溪流大小及其空间位置对鱼类群落结构的影响

严云志, 占姚军, 储玲, 陈毅峰, 邬春华

严云志, 占姚军, 储玲, 陈毅峰, 邬春华. 溪流大小及其空间位置对鱼类群落结构的影响[J]. 水生生物学报, 2010, 34(5): 1022-1030.
引用本文: 严云志, 占姚军, 储玲, 陈毅峰, 邬春华. 溪流大小及其空间位置对鱼类群落结构的影响[J]. 水生生物学报, 2010, 34(5): 1022-1030.
YAN Yun-Zhi, ZHAN Yao-Jun, CHU Ling, CHEN Yi-Feng, WU Chun-Hua. EFFECTS OF STREAM SIZE AND SPATIAL POSITION ON STREAM-DWELLING FISH ASSEMBLAGES[J]. ACTA HYDROBIOLOGICA SINICA, 2010, 34(5): 1022-1030.
Citation: YAN Yun-Zhi, ZHAN Yao-Jun, CHU Ling, CHEN Yi-Feng, WU Chun-Hua. EFFECTS OF STREAM SIZE AND SPATIAL POSITION ON STREAM-DWELLING FISH ASSEMBLAGES[J]. ACTA HYDROBIOLOGICA SINICA, 2010, 34(5): 1022-1030.

溪流大小及其空间位置对鱼类群落结构的影响

基金项目: 

国家重点基础研究发展计划项目(2009CB119200)

安徽省自然科学基金(090413080)

安徽省教育厅自然科学基金(KJ2009A110,KJ2008B221)资助

EFFECTS OF STREAM SIZE AND SPATIAL POSITION ON STREAM-DWELLING FISH ASSEMBLAGES

  • 摘要: 2008年10月和2009年10月分别对黄山地区阊江流域与青弋江流域1-3级浅水溪流中鱼类群落结构进行了研究,着重探讨了溪流大小及其空间位置对鱼类群落空间分布的影响。研究共捕获35种鱼类,阊江和青弋江分别为26和29种,其Jaccard相似性系数为57.1%;两流域间每样点的物种数差异显著,个体数差异极显著。在溪流级别梯度(1-3级)下,鱼类的物种数和个体数都呈上升的变动趋势,且物种数的变化相对个体数较显著。综合相关分析、逐步多元回归分析与典范相关分析的结果,阊江和青弋江中鱼类物种数的空间变化主要与下游量级相关,而个体数的空间变化主要与水宽相关。因此,阊江和青弋江1-3级浅水溪流中鱼类群落结构的空间分布格局是溪流大小和空间位置的共同作用结果,且溪流大小和空间位置分别决定鱼类的个体数与物种数的空间分布。
    Abstract: The spatio-temporal pattern of stream fish assemblages and the causal mechanism are the basis for scientific protection and sustainable utilization of fish species diversity. Both habitat structure and spatial position of streams are the mechanisms determining fish assemblages by influencing environmental capacity and fish immigration-extinction rate, respectively. In this study, spatial pattern in fish assemblages were studied by specimens electro-fishing collected from shallow streams (1–3 orders) of the Chang and Qingyi Rivers in the Huangshan Mountain, Anhui Province, in October, 2008 and 2009 respectively, and the effects of stream size (width and depth) and spatial position (order, link, C-link, and D-link) on fish assemblages were analyzed. Among the 35 fish species collected wholly, 26 and 29 species were involved in the Chang and Qingyi Rivers, respectively, which suggested 57.1% of Jaccard’s similarity index in species composition between the two rivers. Species richness and abundance each site were 4.69 ± 3.56 species and 26.46 ± 22.83 specimens in the Chang River, and 6.26 ± 3.09 species and 119.06 ± 90.90 specimens in the Qingyi River. Species richness and abundance of each site was significantly different between the two rivers. Along upstream-downstream gradient in stream orders, both species richness and abundance increased, while significant difference was only observed in species richness but not in abundance. Stream width and depth were both significantly correlated with stream orders, suggesting the significant difference in width and depth among 1–3 orders. Two-tailed Pearson’s correlation analysis detected that the factors significantly influencing species richness were stream order and D-link in the Chang River, while stream width, stream order, link and D-link in the Qingyi River. This analysis also detected that those influencing species abundance were both stream width in the Chang and Qingyi Rivers. Stepwise multiple regression analysis discovered the significant effects of D-link (Chang), D-link and stream width (Qingyi) on species richness, but stream width (both Chang and Qingyi) on abundance. Canonical correspondence analysis indicated that stream width, stream order, link, and D-link significantly determined fish assemblages in the Chang and Qingyi Rivers. In conclusion, downstream link (D-link) and stream width were the dominant factors affecting the spatial patterns in fish species richness and abundance, respectively, which suggested that spatial pattern in fish assemblages from shallow streams in the Chang and Qingyi Rivers were resulted from the combined roles of stream size and spatial position.
  • [1]

