吴李碘泡虫的重描述及其长江流域不同江段株系的比较研究

杨承忠, 张雕雕, 赵元莙

杨承忠, 张雕雕, 赵元莙. 吴李碘泡虫的重描述及其长江流域不同江段株系的比较研究[J]. 水生生物学报, 2019, 43(5): 1092-1097. DOI: 10.7541/2019.128
引用本文: 杨承忠, 张雕雕, 赵元莙. 吴李碘泡虫的重描述及其长江流域不同江段株系的比较研究[J]. 水生生物学报, 2019, 43(5): 1092-1097. DOI: 10.7541/2019.128
YANG Cheng-Zhong, ZHANG Diao-Diao, ZHAO Yuan-Jun. REDESCRIPTION OF MYXOBOLUS WULII AND COMPARISON OF ITS STRAINS IN DIFFERENT SECTIONS OF THE YANGTZE RIVER BASIN[J]. ACTA HYDROBIOLOGICA SINICA, 2019, 43(5): 1092-1097. DOI: 10.7541/2019.128
Citation: YANG Cheng-Zhong, ZHANG Diao-Diao, ZHAO Yuan-Jun. REDESCRIPTION OF MYXOBOLUS WULII AND COMPARISON OF ITS STRAINS IN DIFFERENT SECTIONS OF THE YANGTZE RIVER BASIN[J]. ACTA HYDROBIOLOGICA SINICA, 2019, 43(5): 1092-1097. DOI: 10.7541/2019.128

吴李碘泡虫的重描述及其长江流域不同江段株系的比较研究

基金项目: 国家自然科学基金(31471980和31501845); 重庆市科委基金项目(cstc2017jcyjAX0165和cstc2018jcyjAX0738); 重庆市留创计划创新项目(cx2018108)资助
详细信息
    作者简介:

    杨承忠(1982—), 男, 江西于都人; 博士, 副教授; 研究方向为分子进化与原生动物学。E-mail: drczyang@126.com

    张雕雕(1992—), 女, 甘肃武山人; 硕士研究生; 研究方向为寄生虫进化生态学。E-mail: 1172395110@qq.com *共同第一作者

    通信作者:

    赵元莙, E-mail: zhaoyuanjuncqnu@126.com

  • 中图分类号: S941.51

REDESCRIPTION OF MYXOBOLUS WULII AND COMPARISON OF ITS STRAINS IN DIFFERENT SECTIONS OF THE YANGTZE RIVER BASIN

Funds: Supported by the National Natural Science Foundation of China (31471980, 31501845); Project of Chongqing Science & Technology Commission (cstc2017jcyjAX0165, cstc2018jcyjAX0738); Venture & Innovation Support Program for Chongqing Overseas Returnees (cx2018108)
    Corresponding author:
  • 摘要: 研究在对吴李碘泡虫Myxobolus wulii (Wu & Li) Landsberg & Lom, 1991重描述的基础上, 基于形态和分子数据对长江流域不同江段的吴李碘泡虫(重庆株系、湖北株系及江苏株系)进行了比较研究。结果表明: 吴李碘泡虫重庆株系孢子及极囊量度比湖北株系略小, 重庆株系两极囊等大而湖北株系两极囊大小不等。重庆株系、湖北株系及江苏株系18S rDNA序列相似度为99.2%—99.9%, 遗传距离为0.002—0.007。系统发育分析显示: 吴李碘泡虫并未形成地理种群特有的进化枝, 也并未依宿主种类而聚支, 而是依据寄生部位不同分为鳃寄生和肝胰脏寄生2大支系。这表明, 相同寄生部位的吴李碘泡虫具有更近的亲缘关系。吴李碘泡虫的2大支系中, 鳃寄生种群先分化出来, 这可能与体表寄生和体内寄生的演化有关, 而鳃寄生的吴李碘泡虫可能是较早定居的群体。
    Abstract: This study re-described Myxobolus wulii (Wu & Li) Landsberg & Lom, 1991 and compared its strains in different sections of Yangtze River Basin (Chongqing strain, Hubei strain and Jiangsu strain) based on morphological and molecular (18S rDNA) data. The results showed that the spores and polar capsules of Chongqing strain were slightly smaller than those of Hubei strain, and that polar capsules and spores of Chongqing strain were equal in size while they were unequal for Hubei strain. The similarities and genetic distances among the three strains of M. wulii were 99.2%—99.9% and 0.002—0.007, respectively. Phylogenetic analysis showed that the sequences of M. wulii formed a poor geographical structure as well as poor host-original structure, but a strong parasitic site structure. The sequences of M. wulii clustered into two lineages: gill-parasites clade and hepatopancreas-parasites clade, indicating that the individuals of M. wulii have closer relationship with the same site of host. Moreover, the gill-parasites clade diverged earlier than hepatopancreas-parasites clade, which might be related to the evolution of external-parasites to internal-parasites. These data inferred that the gill-parasites population might be the earliest migrates of M. wulii.
  • 吴李碘泡虫Myxobolus wulii (Wu & Li) Landsberg & Lom, 1991, 隶属于黏体门Myxozoa, 双壳目Bivalvulida, 碘泡科Myxobolidae, 最初由Wu & Li于1986年在我国鲫Carassius auratus auratus Linnaeus的鳃丝中检获并命名为大型黏体虫Myxosoma magna Wu & Li, 1986。随后又在白鲢Hypophthalmichthys molitrix Valenciennes、青Leiocassis brashnikowi Berg、马口鱼Opsariichthys bidens Günther陆续发现有该寄生虫的寄生[1, 2]。然而, 早在1984年, 就有学者建议将黏体虫属Myxosoma Thélohan, 1892的所有种合并至碘泡虫属Myxobolus Bütschli, 1882中, 并修正其属名为碘泡虫属Myxobolus[3], 该观点被学界广为接受[4]。按照国际动物命名法规, 大型黏体虫Myxosoma magna修正后学名应为大型碘泡虫。由于该学名已有物种Myxobolus magnus Awerinzew, 1913占用, 因此, Landsberg & Lom将其重新命名为吴李碘泡虫Myxobolus wulii Landsberg & Lom, 1991。先前的研究一直认为吴李碘泡虫M. wulii、寄生于异育银鲫C. auratus gibelio Bloch肝胰脏的关桥碘泡虫M. guanqiaoensis Wu & Wang, 1997[5]以及寄生于日本金鱼鳃丝的碘泡虫未定种M. sp. Yokoyama, et al. 1992[6]是3个不同的种。继后, Zhang等[7]综合形态和分子数据, 指出这三者实际上均为吴李碘泡虫M. wulii。吴李碘泡虫长江中游(湖北段)和下游(江苏段)株系(含有分子数据的)均有过报道[79], 而近期我们又在长江流域重庆段获得了长江上游株的数据, 同时这3个地理株系(下文统一分别称为: 吴李碘泡虫重庆株、湖北株和江苏株)中又有宿主类型和寄生部位等的差异。基于此, 我们在对吴李碘泡虫进行重描述的基础上进一步对这三大地理株系进行了比较研究, 以期更深入的了解吴李碘泡虫这一鱼类重要寄生虫的种群演化规律。

    宿主鲫C. auratus auratus样本分别于2017 年11 月和2018年4月采自长江流域重庆段, 感染率分别为25% (8尾中2尾感染)和10% (10尾中有1尾被感染)。在被感染的宿主鱼鳃部可以观察到吴李碘泡虫孢囊, 该寄生虫标本的检获及处理参考文献[10]完成。

    DNA 提取   将获得的吴李碘泡虫孢囊立即镜检, 显微拍照, 再用溶质体积分数为95%的乙醇溶液保存于离心管中, 首先从装有实验材料的离心管底部吸取10 μL获得的黏孢子虫液体, 经超纯水清洗2—3次以除去杂质, 再进行基因组DNA的提取。DNA抽提采用Dneasy Tissue Kit (QIAGEN, Germany)试剂盒, 操作方法按照厂家提供的说明书步骤进行。提取完成的基因组DNA置于–20℃冰箱保存备用。

    PCR 扩增  用于扩增18S rDNA基因的引物分别为ERIB1(5′-ACCTGGTTGATCCTGCCAG-3′)和ERIB10 (5′-CTTCCGCAGGTTCACCTACGG-3′)[11], 当第一轮未扩增到目的片段时, 换用引物18E (5ʹ-CTGGTTGATCCTGCCAGT-3′)[12]和18R (5′-CTACGGAAACCT TGTTACG-3′)[13]。PCR反应体系如下: 10×Ex Taq buffer (Mg2+ free) 2.5 μL, 25 mmol/L的MgCl2 2.5 μL, 25 mmol/L的dNTP 2.5 μL, 10 μmol/L的引物各0.5 μL, 1.2 ng的模板DNA, 5 U/μL的Ex Taq酶0.2 μL, 最后用灭菌超纯水补足至终体积25 μL。PCR反应条件为: 95℃预变性5min; 95 ℃变性50s, 58℃退火1min, 72℃延伸2min, 35个循环; 最后72℃延伸10min。取3 μL PCR产物在琼脂糖凝胶电泳中检测, 然后将有目的条带的PCR产物用胶回收试剂盒Gel Extraction Kit (OMEGA, America)纯化回收并送上海英骏生物技术有限公司测序(ABI, 3730XL测序仪)。

    序列的选取  将本研究获得的2条吴李碘泡虫18S rDNA序列分别在GenBank中通过BLAST进行序列同源性比对。根据比对结果, 选取同源性较高的29条碘泡虫序列, 包括本研究得到的2条吴李碘泡虫序列。另外选取Tetracapsuloides bryosalmonae (KF731712)和Buddenbrockia plumatellae (AY074915)作为外群构建系统发育树。

