温度对鳙幼鱼疲劳引起的生理变化和游泳能力的影响研究
THE EFFECT OF TEMPERATURE ON FATIGUE INDUCED CHANGES IN THE PHYSIOLOGY AND SWIMMING ABILITY OF JUVENILE ARISTICHTHYS NOBILIS (BIGHEAD CARP)
-
摘要: 鳙(花鲢)在自然环境中分布于中国南部流域至阿穆尔河,是重要的经济性鱼类,具江湖生殖洄游特性。大坝建设阻碍了其洄游产卵繁殖通道,导致自然环境中其繁殖力的下降,需要有效的过鱼设施帮助鳙通过大坝等水流屏障。为了设计高效的鱼道引导鳙通过,本文通过自制密封的鱼类游泳实验装置,研究了鳙幼鱼游泳能力。测定了5个温度 (5、10、15、20和25℃)下鳙幼鱼的临界游泳速度。通过测定不同温度下,疲劳前后血清总蛋白(TP)、血糖(GLU)和甘油三酯(TG)含量,评价疲劳运动引起的生理胁迫。结果表明,在试验温度范围内,随着温度的升高,临界游泳速度显著提高(P0.05)。25℃时临界游泳速度最大,为7.01 BL/s (1.19 m/s)。在疲劳运动后,血清总蛋白、血糖和甘油三酯含量显著升高(P0.05)。水温低于15℃与高于15℃相比,鳙疲劳运动后血清总蛋白、血糖和甘油三酯含量显著升高。以鳙幼鱼为研究对象,研究了非适宜温度环境和疲劳运动胁迫下鱼类的生理反应。以期为鱼类生理学研究和渔业保护管理等领域提供理论依据,为制定有效的鱼道提供数据参考。Abstract: Aristichthys nobilis (bighead carp) is a commercially valuable fish with a natural range extending from southern China to the Amur River. Dams interfere with spawning migrations and reproduction in wild populations has declined and effective fish passages are needed. To obtain data for the design of effective fish passages for A. nobilis, a laboratory study of the swimming ability of juvenile A. nobilis was conducted in a flume-type respirometer. Critical swimming speed (Ucrit) was determined at five temperatures (5, 10, 15, 20 and 25℃) and Ucrit increased significantly (P0.05) with increasing temperature, reaching a maximum of 7.01 BL/s (1.19 m/s) at 25℃. The physiological stress caused by swimming to fatigue was assessed by measuring serum levels of total protein (TP), blood glucose (Glu) and triglyceride (TG) before and after fatigue at 5, 10, 15, 20 and 25℃. At fatigue, serum levels of TP, Glu and TG were significantly higher (P0.05) than before fatigue. Furthermore, when the water temperature was below 15℃, serum levels of TP, Glu and TG tested at fatigue were significantly higher than those tested at fatigue in water above 15℃. This investigation provides data on the physiological response of A. nobilis to exercise fatigue and the effect of environmental stress produced by suboptimal temperature. Results will contribute to the fields of fish physiology and conservation management and provide information valuable for designing effective fish passages.
-
Keywords:
- Aristichthys nobilis /
- Temperature /
- Critical swimming speed /
- Stress exercise
-
-
[2] Lee C G, Farrell1 A P, Lotto A, et al. The effect of temperature on swimming performance and oxygen consumption in dult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon stocks [J]. Journal of Experimental Biology, 2003, 206(18): 32393251
[3] MacNutt M J, Hinch S G, Farrell A P, et al. The effect of temperature and acclimation period on repeat swimming performance in cutthroat trout [J]. Journal of Fish Biology, 2004, 65(2): 342353
[4] Secor S M, Wooten J A, Cox C L. Effects of meal size, meal type, and body temperature on the specific dynamic action of anurans [J]. Journal of Comparative Physiology B, 2007, 177(2): 165182
[5] Yu X, Zhang X, Duan Y, et al. Effects of temperature, salinity, body length, and starvation on the critical swimming speed of whiteleg shrimp, Litopenaeus vannamei [J]. Comparative Biochemistry and Physiology-Part A: Molecular Integrative Physiology, 2010, 157(4): 392397
[6] Lindberg W J, Loftin J L. Effects of habitat and fishing mortality on the movements, growth and relative weights of juvenile-to-adult gag (Mycteroperca microlepis) [J]. Final Project Report, MARFIN Grant Number NA57FF0288. University of Florida, Gainesville, FL, 1998