    Allan J D,Castillo M M.Stream ecology:structure and function of running waters,2nd edition[M].Springer,Netherlands.2007,5

    [2]

    Huang L L,Wu Z Q.Stream fish fauna composition and biogeographical analysis of the northwestern,Jiangxi Province[J].Acta Hydrobiologica Sinica,2010,34(2):448-451[黄亮亮,吴志强.赣西北溪流鱼类区系组成及其生物地理学特征分析.水生生物学报,2010,34(2):448-451]

    [3]

    Matthews W J.Patterns in freshwater fish ecology[M].Chapman and Hall,New York.1998,55-56

    [4]

    Grossman G D,Ratajczak R E,Crawford M,et al.Assemblage organization in stream fishes:effects of environmental variation and interspecific interaction[J].Ecological Monograph,1998,68(3):395-420

    [5]

    Dauwalter D C,Splinter D K,Fisher W L,et al.Biogeography,ecoregions,and geomorphology affect fish species composition in streams of eastern Oklahoma,USA[J].Environmental Biology of Fishes,2008,82(3):237-249

    [6]

    Matthews W J.Fish faunal"breaks"and stream order in the eastern and central United States[J].Environmental Biology of Fishes,1986,17(2):81-92

    [7]

    Vannote R L.Minshall G W,Cummins K W,et al.The river continuum concept[J].Canadian Journal of Fisheries Aquatic Sciences,1980,37(1):130-137

    [8]

    Fausch K D,Karr J R,Yant P P.Regional application of an index of biotic integrity based on stream fish communities[J].Transactions of the American Fisheries Society,1984,113(1):39-55

    [9]

    Benda L,Poff N L,Miller D,et al.The network dynamics hypothesis:how channel networks structure riverine habitats[J].Bioscience,2004,54(5):413-427

    [10]

    Grenonillet G,Pont D,Héissé C.Within-basin fish assemblage structure:the relative influence of habitat versus stream spatial position on local species richness[J].Canadian Journal of Fisheries Aquatic Sciences,2004,61(1):93-102

    [11]

    Smith T A,Kraft C E.Stream fish assemblages in relation to landscape position and local habitat variables[J].Transactions of the American Fisheries Society,2005,134(2):430-440

    [12]

    Wang L X,Fang J X.Study on the sustainable utilization of biological and tourist resources in Mt.Huangshan[J].Territory & Natural Resources Study,2006,(2):69-70[汪立祥,方建新.黄山生物资源和旅游资源永续利用研究.国土与自然资源研究,2006,(2):69-70]

    [13]

    Dian Z S,Shen J R.Geographical distribution of fish in southern mountainous of Anhui Province[J].Journal of Anhui Agricultural Sciences,1981,(1):82-88[刁铸山,沈菊人.安徽省皖南山区的鱼类及其地理分布.安徽农业科学,1981,(1):82-88]

    [14]

    Xu Y J.Fish resources in Xin'an River,Huangshan(Anhui reach)[J].Journal of Huangshan University,1981,(2):89-95[徐亚君.黄山新安江(安徽江段)鱼类资源.徽州师专学报,1981,(2):89-95]

    [15]

    Strahler A N.Quantitative analysis of watershed geomorphology[J].Transactions of American Geophysical Union,1957,38(6):913-920

    [16]

    Shreve R L.Statistical law of stream numbers[J].Journal of Geology,1966,74(1):1737

    [17]

    Fairchild G W,Horwitz R J,Nieman D A,et al.Spatial variation and historical change in fish assemblages of the Schuylkill River drainage,southeast Pennsylvania[J].American Midland Naturalist,1998,139(2):282-295

    [18]

    Osborne L L,Wiley M J.Influence of tributary spatial position on the structure of warmwater fish communities[J].Canadian Journal of Fisheries Aquatic Sciences,1992,49(4):671-681

    [19]

    Kuehne R A.A classification of streams,illustrated by fish distribution in an eastern Kentucky creek[J].Ecology,74(4):1659-1673

    [20]

    Naiman R J,Melillo J M,Lock M A,et al.Longitudinal patterns of ecosystem processes and community structure in a subarctic river continuum[J].Ecology,1987,68(5):1139-1156

