EGFP-zfnanos3UTR; D. 1 dpf zebrafish embryo injected with EGFP-zfnanos3-3′UTR; E. 2 dpf bunt snout bream embryo injected with EGFP-zfnanos3-3′UTR; F. 2dpf bunt snout bream embryo injected with EGFP-mananos3-3′UTR. The number at the right-up corner indicates the percentage of representative embryos. “n” is the total number of observed embryos

    图  4   团头鲂nanos3-3′UTR miR430结合位点的鉴定

    A. 团头鲂和斑马鱼nanos3-3′UTR的序列比对; B. miR-430结合位点碱基替换示意图; C. 在注射了EGFP融合的突变型mananos3-3′UTR的胚胎中, 对非PGCs组织中的EGFP表达情况进行统计分析。“*”标记了潜在的miR-430结合基序; “n”代表统计的胚胎总数

    Figure  4.   Identification of miR430 binding motif in mananos3-3′UTR

    A. Sequences alignment of 3′UTR of nanos3 homologs between zebrafish and blunt snout bream; B. diagram of base substitution in putative miR-430 binding motif; C. statistics analysis of EGFP repression in tissue of non-PGCs after injection of EGFP-fused mutated mananos3-3′UTR. “*” marks the putative miR-430 binding motif; “n” is the total number of observed embryos

    表  1   团头鲂nanos3基因cDNA全长的克隆及表达所用到的引物

    Table  1   Primers used for nanos3 full length cDNA cloning and expression

    引物名称Primer name 序列Sequence (5′—3′) 用途Usage
    nanos-F CCTTGGAAGGACTACATGGG 同源片段扩增
    nanos-R CAAACTTGTACACAAGCCAG
    nanos-3gsp1 GAGACCAAGCAGAAAAGAAGCC 3′RACE扩增
    nanos-3gsp2 CAAACATAATGGTGAGGCTGAGG
    nanos-3gsp3 CCTACAGCTCCGTGTACGCC
    nanos-5RT CTTTCTGTAAAAACTGTCC 5′RACE扩增
    nanos-5gsp1 GGTTGGTTCCCTCTTGTCATCTC
    nanos-5gsp2 GGCTTCTTTTCTGCTTGGTCTC
    nanos-5gsp3 CATTGCGGTCTTTGAGGTAGTG
    AAP GGCCACGCGTCGACTAGTACGGGIIGGGIIGGGIIG 3′和5′RACE扩增
    AUAP GGCCACGCGTCGACTAGTAC
    nanos-real time-F ACACTATCTCAAAGACCGCAATG 定量PCR
    nanos-real time-R GCGGGCAGAACCTTTTAGTG
    β-actin-F GATGATGAAATTGCCGCACTG 内参引物
    β-actin-R ACCAACCATGACACCCTGATGT
    XhoⅠ-mananos3UTR-S CCGCTCGAGACGGGACATTTCTGACCCAC 表达载体构建
    XbaⅠ-mananos3UTR-A GCTCTAGATTTTTTTTTTTTTTTTTTTTTTTGATATG
    mananos-mut1-F GTTTGATTTTGCACTTCTTCT 构建突变载体引物
    mananos-mut2-F GTTTGATTTTCTACTACTTCT
    mananos-mut-R CGTGAAAGCACACATGCATAC
    下载: 导出CSV
  • [1]

    De Keuckelaere E, Hulpiau P, Saeys Y, et al. Nanos genes and their role in development and beyond [J]. Cellular and Molecular Life Sciences, 2018, 75(11): 1929—1946 doi: 10.1007/s00018-018-2766-3

    [2]

    Wang C, Lehmann R. Nanos is the localized posterior determinant in Drosophila [J]. Cell, 1991, 66(4): 637—647 doi: 10.1016/0092-8674(91)90110-K

    [3]

    Curtis D, Treiber D K, Tao F, et al. A CCHC metal-binding domain in Nanos is essential for translational regulation [J]. The EMBO Journal, 1997, 16(4): 834—843 doi: 10.1093/emboj/16.4.834