    18S rDNA 序列分析  通过Clustal W程序按照缺省参数进行序列多重比对, 序列相似度的计算用在线序列双重比对工具(http://www.ebi.ac.uk/Tools/psa/)计算获得。所选序列进行两两之间的遗传距离利用MEGA 6.0[14], 选择K2P模型计算完成。

    系统树的构建  利用在线软件The CIPRES Science Gateway V. 3.1 (http://www.phylo.org/sub_ sections/portal/)构建Maximum-likelihood (ML)树, 选用模式为RAxML-HPC2 XSEDE (8.2.10)[1517], Bayes (BI)树在MrBayes 3.1.2软件[18]中构建, 位点变异设置为invgamma分布, 序列最佳进化模型为GTR+I+G, 运行1000000代。最后用FigTree v1.4.2 和Photoshop CS3完成系统树的绘制。

    吴李碘泡虫重庆株系, 其成熟孢子壳面观为长卵形, 缝面观呈梭形, 前端稍尖后端钝圆, 孢子表面光滑, 2个极囊等大、长梨形, 并列呈“八”字形于孢子前端, 极囊约占孢子体积的1/2, 极丝清晰可见约7—9圈。孢子量度(n=40)为: 孢子长(14.45±0.70) μm (13.06—15.93 μm), 孢子宽(9.87±0.87) μm (8.07—11.17 μm); 极囊长(7.67±0.63) μm (6.54—8.31 μm), 极囊宽(3.90±0.22) μm (3.49—4.27 μm) (图 1表 1)。宿主鱼未发现明显病症。

    图  1  吴李碘泡虫重庆株系孢子形态图
    a. 孢子壳面观; b. 孢子缝面观. 比例尺=10 μm
    Figure  1.  Morphology of M. wulii from Chongqing strain
    a. spore in valvular view, b. spore in sutural view. Bars=10 μm
    表  1  长江流域吴李碘泡虫M. wulii不同株系的形态学比较
    Table  1.  Morphological comparison of different strains of M. wulii in the Yangtze River Basin
    吴李碘泡虫株系
    M. wulii strains
    重庆株
    Chongqing strain
    湖北株 1
    Hubei strain 1
    湖北株 2
    Hubei strain 2
    江苏株
    Jiangsu strain
    18S rDNA信息
    18S rDNA info
    1921 nt (MH920541) /1912 nt (MH920542) 1576 nt (EF690300) 1528 nt (KJ725081) 2041nt (HQ613412)
    孢子长Spore length (μm) 14.45±0.70 (13.06—15.93) 17.7 (16.5—18.9) 17.7±0.6 (16.1—18.6)
    孢子宽Spore width (μm) 9.87±0.87 (8.07—11.17) 10.6 (9.1—10.8) 12.0±0.4 (11.0—13.0)
    孢子厚
    Spore thickness (μm)
    8.3 (7.2—9.0) 9.0±0.3 (8.0—9.6)
    极囊长
    Polar capsule length (μm)
    7.67±0.63 (6.54—8.31) 9.3 (8.4—9.9)a
    9.0 (8.1—9.2)b
    9.6±0.5 (9.0—10.8)a
    8.9±0.5 (7.8—9.8)b
    极囊宽
    Polar capsule width (μm)
    3.90±0.22 (3.49—4.27) 3.7 (3.4—4.0)a
    3.6 (3.4—3.8)b
    3.9±0.3 (3.1—4.1)a
    3.8±0.2 (3.0—4.3)b
    极丝圈数
    Polar filament number
    7—9 7—9 7—9
    宿主Hosts C. auratus auratus 异育银鲫C. auratus gibelio 异育银鲫C. auratus gibelio C. auratus auratus
    感染部位Infection sites 鳃Gill 肝胰脏Hepatopancreas 肝胰脏Hepatopancreas 肝胰脏Hepatopancreas
    地理位置Localities 重庆Chongqing 湖北Hubei 湖北Hubei 江苏Jiangsu
    资料来源References 本研究The present study Zhang, et al.[7] 柳阳等[9] Xi, et al.[8]
    注: a. 大极囊; b. 小极囊; −. 未描述或无数据
    Note: a. Large polar capsule; b. Small polar capsule; −. No description or no data
    下载: 导出CSV 
    | 显示表格

    测得吴李碘泡虫重庆株系的2条18S rDNA序列长度分别为1921和1912 nt, 将序列提交至GenBank, 登录号分别为MH920541和MH920542。吴李碘泡虫的18S rDNA经BLAST比对的结果显示, 在可比范围内, 本研究得到的吴李碘泡虫重庆株系与湖北株系(序列登录号为KJ725081和EF690300)和江苏株系(序列登录号为HQ613412)相似度在99%以上(99.2%—99.9%, 表 2)。