    [21]

    Oberdorff T,Guilbert E,Lucchetta J C.Patterns of fish species richness in the Seine River basin,France[J].Hydrobiologia,1993,259(3):157-167

    [22]

    Hughes RM,Omernick J M.An alternative for characterizing stream size[A].In:Fontaine III T D,Bartel S M(Eds.),Dynamics of lotic ecosystems[C].Ann Arbor,Ann Arbor Science Publishers.1983,87-101

    [23]

    Paller M H.Relationships between fish assemblage structure and stream order in South Carolina coastal plain streams[J].Transactions of the American Fisheries Society,1994,123(2):150-161

    [24]

    Mesquita N,Coelho M M,Filomena M M.Spatial variation in fish assemblages across small Mediterranean drainages:effects of habitat and landscape context[J].Environmental Biology of Fishes,2006,77(2):105-120

    [25]

    Matthews W J,Robison H W.The distribution of the fishes of Arkansas:a multivariate analysis[J].Copeia,1988,(2):358-374

    [26]

    Gorman O T,Karr J R.Habitat structure and stream fish communities[J].Ecology,1978,59(3):507-515

    [27]

    Schlosser I J.A conceptual framework for fish communities in small warmwater streams[A].In:Matthews W J,Heins D C(Eds.),Evolutionary ecology of North American stream fishes[C].Norman,Oklahoma University Press.1987,17-26

    [28]

    Groman O T.Assemblage organization of stresm fishes:the effects of rivers on adventitious streams[J].American Naturalist,1986,128(4):611-616

    [29]

    MarArthur R H,Wilson E O.The theory of island biogeography[M].New Jersey,Princeton University Press.1967,60-83

    [30]

    Taylor C M,Warren M L.Dynamics in species composition of stream fish assemblages:environmental variability and nested subsets[J].Ecology,2001,82(8):2320-2330

  • 期刊类型引用(32)