[7] Farrell A P, Gamperl A K, Birtwell I K. Prolonged swimming, recovery and repeat swimming performance of mature Sockeye Salmon Oncorhynchus nerka exposed to moderate hypoxia and pentachlorophenol [J]. Journal of Experimental Biology, 1998, 201(14): 21832193
[8] Steinhausen M F, Steffensen J F, Andersen N G. Tail beat frequency as a predictor of swimming speed and oxygen consumption of saithe (Pollachius virens) and whiting (Merlangius merlangus) during forced swimming [J]. Marine Biology, 2005, 148(1): 197204
[9] Nelson J A, Gotwalt P S, Reidy S P, et al. Beyond Ucrit: matching swimming performance tests to the physiological ecology of the animal, including a new fish drag strip [J]. Comparative Biochemistry and Physiology Part A: Molecular Integrative Physiology, 2002, 133(2): 289302
[10] Claireaux G, Handelsman C, Standen E, et al. Thermal and temporal stability of swimming performance in the European sea bass [J]. Physiological and Biochemical Zoology, 2007, 80(2): 186196
[11] Steinhausen M F, Sandblom E, Eliason E J, et al. The effect of acute temperature increases on the cardiorespiratory performance of resting and swimming sockeye salmon (Oncorhynchus nerka) [J]. Journal of Experimental Biology, 2008, 211(24): 39153926
[12] Flore L, Keckeis H. The effect of water current on foraging behaviour of the rheophilic cyprinid Chondrostoma nasus L. during ontogeny: evidence of a trade-off between energetic gain and swimming costs [J]. Regulated Rivers: Research Management, 1998, 14(1): 141154
[13] Plaut I. Critical swimming speed: its ecological relevance [J]. Comparative Biochemistry and Physiology Part A: Molecular Integrative Physiology, 2001, 131(1): 4150
[14] Hoover J J, Collins J, Boysen K A, et al. Critical swimming speeds of adult shovelnose sturgeon in rectilinear and boundarylayer flow [J]. Journal of Applied Ichthyology, 2011, 27(2): 226230
[15] Reidy S P, Kerr S R, Nelson J A. Aerobic and anaerobic swimming performance of individual Atlantic Cod [J]. Journal of Experimental Biology, 2002, 203(2): 347357
[16] Xian X M, Cao Z D, Fu S J. The comparison of critical swimming speed and endurance at high speed of four species of juvenile fish [J]. Journal of Chongqing Normal University (Natural Science), 2010, 27(4): 1620 [鲜雪梅, 曹振东, 付世建. 4种幼鱼临界游泳速度和运动耐受时间的比较. 重庆师范大学学报(自然科学版), 2010, 27(4): 1620]
[17] Tu Z Y, Yuan X, Han J C, et al. Aerobic swimming performance of juvenile Schizothorax chongi (Pisces, Cidaeyprin) in the Yalong River, southwestern China [J]. Hydrobiologia, 2011, 675(1): 119127
[18] Claireaux G, Couturier C, Groison A L. Effect of temperature on maximum swimming speed and cost of transport in juvenile European sea bass (Dicentrarchus labrax) [J]. Journal of Experimental Biology, 2006, 209(17): 34203428
[19] Tritico H M, Cotel A J. The effects of turbulent eddies on the stability and critical swimming speed of creek chub (Semotilus atromaculatus) [J]. Journal of Experimental Biology, 2010, 213(13): 22842293
[20] Hinch S G, Bratty J. Effects of swim speed and activity pattern on success of adult sockeye salmon migration through an area of difficult passage [J]. Transactions of the American Fisheries Society, 2000, 129(2): 604612
[21] Pon L B, Hinch S G, Cooke S J. Physiological, energetic and behavioral correlates of successful fishway passage of adult sockeye salmon Oncorhynchus nerka in the Seton River, British Columbia [J]. Journal of Fish Biology, 2009, 74(6): 13231336
