中国米虾bursicon基因的功能及作用机制

任丽琦, 翁洁羊, 王鑫, 孙金生, 李冉

任丽琦, 翁洁羊, 王鑫, 孙金生, 李冉. 中国米虾bursicon基因的功能及作用机制[J]. 水生生物学报, 2018, 42(3): 503-511. DOI: 10.7541/2018.063
引用本文: 任丽琦, 翁洁羊, 王鑫, 孙金生, 李冉. 中国米虾bursicon基因的功能及作用机制[J]. 水生生物学报, 2018, 42(3): 503-511. DOI: 10.7541/2018.063
REN Li-Qi, WENG Jie-Yang, WANG Xin, SUN Jin-Sheng, LI Ran. THE FUNCTION AND MECHANISM OF BURSICON GENE IN CARIDINA[J]. ACTA HYDROBIOLOGICA SINICA, 2018, 42(3): 503-511. DOI: 10.7541/2018.063
Citation: REN Li-Qi, WENG Jie-Yang, WANG Xin, SUN Jin-Sheng, LI Ran. THE FUNCTION AND MECHANISM OF BURSICON GENE IN CARIDINA[J]. ACTA HYDROBIOLOGICA SINICA, 2018, 42(3): 503-511. DOI: 10.7541/2018.063

中国米虾bursicon基因的功能及作用机制

详细信息
    作者简介:

    任丽琦(1991—), 女, 山西长治人; 硕士研究生; 主要从事水生生物发育学方面的研究。E-mail: 1874612421@qq.com

    通信作者:

    李冉, E-mail: liran_1006@163.com

  • 中图分类号: Q344+.1

THE FUNCTION AND MECHANISM OF BURSICON GENE IN CARIDINA

    Corresponding author:
  • 摘要: 为探讨米虾鞣化激素在其蜕皮周期及表皮角质层形成过程中的作用, 采用PCR技术克隆得到了米虾鞣化激素两个亚基基因的开放阅读框(ORF)序列。bursicon-α ORF全长441 bp, 共编码146个氨基酸; bursicon-β ORF全长411 bp, 共编码136个氨基酸。利用实时荧光定量PCR分析米虾整个蜕皮周期中鞣化激素2个亚基基因的表达特征, 结果发现, 鞣化激素bursicon-αbursicon-β在米虾蜕皮周期的各个阶段的相对表达量存在差异, 在蜕皮前期(D期)相对表达量开始上升, 到D3期时相对表达量最高, 蜕皮期E期相对表达量最低。RNA干扰(RNA interference, RNAi)介导bursicon-αbursicon-β基因沉默后, 发现米虾的蜕皮周期延长, 表皮角质层明显变薄。结果提示, 鞣化激素(Bursicon)与新形成的外骨骼中角质层的加厚与硬化密切相关, 进而影响蜕皮时间。
    Abstract: To study the function of bursicon gene in Caridina during molting and cuticle formation, its open reading frame (ORF) containing two subunits genes were amplified by PCR respectively. The ORF of bursicon-α is 441 bp in length, encoding a protein with 146 amino acid residues. The ORF of bursicon-β is 411 bp in length, encoding a protein with 136 amino acid residues. The dynamic changes in the expression of both bursicon subunit genes during the molt cycle in Caridina have been analyzed by the real-time quantitative PCR. Relative expression of both bursicon-α and bursicon-β had different levels in different stages of the molt cycle, which increased through premolt stage (D stage) and reached their peak level at the D3 stage. The mRNA accumulation decreased to its lowest level at the molt stage (E stage). RNA interference-mediated knockdown of bursicon-α and bursicon-β retard the molting process and ecdysis behavior of Caridina. The cuticle of dsRNA-treated Caridina was thinner than that in the control group. These findings demonstrate that bursicon is involved in the thickening and hardening of cuticle in newly formed exoskeleton. Moreover, bursicon plays an important role in molt cycle.
  • 图  1   米虾和其他物种Bursicon-α亚基系统进化树

    物种名称及其Bursicon-α亚基的GenBank登录号Species and GenBank accession numbers of their Bursicon-α subunits: 蓝蟹Callinectes sapidus (ACG50067.1); 普通滨蟹Carcinus maenas (ABX55995.1); 克氏原螯虾Procambarus clarkii (ADY80040.1); 斑节对虾Penaeus monodon (AKJ74864.1); 米虾Caridina (MG766223); 水蚤Daphnia arenata (ABX55998.1); 大型溞Daphnia magna (KZS13469.1); 烟草天蛾Manduca sexta (Q4FCM6.1); 家蚕Bombyx mori (CAH89262.2); 西方蜜蜂Apis mellifera (NP_001091704.1); 德国小蠊Blattella germanica (CUTO8823.1); 温带臭虫Cimex lectularius (XP_014256820.1); 黑腹果蝇Drosophila melanogaster (NP_650983.1); 家蝇Musca domestica (ABO20870.1)。标尺示遗传距离Scale bar indicates the genetic distance