    表  2  四种相似碘泡虫基于18S rDNA序列的相似度与遗传距离
    Table  2.  Similarities and genetic distances of four similar Myxobolus species (12 sequences) based on 18S rDNA sequences
    1 2 3 4 5 6 7 8 9 10 11 12
    1. M. wulii HQ613412 99.8% 99.7% 99.2% 99.2% 91.4% 91.5% 91.5% 91.1% 91.1% 94.3% 94.2%
    2. M. wulii EF690300 0.002 99.8% 99.3% 99.3% 91.6% 91.6% 91.6% 91.1% 91.1% 94.3% 94.3%
    3. M. wulii KJ725081 0.002 0.001 99.2% 99.2% 91.5% 91.6% 91.6% 91.1% 91.1% 94.3% 94.2%
    4. M. wulii MH920541 0.007 0.007 0.007 99.9% 91.7% 91.8% 91.8% 91.1% 91.1% 94.6% 94.7%
    5. M. wulii MH920542 0.007 0.007 0.007 0.001 91.8% 91.8% 91.8% 91.2% 91.2% 94.7% 94.7%
    6. M. ampullicapsulatus KC425224 0.084 0.083 0.083 0.080 0.080 99.8% 99.8% 98.4% 98.4% 90.7% 90.7%
    7. M. ampullicapsulatus KC425223 0.084 0.083 0.083 0.080 0.080 0.001 100.0% 98.6% 98.6% 90.8% 90.8%
    8. M. ampullicapsulatus KC425225 0.084 0.083 0.083 0.080 0.080 0.001 0.000 98.6% 98.6% 90.8% 90.8%
    9. M. honghuensis KR049222 0.086 0.085 0.085 0.083 0.083 0.015 0.013 0.013 100.0% 90.7% 90.7%
    10. M. honghuensis KJ725074 0.086 0.085 0.085 0.083 0.083 0.015 0.013 0.013 0.000 90.7% 90.6%
    11. M. pyramidis HQ613411 0.055 0.054 0.054 0.050 0.049 0.088 0.088 0.088 0.089 0.089 99.5%
    12. M. pyramidis LC228239 0.055 0.054 0.054 0.050 0.049 0.086 0.086 0.086 0.089 0.089 0.004
    下载: 导出CSV 
    | 显示表格

    遗传距离分析结果显示, 本研究获得的吴李碘泡虫重庆株系两序列(MH920541和MH920542)之间的遗传距离为0.001, 重庆株系分别与湖北株系(KJ725081和EF690300)、江苏株系(HQ613412)的遗传距离均为0.007; 湖北株系两序列(KJ725081和EF690300)之间的遗传距离为0.001; 湖北株系与江苏株系的遗传距离均为0.002 (表 2)。

    基于18S rDNA构建的ML和BI树呈现出一致的拓扑结构(本文只呈现BI树, 图 2)。所有碘泡虫物种分为2大支系(A支和B支)。在B支系中, 所有吴李碘泡虫聚成一支, 该支系与瓶囊碘泡虫和洪湖碘泡虫构成的进化枝形成姐妹群关系。在吴李碘泡虫支中, 重庆株系聚成一支最先分化, 湖北和江苏株系聚成另外一支后分化。其中, 吴李碘泡虫湖北株系和江苏株系并未形成地理种群特有的进化枝, 而是相互交叉成枝(图 2)。

    图  2  基于18S rDNA序列构建的BI系统进化树
    节点表示支持率; 物种名后面的数字表示GenBank登录号
    Figure  2.  Phylogenetic tree generated by BI based on the 18S rDNA gene sequences
    The node indicates the support value; the number after the species name indicates the GenBank accession number

    本研究获得的吴李碘泡虫重庆株系孢子及极囊均比湖北株系略小, 湖北株系两个极囊在大小上略有差异, 而重庆株系两个极囊等大(表 1)。江苏株系由于无形态学数据, 无法比较。以往诸多基于18S rDNA为分子标记的黏孢子虫物种鉴定方面的研究表明, 绝大多数黏孢子虫的种内相似度范围为98.6%—100%, 而种内遗传距离范围大多数集中在0.000到0.007[1922]。本研究吴李碘泡虫三大地理株系序列相似度(99.2%—99.9%)和遗传距离(0.002— 0.007)分析的结果显示三大地理株系均为同一物种。因此, 尽管各地理株系在形态量度上存在一定差异, 但从分子水平上看, 均在种内水平的形态变异。而这些差异可能与地理环境、宿主种类及感染部位有关。