    [4]

    Kobayashi S, Yamada M, Asaoka M, et al. Essential role of the posterior morphogen nanos for germline development in Drosophila [J]. Nature, 1996, 380(6576): 708—711 doi: 10.1038/380708a0

    [5]

    Wang Z, Lin H. Nanos maintains germline stem cell self-renewal by preventing differentiation [J]. Science, 2004, 303(5666): 2016—2019 doi: 10.1126/science.1093983

    [6]

    Tsuda M, Sasaoka Y, Kiso M, et al. Conserved role of nanos proteins in germ cell development [J]. Science, 2003, 301(5637): 1239—1241 doi: 10.1126/science.1085222

    [7]

    Draper B W, McCallum C M, Moens C B. nanos1 is required to maintain oocyte production in adult zebrafish [J]. Developmental Biology, 2007, 305(2): 589—598 doi: 10.1016/j.ydbio.2007.03.007

    [8]

    Beer R L, Draper B W. nanos3 maintains germline stem cells and expression of the conserved germline stem cell gene nanos2 in the zebrafish ovary [J]. Developmental Biology, 2013, 374(2): 308—318 doi: 10.1016/j.ydbio.2012.12.003

    [9]

    Doerks T, Copley R R, Schultz J, et al. Systematic identification of novel protein domain families associated with nuclear functions [J]. Genome Research, 2002, 12(1): 47—56 doi: 10.1101/gr.203201

    [10]

    Saito T, Fujimoto T, Maegawa S, et al. Visualization of primordial germ cells in vivo using GFP-nos13'UTR mRNA [J]. The International Journal of Developmental Biology, 2006, 50(8): 691—699 doi: 10.1387/ijdb.062143ts

    [11]

    Kawakami Y, Saito T, Fujimoto T, et al. Visualization and motility of primordial germ cells using green fluorescent protein fused to 3'UTR of common carp nanos-related gene [J]. Aquaculture, 2011, 317(1—4): 245—250

    [12]

    Kurokawa H, Aoki Y, Nakamura S, et al. Time-lapse analysis reveals different modes of primordial germ cell migration in the medaka Oryzias latipes [J]. Developmental Dynamics, 2006, 48(3): 209—221

    [13]

    Saito T, Goto-Kazeto R, Kawakami Y, et al. The mechanism for primordial germ-cell migration is conserved between Japanese eel and zebrafish [J]. PLoS One, 2011, 6(9)

    [14]

    Li M, Tan X, Jiao S, et al. A new pattern of primordial germ cell migration in olive flounder (Paralichthys olivaceus) identified using nanos3 [J]. Developmental Dynamics, 2015, 225(4): 195—206

    [15] 高泽霞, 王卫民, 蒋恩明, 等. 团头鲂种质资源及遗传改良研究进展. 华中农业大学学报, 2014, 33(3): 138—144 doi: 10.3969/j.issn.1000-2421.2014.03.024

    Gao Z X, Wang W M, Jiang E M, et al. Research advances on germplasm resources and genetic improvemnet of blunt snout bream (Megalobrama amblycephala) [J]. Journal of Huazhong Agricultural University, 2014, 33(3): 138—144 doi: 10.3969/j.issn.1000-2421.2014.03.024

    [16]

    Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods [J]. Molecular Biology and Evolution, 2011, 28(10): 2731—2739 doi: 10.1093/molbev/msr121

    [17]

    Zhao G, Chen K, Yao Q, et al. The nanos gene of Bombyx mori and its expression patterns in developmental embryos and larvae tissues [J]. Gene Expression Patterns, 2008, 8(4): 254—260 doi: 10.1016/j.gep.2007.12.006

    [18]

    Wu H R, Chen Y T, Su Y H, et al. Asymmetric localization of germline markers Vasa and Nanos during early development in the amphioxus Branchiostoma floridae [J]. Developmental Biology, 2011, 353(1): 147—159 doi: 10.1016/j.ydbio.2011.02.014

    [19]