    Figure  1.   Phylogenic tree of bursicon-α subunit in Caridina and other species

    图  2   米虾和其他物种Bursicon-β亚基系统进化树

    物种名称及其Bursicon-β亚基的GenBank登录号Species and GenBank accession numbers of their Bursicon-β subunits: 斑节对虾Penaeus monodon (ALO17552.1); 欧洲龙虾Homarus gammarus (ADI86243.1); 米虾Caridina (MG766224); 普通滨蟹Carcinus maenas (ABX55996.1); 蓝蟹Callinectes sapidus (ACG50066.1); 水蚤Daphnia arenata (ABX55997.1); 大型溞Daphnia magna (KZS13470.1); 烟草天蛾Manduca sexta (ABB92831.1); 家蚕Bombyx mori (NP_001037289.1); 西方蜜蜂Apis mellifera (CAM06632.1); 中欧山松大小蠹Dendroctonus ponderosae (XP_019755392.1); 赤拟谷盗Tribolium castaneum (NP_001107780.1); 黑腹果蝇Drosophila melanogaster (NP_609712.1); 家蝇Musca domestica (ABO20869.1)。标尺示遗传距离Scale bar indicates the genetic distance

    Figure  2.   Phylogenic tree of bursicon-β subunit in Caridina and other species

    图  3   米虾bursicon-αbursicon-β在不同蜕皮阶段的相对表达量

    D0-4. 蜕皮前期, E. 蜕皮期, A-B. 蜕皮后期, C. 蜕皮间期; 利用SPSS Statistics 17.0进行单因素ANOVA分析, Duncan氏多重比较法对组间基因的相对转录水平进行检验(P<0.05), 柱上不同的小写字母表示差异显著, 相同的小写字母表示差异不显著; 下同

    Figure  3.   Relative expression levels of bursicon-α and bursicon-β in Caridina under different molt stages

    D0-4. premolt stage, E. molt stage, A-B. postmolt stage, C. intermolt stage. The data were analyzed by SPSS Statistics 17.0 through one-way ANOVA analysis of variance. The relative expresstion levels of genes among groups were tested by Duncan’s test (P<0.05). Different lowercase letters above columns indicate statistically significant differences and the same lowercase letters are not significantly different. The same applies below

    图  4   RNA干扰后bursicon-α和bursicon-β相对表达量随时间的变化

    dsGFP. 注射dsGFP的对照组; dsburs α. 注射dsburs α的实验组; dsburs β. 注射dsburs β的实验组; 小写字母表示组内显著性差异; 大写字母表示组间显著性差异

    Figure  4.   The relative expressions of bursicon-α and bursicon-β change over time after interfering the dsRNA

    dsGFP. control group interfered with dsGFP; dsburs α. experimental group interfered with dsburs α; dsburs β. experimental group interfered with dsburs β; Lowercase letters indicate statistically significant differences within the group; Capital letters indicate statistically significant differences among groups

    图  5   dsRNA干扰对米虾蜕皮过程的影响

    dsGFP. 注射dsGFP的对照组, 处于蜕皮前期D3期; dsburs α. 注射dsburs α的实验组, 处于蜕皮前期D2期; dsburs β. 注射dsburs β的实验组, 处于蜕皮前期D2期; dsburs α+dsburs β. 按质量浓度1﹕1注射dsburs α和dsburs β的实验组, 处于蜕皮周期D2期; 下同; RZ. 上皮回缩所形成的透明区; TS. 管形套; NS. 新刚毛

    Figure  5.   Effect of dsRNA interference during molting process of Caridina

    dsGFP. control group interfered with dsGFP, at stage D3; dsburs α. experimental group interfered with dsburs α, at stage D2; dsburs β. experimental group interfered with dsburs β, at stage D2; dsburs α +dsburs β. experimental group interfered with an equal concentration of dsburs α and dsburs β, at stage D2. The same applies below. RZ. retracted zone; TS. tubular sheath; NS. new setae

    图  6   dsRNA干扰对米虾蜕皮时间的影响

    Figure  6.   Effect of dsRNA interference on ecdysis time of Caridina

    图  7   由dsRNA介导的bursicon-αbursicon-β敲降对米虾角质层形成和鞣化的影响

    Figure  7.   The bursicon-α and bursicon-β knockdown mediated by dsRNA impairs the complete formation and tanning of cuticle of Caridina