    一般而言, 对于自由生活的动物, 地理隔离在种群分化中起着重要作用, 而长距离的地理隔离是导致自然种群分化的重要因素。从遗传距离及相似度来看, 三大地理株系之间的遗传变异并不能反映地理隔离与种群分化之间的必然联系(表 2图 2)。以往的研究表明, 对于寄生生活的寄生虫种群变异受宿主种类的影响强于受地理隔离的影响[2326]。然而, 系统发育分析并未显示所有寄生于鲫的吴李碘泡虫之间具有更近的亲缘关系, 如宿主为鲫的江苏株系(HQ613412)却与宿主为异育银鲫的湖北株系1(EF690300)聚为一支(图 2)。也有研究表明寄生虫积极地转移栖息地时, 通过寄生部位的选择也会导致物种种群分化甚至形成新种[23]。本研究鳃寄生与肝胰脏寄生的吴李碘泡虫分别聚为两大支系, 且鳃寄生支系先分化出来(图 2)。这表明, 相同寄生部位的吴李碘泡虫具有更近的亲缘关系, 且鳃寄生的吴李碘泡虫株系相对原始。这可能与体表寄生和体内寄生的演化有关: 与体内寄生相比, 寄生于鳃所需克服的宿主保护屏障较少。而在宿主身体内部寄生, 不仅要克服更多的保护屏障, 还会受到宿主免疫反应等的排斥作用。因此, 鳃寄生的吴李碘泡虫可能是较早定居的群体, 随着其不断进化, 侵入宿主的能力加强, 逐渐分化出在肝胰脏寄居的吴李碘泡虫群体。由于18S rDNA序列的保守性, 所含信息可能不足以完全说明吴李碘泡虫三大株系之间的自然演化规律。因此, 增加ITS-1 rDNA等高变异分子标记及增加样本量应是今后研究吴李碘泡虫种群分化规律优先开展的工作。虽然18S rDNA序列较为保守, 但本研究显示吴李碘泡虫不同江段株系序列间已有变异, 这表明吴李碘泡虫已出现一定程度的分化, 形成了不同的种群。

  • 图  1   吴李碘泡虫重庆株系孢子形态图

    a. 孢子壳面观; b. 孢子缝面观. 比例尺=10 μm

    Figure  1.   Morphology of M. wulii from Chongqing strain

    a. spore in valvular view, b. spore in sutural view. Bars=10 μm

    图  2   基于18S rDNA序列构建的BI系统进化树

    节点表示支持率; 物种名后面的数字表示GenBank登录号

    Figure  2.   Phylogenetic tree generated by BI based on the 18S rDNA gene sequences

    The node indicates the support value; the number after the species name indicates the GenBank accession number

    表  1   长江流域吴李碘泡虫M. wulii不同株系的形态学比较

    Table  1   Morphological comparison of different strains of M. wulii in the Yangtze River Basin

    吴李碘泡虫株系
    M. wulii strains
    重庆株
    Chongqing strain
    湖北株 1
    Hubei strain 1
    湖北株 2
    Hubei strain 2
    江苏株
    Jiangsu strain
    18S rDNA信息
    18S rDNA info
    1921 nt (MH920541) /1912 nt (MH920542) 1576 nt (EF690300) 1528 nt (KJ725081) 2041nt (HQ613412)
    孢子长Spore length (μm) 14.45±0.70 (13.06—15.93) 17.7 (16.5—18.9) 17.7±0.6 (16.1—18.6)
    孢子宽Spore width (μm) 9.87±0.87 (8.07—11.17) 10.6 (9.1—10.8) 12.0±0.4 (11.0—13.0)
    孢子厚
    Spore thickness (μm)
    8.3 (7.2—9.0) 9.0±0.3 (8.0—9.6)
    极囊长
    Polar capsule length (μm)
    7.67±0.63 (6.54—8.31) 9.3 (8.4—9.9)a
    9.0 (8.1—9.2)b
    9.6±0.5 (9.0—10.8)a
    8.9±0.5 (7.8—9.8)b
    极囊宽
    Polar capsule width (μm)
    3.90±0.22 (3.49—4.27) 3.7 (3.4—4.0)a
    3.6 (3.4—3.8)b
    3.9±0.3 (3.1—4.1)a
    3.8±0.2 (3.0—4.3)b
    极丝圈数
    Polar filament number
    7—9 7—9 7—9
    宿主Hosts C. auratus auratus 异育银鲫C. auratus gibelio 异育银鲫C. auratus gibelio C. auratus auratus
    感染部位Infection sites 鳃Gill 肝胰脏Hepatopancreas 肝胰脏Hepatopancreas 肝胰脏Hepatopancreas
    地理位置Localities 重庆Chongqing 湖北Hubei 湖北Hubei 江苏Jiangsu
    资料来源References 本研究The present study Zhang, et al.[7] 柳阳等[9] Xi, et al.[8]
    注: a. 大极囊; b. 小极囊; −. 未描述或无数据
    Note: a. Large polar capsule; b. Small polar capsule; −. No description or no data
    下载: 导出CSV