    Dosch R. Next generation mothers: Maternal control of germline development in zebrafish [J]. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50(1): 54—68 doi: 10.3109/10409238.2014.985816

    [20]

    Mishima Y, Giraldez A J, Takeda Y, et al. Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430 [J]. Current Biology, 2006, 16(21): 2135—2142 doi: 10.1016/j.cub.2006.08.086

    [21]

    Kedde M, Strasser M J, Boldajipour B, et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA [J]. Cell, 2007, 131(7): 1273—1286 doi: 10.1016/j.cell.2007.11.034

    [22]

    Mickoleit M, Banisch T U, Raz E. Regulation of hub mRNA stability and translation by miR430 and the dead end protein promotes preferential expression in zebrafish primordial germ cells [J]. Developmental Dynamics, 2011, 240(3): 695—703 doi: 10.1002/dvdy.22571

  • 期刊类型引用(4)

    1. 黄玲,叶欢,岳华梅,侯彦岭,屈紫玲,阮瑞,李创举. 草鱼和赤眼鳟nanos2基因的克隆与表达特征分析. 中国水产科学. 2024(12): 1411-1421 . 百度学术
    2. 何坤,吴华东,张士林,刘铮铮,阮记明,孙艺文,李福贵. 黄鳝卵原细胞移植研究. 南方农业学报. 2023(01): 315-324 . 百度学术
    3. 何坤,吴华东,张士林,刘铮铮,阮记明,孙艺文,李福贵. 黄鳝nanos3基因克隆鉴定及其组织表达分析. 南方农业学报. 2022(08): 2321-2330 . 百度学术
    4. 程琳,黄天晴,刘晨斌,谷伟,徐革锋,史秀兰,姚作春,王丽薇,王炳谦. 鱼类原始生殖细胞标记基因研究进展. 水产学杂志. 2020(06): 80-88 . 百度学术

    其他类型引用(2)

推荐阅读
Clone identification and characteriztion analysis of allogynogenetic gibel carp in six hatcheries
YANG Han et al., ACTA HYDROBIOLOGICA SINICA, 2025
Expression and functional analysis of the vitellinogen gene indaphnia sinensis
LI Guo-Qing et al., ACTA HYDROBIOLOGICA SINICA, 2025
Molecular characterization and spatio-temporal expression pattern of theshhgene and its regulation in muscle growth insiniperca chuatsi
MENG Yang-Yang et al., ACTA HYDROBIOLOGICA SINICA, 2024
Cytological study on artificially induced gynogenesis and optimization of induced parameters in loach,misgurnus anguillicaudatus
ZHONG Wen-Rong et al., ACTA HYDROBIOLOGICA SINICA, 2024
Cloning and functional study of interferon regulatory factor 3 of apostichopus japonicus
JIANG Jianyang et al., JOURNAL OF FISHERIES OF CHINA, 2025
Molecular identification and functional study ofdnmt3aincynoglossus semilaevis
SUN Yanxu et al., JOURNAL OF SHANGHAI OCEAN UNIVERSITY, 2025
Effects of different extraction methods on the release of non-volatile flavor components in shiitake mushroom (lentinus edodes)
Du, Jiaxin et al., JOURNAL OF FOOD COMPOSITION AND ANALYSIS, 2024
Biofabrication methods for reconstructing extracellular matrix mimetics
Aazmi, Abdellah et al., BIOACTIVE MATERIALS, 2024
Bioinformatic analyses and integrated machine learning to predict prognosis and therapeutic response based on e3 ligase-related genes in colon cancer
JOURNAL OF CANCER, 2024
The circular rna circank suppresses rice resistance to bacterial blight by inhibiting microrna398b-mediated defense
PLANT CELL, 2025
Powered by
图(4)  /  表(1)
计量
  • 文章访问数:  1731
  • HTML全文浏览量:  656
  • PDF下载量:  76
  • 被引次数: 6
出版历程
  • 收稿日期:  2018-05-15
  • 修回日期:  2018-11-16
  • 网络出版日期:  2019-06-18
  • 发布日期:  2019-04-30

目录

/

返回文章
返回