    表  1   本研究所用的引物序列

    Table  1   Primers used in the study

    引物
    Primers
    片段大小
    Product size
    (bp)
    引物序列
    Primer sequences
    (5′—3′)
    β-actin F 21 TGTGACGATGAAGTAGCAGCA
    β-actin R 22 AATCTTTCTGACCCATTCCAAC
    bursicon-α F 26 ATGCACTTAAAGAAGGTTAATACAAG
    bursicon-α R 22 TTAAATGAAGGGTACGTTTCCC
    bursicon-β F 24 ATGTGGTCACGGTGGGTATGGATT
    bursicon-β R 26 TTATCGTGTGGAATCACCACATTTGG
    bursicon-α QPCR F 20 ATTCCAAGCCCATTCCATCC
    bursicon-α QPCR R 20 TCCCTCTTCAACATCGGTGC
    bursicon-β QPCR F 23 TCCATCAACCATACACATTTCCA
    bursicon-β QPCR R 20 ATCCAGTCAAGCGATTTCCG
    dsbursα F 27 GCTCTAGAATTCCAAGCCCATTCCATC
    dsbursα R 27 GGAATTCGTTCCCTCTTCAACATCGGT
    dsbursβ F 28 GCTCTAGATCACGGTGGGTATGGATTGT
    dsbursβ R 27 GGAATTCGTGTATTGACGGAGGGTTGG
    下载: 导出CSV
  • [1]

    Neville A C. Biology of the Arthropod Cuticle [M]. Springer Berlin Heidelberg. 1974, 7—9

    [2]

    Fraenkel G, Hsiao C. Hormonal and nervous control of tanning in the fly [J]. Science, 1962, 138(3536): 27—29

    [3]

    Cottrell C B. The imaginal ecdysis of blowflies. detection of the blood-borne darkening factor and determination of some of its properties [J]. Bioorganic & Medicinal Chemistry, 1962, 39(1): 67—73

    [4]

    Fraenkel G, Hsiao C. Bursicon, a hormone which mediates tanning of the cuticle in the adult fly and other insects[J]. Journal of Insect Physiology, 1965, 11(5): 513—556

    [5]

    Adams M D, Celniker S E, Holt R A, et al. The Genome Sequence of Drosophila melanogaster [J]. Science, 2000, 287(5461): 2185

    [6]

    Dewey E M, Mcnabb S L, Ewer J, et al. Identification of the gene encoding bursicon, an insect neuropeptide responsible for cuticle sclerotization and wing spreading [J]. Current Biology Cb, 2004, 14(13): 1208—1213

    [7]

    Bhat H L, Dutta P S, Koteswara Rao K S R, et al. Bursicon, the cuticle sclerotizing hormone--comparison of its molecular mass in different insects[J]. Journal of Insect Physiology, 1995, 41(12): 1045—1053

    [8]

    Honegger H W, Market D, Pierce L A, et al. Cellular localization of bursicon using antisera against partial peptide sequences of this insect cuticle-sclerotizing neurohormone [J]. Journal of Comparative Neurology, 2002, 452(2): 163—177

    [9]

    Luo C W, Dewey E M, Sudo S, et al. Bursicon, the insect cuticle-hardening hormone, is a heterodimeric cystine knot protein that activates G protein-coupled receptor LGR2 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(8): 2820—2825

    [10]

    Mendive F M, Loy T V, Claeysen S, et al. Drosophila, molting neurohormone bursicon is a heterodimer and the natural agonist of the orphan receptor DLGR2[J]. FEBS Letters, 2005, 579(10): 2171—2176

    [11]

    Baker J D, Truman J W. Mutations in the Drosophila glycoprotein hormone receptor, rickets, eliminate neuropeptide-induced tanning and selectively block a stereotyped behavioral program [J]. Journal of Experimental Biology, 2002, 205(Pt 17): 2555

    [12]

    Davis M M, O’Keefe S L, Primrose D A, et al. A neuropeptide hormone cascade controls the precise onset of post-eclosion cuticular tanning in Drosophila melanogaster [J]. Development, 2007, 134(24): 4395—4404

    [13]

    Kimura K, Kodama A, Hayasaka Y, et al. Activation of the cAMP/PKA signaling pathway is required for post-ecdysial cell death in wing epidermal cells of Drosophila melanogaster [J]. Development, 2004, 131(7): 1597—1606

    [14]

    An S, Dong S, Wang Q, et al. Insect neuropeptide bursicon homodimers induce innate immune and stress genes during molting by activating the NF-κB transcription factor Relish. [J]. PloS One, 2012, 7(3): e34510

    [15]

    Robertson H M, Navik J A, Walden K K, et al. The bursicon gene in mosquitoes: an unusual example of mRNA trans-splicing [J]. Genetics, 2007, 176(2): 1351—1353

    [16]

    Van L T, Van Hiel M B, Vandersmissen H P, et al. Evolutionary conservation of bursicon in the animal kingdom [J]. General & Comparative Endocrinology, 2007, 153(1 -3): 59—63