    表  2   四种相似碘泡虫基于18S rDNA序列的相似度与遗传距离

    Table  2   Similarities and genetic distances of four similar Myxobolus species (12 sequences) based on 18S rDNA sequences

    1 2 3 4 5 6 7 8 9 10 11 12
    1. M. wulii HQ613412 99.8% 99.7% 99.2% 99.2% 91.4% 91.5% 91.5% 91.1% 91.1% 94.3% 94.2%
    2. M. wulii EF690300 0.002 99.8% 99.3% 99.3% 91.6% 91.6% 91.6% 91.1% 91.1% 94.3% 94.3%
    3. M. wulii KJ725081 0.002 0.001 99.2% 99.2% 91.5% 91.6% 91.6% 91.1% 91.1% 94.3% 94.2%
    4. M. wulii MH920541 0.007 0.007 0.007 99.9% 91.7% 91.8% 91.8% 91.1% 91.1% 94.6% 94.7%
    5. M. wulii MH920542 0.007 0.007 0.007 0.001 91.8% 91.8% 91.8% 91.2% 91.2% 94.7% 94.7%
    6. M. ampullicapsulatus KC425224 0.084 0.083 0.083 0.080 0.080 99.8% 99.8% 98.4% 98.4% 90.7% 90.7%
    7. M. ampullicapsulatus KC425223 0.084 0.083 0.083 0.080 0.080 0.001 100.0% 98.6% 98.6% 90.8% 90.8%
    8. M. ampullicapsulatus KC425225 0.084 0.083 0.083 0.080 0.080 0.001 0.000 98.6% 98.6% 90.8% 90.8%
    9. M. honghuensis KR049222 0.086 0.085 0.085 0.083 0.083 0.015 0.013 0.013 100.0% 90.7% 90.7%
    10. M. honghuensis KJ725074 0.086 0.085 0.085 0.083 0.083 0.015 0.013 0.013 0.000 90.7% 90.6%
    11. M. pyramidis HQ613411 0.055 0.054 0.054 0.050 0.049 0.088 0.088 0.088 0.089 0.089 99.5%
    12. M. pyramidis LC228239 0.055 0.054 0.054 0.050 0.049 0.086 0.086 0.086 0.089 0.089 0.004
    下载: 导出CSV
  • [1] 吴宝华, 李卓凡. 浙江省淡水鱼类寄生黏孢子虫六新种(黏孢子虫目). 动物分类学报, 1986, 11(1): 1—9

    Wu B H, Li Z F. Six new species of myxosporidia from freshwater fishes in Zhejiang province [J]. Acta Zootaxonomica Sinica, 1986, 11(1): 1—9

    [2] 陈启鎏, 马成伦. 中国动物志: 黏体门. 黏孢子纲(淡水). 北京: 科学出版社. 1998, 296—297

    Chen Q L, Ma C L. Fauna Sinica Myxozoa: Myxosporea [M]. Beijing: Science Press. 1998, 296—297

    [3]

    Lom J, Noble E R. Revised classification of the class Myxosporea Bütschli, 1881 [J]. Folia Parasitologica, 1984, 31(3): 193—205

    [4]

    Landsberg J H, Lom J. Taxonomy of the genera of the Myxobolus/Myxosoma group (Myxobolidae: My-xosporea), current listing of species and revision of synonyms [J]. Systematic Parasitology, 1991, 18(3): 165—186 doi: 10.1007/BF00009358

    [5]

    Wu Y S, Wang J G. A new species of myxosporidian from allogynogenetic silver crucian carp (Myxosporea: Bivalvulida, Myxobolidae) [J]. Acta Hydrobiologica Si-nica, 1997, 21(3): 268—270

    [6]

    Yokoyama H, Ogawa K, Wakabayashi H. Branchial Pathology of Cyprinid Fish Infected with Myxosporean Parasites [M]. Diseases in Asian Aquaculture I. In: Shariff M, Subasinghe R P, Arthur J R (Eds.), Fish Health Section, Asian Fisheries Society, Manila. 1992, 337—343

    [7]

    Zhang J Y, Yokoyama H, Wang J G, et al. Utilization of tissue habitats by Myxobolus wulii, Landsberg & Lom, 1991 in different carp hosts and disease resistance in allogynogenetic gibel carp: redescription of M. wulii, from China and Japan [J]. Journal of Fish Diseases, 2010, 33(1): 57—68 doi: 10.1111/jfd.2009.33.issue-1

    [8]

    Xi B W, Zhang J Y, Xie J, et al. Three actinosporean types (Myxozoa) from the oligochaete Branchiura sowerbyi in China [J]. Parasitology Research, 2013, 112(4): 1575—1582 doi: 10.1007/s00436-013-3306-6