[22] Young J L, Cooke S J, Hinch S G, et al. Physiological and energetic correlates of en route mortality for abnormally early migrating adult sockeye salmon in the Thompson River, British Columbia [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63(5): 10671077
[23] Peake S J, Farrell A P. Locomotory behaviour and post-exercise physiology in relation to swimming speed, gait transition and metabolism in free-swimming smallmouth bass (Micropterus dolomieu) [J]. Journal of Experimental Biology, 2004, 207(9): 15631575
[24] Brett J R. The respiratory metabolism and swimming performance of young Sockeye Salmon [J]. Journal of the Fisheries Research Board of Canada, 1964, 21(5), 11831226
[25] Lowe C. Metabolic rates of juvenile scalloped hammerhead sharks (Sphyrna lewini) [J]. Marine Biology, 2001, 139(3): 447453
[26] MacLeod J C. A new approach for measuring maximum swimming speeds of small fish [J]. Journal of the Fisheries Board of Canada, 1967, 24(6): 12411252
[27] Seibel B A, Drazen J C. The rate of metabolism in marine animals: environmental constraints, ecological demands and energetic opportunities [J]. Philosophical Transactions of the Royal Society B, 2007, 362(1487): 20612078
[28] Macy W K, Durbin A G, Durbin E G. Metabolic rate in relation to temperature and swimming speed, and the cost of filter feeding in Atlantic menhaden, Brevoortia tyrannus [J]. Fish Bulletin, 1999, 97(2): 282293
[29] Day N, Butler P J. The effects of acclimation to reversed seasonal temperature on the swimming performance of adult brown trout Salmo trutta [J]. Journal of Experimental Biology, 2005, 208(14): 26832692
[30] Guderley H. Locomotor performance and muscle metabolic capacities: impact of temperature and energetic status [J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2004, 139(3): 371382
[31] Lowe T E, Wells R M G. Exercise challenge in Antarctic fishes: do haematology and muscle metabolite levels limit swimming performance [J]. Polar Biology, 1997, 17(3): 211218
[32] Imsland A K, Foss A, Gunnarsson S, et al. The interaction of temperature and salinity on growth and food conversion in juvenile turbot (Scophthalmus maximus) [J]. Aquaculture, 2001, 198(3): 353367
[33] Racotta I S, Palacios E. Hemolymph metabolic variables in response to experimental manipulation stress and serotonin injection in Penaeus vannamei [J]. Journal of the World Aquaculture Society, 1998, 29(3): 351356
[34] Zhao M J, Su Z G, Huang W Y, et al. On the hematological indices of pond-reared common carp and grass carp [J]. Acta Hydrobiologica Sinica, 1979, 6(4): 453464 [赵明蓟, 苏泽古, 黄文郁, 等. 池养鲤和草鱼血液学指标的研究. 水生生物学集刊, 1979, 6(4): 453464]
-
期刊类型引用(10)
1. 王晓,廖冬芽,俞立雄,高雷,段辛斌,陈大庆,苏云垓,欧阳珊. 温度梯度对四大家鱼临界游泳速度的影响. 渔业科学进展. 2022(02): 53-61 . 百度学术
2. 李鸿,郭文韬,何鹏,刘炫赤,甘建政,谭红林,陈磊,石小涛,谭均军. 鳙幼鱼4种典型游泳状态特性研究. 水生态学杂志. 2022(02): 95-101 . 百度学术
3. 蔡露,Katopodis Christos,金瑶,黄应平,韩德举,胡望斌,陈小娟,陶江平,侯轶群. 中国鲤科鱼类游泳能力综合分析和应用. 湖泊科学. 2022(06): 1788-1801 . 百度学术
4. 袁喜,黄应平,郭文韬,蒋清,靖锦杰,涂志英,高勇. 温度和重复运动对中华鲟游泳行为的影响. 水生态学杂志. 2018(01): 63-68 . 百度学术
5. 袁喜,黄应平,蒋清,靖锦杰,高勇,涂志英. 中华鲟幼鱼生理生态行为研究进展. 长江流域资源与环境. 2016(03): 429-438 . 百度学术
6. 侯轶群,Lynda Newbold,蔡露,王翔,胡望斌,乔晔. 基于固定流速法的鳙(Aristichthys nobilis)幼鱼游泳能力. 生态学杂志. 2016(06): 1583-1588 . 百度学术
7. 秦孝辉,王从锋,莫伟均,汪玲珑,陈明明,熊锋,刘德富,龚万阳. 鳙对光色和光强的选择性试验. 水生态学杂志. 2015(03): 66-71 . 百度学术
8. 张永泉,尹家胜,徐革峰,席庆凯,马波,白庆利. 水温和体重对白斑红点鲑临界游泳速度和游动耗氧率的影响. 水生生物学报. 2015(04): 661-668 . 本站查看
9. 段志刚,吴金英,葛岩岩,詹绪良,李文笙. 细胞质膜在罗非鱼和叉尾斗鱼低温驯化过程中的功能(英文). 水生生物学报. 2015(06): 1150-1159 . 本站查看
10. 甘明阳,袁喜,蒋清,靖锦杰,涂志英,黄应平. 急性降温对青鱼幼鱼游泳能力的影响. 三峡大学学报(自然科学版). 2015(03): 35-39 . 百度学术
其他类型引用(6)
计量
- 文章访问数: 1166
- HTML全文浏览量: 3
- PDF下载量: 1072
- 被引次数: 16