    1. 李君轶,吴金明,杜浩,张辉,邵俭,危起伟. 嘉陵江源鱼类群落结构特征与环境因子的关系. 淡水渔业. 2024(05): 24-32 . 百度学术
    2. 董纯,杨志,朱其广,罗安红,龚云,唐会元,陈小娟. 三峡水库外来鱼类资源状况初步研究. 长江流域资源与环境. 2023(05): 928-938 . 百度学术
    3. 孙久星,徐光来,池建宇,杨亦然. 基于大型底栖动物的青弋江河流健康评价. 长江流域资源与环境. 2023(06): 1254-1266 . 百度学术
    4. 严鑫,卿杰,成必新,田辉伍,孙干. 基于原位观测的金沙江下游黑水河鱼类栖息地河床底质和水流特征分析. 环境工程. 2023(S2): 819-823 . 百度学术
    5. 杨丽亚,吕红健,付梅,白云鹏,苏胜齐,姚维志. 三峡库区短颌鲚年龄和生长特性的研究. 水生生物学报. 2022(01): 17-28 . 本站查看
    6. 舒薇薇,高耶,侯婷娟,朱熠,任美庆. 湖南涟水流域鱼类多样性研究. 湿地科学与管理. 2022(02): 27-30 . 百度学术
    7. 杨静,史子莫,华杰,占阳,银旭红,刘婧,李云娟,胡茂林. 潦河永安段夏季鱼类群落的空间分布特征. 水产学杂志. 2022(03): 63-72 . 百度学术
    8. 夏治俊,刘飞,余梵冬,唐瑞,王剑伟. 赤水河流域鱼类物种、功能和分类多样性研究. 水生态学杂志. 2022(05): 89-98 . 百度学术
    9. 肖家亮,邓维德,彭红元,邱焕运,李荣生. 广东始兴南山省级自然保护区鱼类生物多样性的初步分析. 韶关学院学报. 2021(06): 55-60 . 百度学术
    10. 朱中竹,王瑾,宋瑞华,王博涵,殷旭旺. 济南春季鱼类群落与水环境因子的关系. 河北渔业. 2020(05): 35-37+45 . 百度学术
    11. 曹龙智. 济南市鱼类功能群及其与水环境因子的关系. 水资源保护. 2019(01): 79-86 . 百度学术
    12. 杨志,唐会元,龚云,朱迪,赵娜. 产卵迁徙对金沙江黑水河下游鱼类群聚结构变动的影响. 湖泊科学. 2018(03): 753-762 . 百度学术
    13. 李强,张东,宛凤英,李羽如,储玲,严云志. 溪流鱼类群落对低水头坝的大小及功能的响应——以皖南山区河源溪流为例. 水生生物学报. 2018(05): 965-974 . 本站查看
    14. 苏健豪,李建道,李忠炉. 养殖鱼类对菉塘河中下游鱼类群落结构的影响. 江西水产科技. 2018(05): 16-19 . 百度学术
    15. 张晓可,王慧丽,万安,方云祥,刘志刚,郑爱芳,陈敏敏,于道平. 淠河流域河源溪流鱼类空间分布格局及主要影响因素. 湖泊科学. 2017(01): 176-185 . 百度学术
    16. 殷旭旺,金文,王博涵,韩洁,陈海,李晨,吴丹. 太子河流域鱼类组成及其与环境因子的关系. 水产学杂志. 2017(02): 42-45 . 百度学术
    17. 钱红,储玲,朱仁,蔡永久,严云志. 基于划分强度的巢湖流域河流鱼类群落的空间格局. 生态学杂志. 2017(10): 2795-2802 . 百度学术
    18. 何美峰. 汀江中上游鱼类多样性及其影响因子. 福建农业学报. 2016(06): 566-574 . 百度学术
    19. 刘伟,张远,高欣,贾晓波,马淑芹,刘思思. 浑河流域鱼类群落特征及其与环境因子的关系. 环境工程技术学报. 2016(03): 266-274 . 百度学术
    20. 刘伟,张远,高欣,贾晓波,马淑芹,刘思思. 浑河流域2010—2014年的鱼类群落和水生态健康变化分析. 水生生物学报. 2016(05): 968-977 . 本站查看
    21. 封文利,吴志强,黄亮亮,丁洋,师瑞丹,郑盛春. 漓江中游近岸水域仔稚鱼群落结构特征. 云南师范大学学报(自然科学版). 2016(02): 59-66 . 百度学术
    22. 李江涛,林小涛,周晨辉,曾鹏,许忠能,孙军. 饥饿对食蚊鱼和唐鱼幼鱼能量物质消耗及游泳能力的影响. 应用生态学报. 2016(01): 282-290 . 百度学术
    23. 储玲,王文剑,闫莉莉,严云志,朱仁,司春. 黄山陈村水库上游河源溪流的鱼类群落及其纵向梯度格局. 生态学报. 2015(03): 900-910 . 百度学术
    24. 武玮,徐宗学,殷旭旺,于松延. 渭河流域鱼类群落结构特征及其完整性评价. 环境科学研究. 2014(09): 981-989 . 百度学术
    25. 李艳利,李艳粉,徐宗学. 影响浑太河流域鱼类群落结构的不同尺度环境因子分析. 环境科学. 2014(09): 3504-3512 . 百度学术
    26. 武玮,徐宗学,殷旭旺,于松延. 渭河流域鱼类群落结构特征及其受环境因子的影响分析. 环境科学学报. 2014(05): 1298-1308 . 百度学术
    27. 曾泽国,曾泰,陈家宽,金斌松. 福建圭龙山省级自然保护区夏季溪流鱼类调查初报. 福建水产. 2013(03): 167-174 . 百度学术
    28. 王强,袁兴中,刘红,张跃伟. 引水式小水电对西南山地河流鱼类的影响. 水力发电学报. 2013(02): 133-138+158 . 百度学术
    29. 丁森,张远,渠晓东,孔维静,刘思思,孟伟. 影响太子河流域鱼类空间分布的不同尺度环境因子分析. 环境科学. 2012(07): 2272-2280 . 百度学术
    30. 严云志,闫莉莉,储玲,梁阳阳,陈毅峰,章星明. 徽水河宽鳍鱲的年龄、生长和繁殖. 水生生物学报. 2012(03): 474-481 . 本站查看
    31. 朱仁,严云志,孙建建,黄海玲,谈小龙,林璐. 黄山陈村水库河源溪流鱼类群落的食性. 生态学杂志. 2012(02): 359-366 . 百度学术
    32. 王金庆,宋祥甫,刘福兴,邹国燕,付子轼,刘长娥,刘娅琴,潘琦,孙作登. 太湖流域直湖港支流龙延河水系鱼类集群现状. 湖泊科学. 2011(06): 982-990 . 百度学术

    其他类型引用(24)

计量
  • 文章访问数:  1050
  • HTML全文浏览量:  1
  • PDF下载量:  724
  • 被引次数: 56
出版历程
  • 收稿日期:  2009-12-30
  • 修回日期:  2010-06-28
  • 发布日期:  2010-09-24

目录

    /

    返回文章
    返回