    [9] 柳阳, 郭庆祥, 翟艳花, 等. 不同保存方式对吴李碘泡虫孢子形态的影响. 华中农业大学学报, 2016, 35(4): 87—92

    Liu Y, Guo Q X, Zhai Y H, et al. Effects of different preservation methods on morphology of Myxobolus wulii spores [J]. Journal of Huazhong Agricultural University, 2016, 35(4): 87—92

    [10] 赵元莙, 马成伦, 宋微波. 海水养殖中原生动物病原虫的鉴定: Ⅱ. 黏孢子虫原生动物的研究及鉴定方法. 青岛海洋大学学报, 2001, 31(6): 681—688

    Zhao Y J, Ma C L, Song W B. Illustrated guide to the identification of pathogenetic Protozoa in mariculture-Ⅱ. Diagnostic methods for the Myxosporea [J]. Ocean University Qingdao, 2001, 31(6): 681—688

    [11]

    Barta J R, Martin D S, Libertor P A, et al. Phylogenetic relationships among eight Eimeria species infecting domestic fowl inferred using complete small subunit ribosomal DNA sequences [J]. The Journal of Parasitology, 1997, 83(2): 262—271 doi: 10.2307/3284453

    [12]

    Hillis D M, Dixon M T. Ribosomal DNA: molecular evolution and phylogenetic inference [J]. Quarterly Review of Biology, 1991, 66(4): 411—453 doi: 10.1086/417338

    [13]

    Whipps C M, Adlard R D, Bryant M S, et al. The first report of three Kudoa species from eastern Australia: Kudoa thyrsites from Mahi mahi (Coryphaena hippurus), Kudoa amamiensis and Kudoa minithyrsites n. sp. from Sweeper (Pempheris ypsilychnus) [J]. The Journal of Eukaryotic Microbiology, 2003, 50(3): 215—219 doi: 10.1111/jeu.2003.50.issue-3

    [14]

    Tamura K, Stecher G, Peterson D, et al. MEGA 6: Molecular evolutionary genetics analysis version 6.0 [J]. Molecular Biology and Evolution, 2013, 30(12): 2725—2729 doi: 10.1093/molbev/mst197

    [15]

    Gao F, Gao S, Wang P, et al. Phylogenetic analyses of cyclidiids (Protista, Ciliophora, Scuticociliatia) based on multiple genes suggest their close relationship with thigmotrichids [J]. Molecular Phylogenetics and Evolution, 2014, 75(6): 219—226

    [16]

    Miller M A, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees [C]. Gateway Computing Environments Workshop. 2010, 14: 1—8

    [17]

    Wang P, Gao F, Huang J, et al. A case study to estimate the applicability of secondary structures of SSU-rRNA gene in taxonomy and phylogenetic analyses of ciliates [J]. Zoologica Scripta, 2015, 44(5): 574—585 doi: 10.1111/zsc.2015.44.issue-5

    [18]

    Ronquist F, Huelsenbeck J P. MRBAYES 3: Bayesian phylogenetic inference under mixed models [J]. Bioinformatics, 2003, 19: 1572—1574 doi: 10.1093/bioinformatics/btg180

    [19] 冉佼, 杨承忠, 赵元莙. 基于遗传距离的黏孢子虫分类研究. 重庆师范大学学报(自然科学版), 2013, 31(3): 31—34

    Ran J, Yang C Z, Zhao Y J. Taxonomic research of the Myxosporidia based on genetic distance [J]. Journal of Chongqing Normal University (Natural Science), 2013, 31(3): 31—34

    [20]

    Karlsbakk E, Kristmundsson Á, Albano M, et al. Redescription and phylogenetic position of Myxobolus aeglefini and Myxobolus platessae n. comb. (Myxosporea), parasites in the cartilage of some North Atlantic marine fishes, with notes on the phylogeny and classification of the Platysporina [J]. Parasitology International, 2017, 66(1): 952—959 doi: 10.1016/j.parint.2016.10.014

    [21] 刘晓聪, 杨承忠, 赵元莙. 洪湖碘泡虫的再描述及其近缘种的鉴别性研究. 水生生物学报, 2016, 40(2): 350—357

    Liu X C, Yang C Z, Zhao Y J. Redescription of Myxobo-lus Honghuensis Liu et al. 2012 and identification on its genetic related species [J]. Acta Hydrobiologica Sinica, 2016, 40(2): 350—357

    [22] 李鹏, 习丙文, 陈凯, 谢骏. 鲤肠道寄生岳阳碘泡虫新种的形态特征及系统发育分析. 水生生物学报, 2017, 41(6): 1251—1256 doi: 10.7541/2017.155

    Li P, Xi B W, Chen K, Xie J. Morphological and molecular characteristic of Myxobolus yueyangensis sp. nov. (Myxozoa: Myxobolidae) from the intestine of common carp (Cyprinus carpio) in China [J]. Acta Hydrobiologica Sinica, 2017, 41(6): 1251—1256 doi: 10.7541/2017.155