    [17]

    Huang J, Zhang Y, Li M, et al. RNA interference-mediated silencing of the bursicon gene induces defects in wing expansion of silkworm [J]. FEBS letters, 2007, 581(4): 697—701

    [18]

    Tanaka Y, Suetsugu Y, Yamamoto K, et al. Transcriptome analysis of neuropeptides and G-protein coupled receptors (GPCRs) for neuropeptides in the brown planthopper Nilaparvata lugens [J]. Peptides, 2014, 53(2): 125

    [19]

    Wilcockson D C, Webster S G. Identification and developmental expression of mRNAs encoding putative insect cuticle hardening hormone, bursicon in the green shore crab Carcinus maenas [J]. General and Comparative Endocrinology, 2008, 156(1): 113

    [20]

    Webster S G, Wilcockson D C, Mrinalini, et al. Bursicon and neuropeptide cascades during the ecdysis program of the shore crab, Carcinus maenas [J]. General & Comparative Endocrinology, 2013, 182(1): 54—64

    [21]

    Chung J S, Katayama H, Dircksen H. New functions of arthropod bursicon: inducing deposition and thickening of new cuticle and hemocyte granulation in the blue crab, Callinectes sapidus [J]. PloS One, 2012, 7(9): 1602—1603

    [22]

    Sharp J H, Wilcockson D C, Webster S G. Identification and expression of mRNAs encoding bursicon in the plesiomorphic central nervous system of Homarus gammarus [J]. General & Comparative Endocrinology, 2010, 169(1): 65—74

    [23]

    Sathapondecha P, Panyim S, Udomkit A. A novel function of bursicon in stimulation of vitellogenin expression in black tiger shrimp, Penaeus monodon [J]. Aquaculture, 2015, 446: 80—87

    [24] 王战芳. 中华锯齿米虾繁殖及蜕皮特征的研究. 硕士学位论文, 河北大学. 2014

    Wang Z F. Study on the characteristics of reproduction and molting in Neocaridina denticulata sinensis [D]. Hebei University. 2014
    王战芳. 中华锯齿米虾繁殖及蜕皮特征的研究. 硕士学位论文, 河北大学. 2014

    [25]

    Vitt U A, Hsu S Y, Hsueh A J. Evolution and classification of cystine knot-containing hormones and related extracellular signaling molecules [J]. Molecular Endocrinology, 2001, 15(5): 681

    [26]

    Truman J W. Physiology of Insect Ecdysis III. Relationship Between the Hormonal Control of Eclosion and of Tanning in the Tobacco Hornworm, Manduca Sexta[J]. Journal of Experimental Biology, 1973, 58(3): 821

    [27]

    Reynolds S E, Taghert P H, Truman J W. Eclosion hormone and bursicon titres and the onset of hormonal responsiveness during the last day of adult development in Manduca sexta (L.). [J]. Journal of Experimental Biology, 1979, 69(4): 445—447

    [28]

    Promwikorn W, Boonyoung P, Kirirat P. Histological characterization of cuticular depositions throughout the molting cycle of the black tiger shrimp (Penaeus monodon)[J]. Songklanakarin Journal of Science & Technology, 2005, 27(3): 499—509

    [29]

    Faircloth L M, Shafer T H. Differential expression of eight transcripts and their roles in the cuticle of the blue crab, Callinectes sapidus. [J]. Comparative Biochemistry & Physiology Part B Biochemistry & Molecular Biology, 2007, 146(3): 370—383

    [30]

    Dillaman R, Hequembourg S, Gay M. Early pattern of calcification in the dorsal carapace of the blue crab, Callinectes sapidus. [J]. Journal of Morphology, 2005, 263(3): 356—374

    [31]

    Bai H, Palli S R. Functional characterization of bursicon receptor and genome-wide analysis for identification of genes affected by bursicon receptor RNAi [J]. Developmental Biology, 2010, 344(1): 248

    [32]

    Costa C P, Elias-Neto M, Falcon T, et al. RNAi-mediated functional analysis of bursicon genes related to adult cuticle formation and tanning in the honeybee, Apis mellifera [J]. PloS One, 2016, 11(12): e0167421

    [33]

    Seligman M, Friedman S, Fraenkel G. Bursicon mediation of tyrosine hydroxylation during tanning of the adult cuticle of the fly, Sarcophaga bullata[J]. Journal of Insect Physiology, 1969, 15(4): 553—562

图(7)  /  表(1)
计量
  • 文章访问数:  2311
  • HTML全文浏览量:  567
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-04
  • 修回日期:  2018-01-16
  • 网络出版日期:  2018-03-21
  • 发布日期:  2018-04-30

目录

    /

    返回文章
    返回