    [23]

    McCoy K D. Sympatric speciation in parasites-what is sympatry [J]? Trends in Parasitology, 2003, 19(9): 400—404 doi: 10.1016/S1471-4922(03)00194-6

    [24]

    Criscione C D, Poulin R, Blouin M S. Molecular ecology of parasites: elucidating ecological and microevolutio-nary processes [J]. Molecular Ecology, 2005, 14(8): 2247—2257 doi: 10.1111/mec.2005.14.issue-8

    [25]

    Dietrich M, Gomez-Diaz E, McCoy K D. Worldwide distribution and diversity of seabird ticks: implications for the ecology and epidemiology of tick-borne pathogens [J]. Vector Borne and Zoonotic Diseases, 2011, 11(5): 453—470 doi: 10.1089/vbz.2010.0009

    [26]

    Wang M, Zhao Y J, Yang C Z. The impacts of geograp-hic and host species isolation on population divergence of Myxobolus lentisuturalis [J]. Parasitology Research, 2019, 118(3): 1061—1066 doi: 10.1007/s00436-019-06234-9

  • 期刊类型引用(6)

    1. 王小亮,曹欢,王姝,吕晓楠,王静波,张文,王澎,徐立蒲. 寄生于金鱼肌肉和肝胰脏的吴李碘泡虫形态特征与分子鉴定. 渔业研究. 2024(01): 85-91 . 百度学术
    2. 袁采莉,唐发辉,杨雨婷,彭建军,谭禄奇,张雕雕,杨承忠,赵元莙. 鲇楚克拉虫的地理新记录及不同地理株系的比较研究. 水生生物学报. 2024(04): 665-672 . 本站查看
    3. 向乾,谭禄奇,彭建军,石小威,杨承忠,赵元莙. 鲇病原粘孢子虫米氏碘泡虫不同株系的比较. 水产学报. 2024(05): 160-167 . 百度学术
    4. 沈宇航,张波,涂笑,顾泽茂. 寄生部位分化对吉陶单极虫种群分化的影响. 中国水产科学. 2023(07): 921-932 . 百度学术
    5. 陈鸿真,赵元莙,杨承忠. 吉陶单极虫地理分布新记录及不同地理株系间的比较. 水产学报. 2021(02): 265-273 . 百度学术
    6. 高磊,赵元莙,杨生华,杨承忠. 戴曼特角形虫中国新纪录及不同地理株系的比较. 重庆师范大学学报(自然科学版). 2020(03): 21-26+146 . 百度学术

    其他类型引用(1)

推荐阅读
Trophic niche and spatial variation of three dominant shrimp species during the early period of fishing ban in the yangtze river estuary
WANG Shi-Yu et al., ACTA HYDROBIOLOGICA SINICA, 2025
Algorithm screening and evaluation of habitat suitability index forglyptothorax sinensein the heishui river
XIE Wei et al., ACTA HYDROBIOLOGICA SINICA, 2025
Characteristics of plant and juvenile fish communities along different shorelines and their relationship with the distribution of finless porpoises: a case study of the anqing section of the yangtze river
LUO Lai-Kai et al., ACTA HYDROBIOLOGICA SINICA, 2025
Population biological characteristics and stock assessment ofculter mongolicus(basilewsky 1855) in qiandaohu lake
WEN Feng et al., ACTA HYDROBIOLOGICA SINICA, 2024
Comparative study on fish community structure in spring and autumn in the southern waters of the yangtze river estuary
LI Shijia et al., JOURNAL OF SHANGHAI OCEAN UNIVERSITY, 2024
Effects of bioflocs on growth and microbial community structure of carassius auratus var. pengze
CHEN Dahong[] et al., FISHERY MODERNIZATION, 2025
Freshwater fungi from karst landscapes in china and thailand
Yang, Jing et al., FUNGAL DIVERSITY, 2023
Fusarium diversity associated with diseased cereals in china, with an updated phylogenomic assessment of the genus
Han, S. L., STUDIES IN MYCOLOGY, 2023
Water periods impact the structure and metabolic potential of the nitrogen-cycling microbial communities in rivers of arid and semi-arid regions
WATER RESEARCH
Fate of extracellular antibiotic resistant genes in wastewater treatment plants: characteristics, persistence, transformation, removal and potential risk
ENERGY & ENVIRONMENTAL SUSTAINABILITY, 2025
Powered by
图(2)  /  表(2)
计量
  • 文章访问数:  11166
  • HTML全文浏览量:  6820
  • PDF下载量:  53
  • 被引次数: 7
出版历程
  • 收稿日期:  2018-10-08
  • 修回日期:  2019-05-13
  • 网络出版日期:  2019-07-24
  • 发布日期:  2019-08-31

目录

/

返回文章
返回