高浓度CO2对莱茵衣藻光系统Ⅱ能量流和能量利用效率的影响

夏建荣

夏建荣. 高浓度CO2对莱茵衣藻光系统Ⅱ能量流和能量利用效率的影响[J]. 水生生物学报, 2005, 29(4): 449-455.
引用本文: 夏建荣. 高浓度CO2对莱茵衣藻光系统Ⅱ能量流和能量利用效率的影响[J]. 水生生物学报, 2005, 29(4): 449-455.
XIA Jian-Rong. INFLUENCES OF EXTERNAL HIGH CO2CONCENTRATION ON THE ENERGY FLUXES AND YIELD OF PSII IN THE GREEN ALGA CHLAMYDOMONAS REINHARDTII[J]. ACTA HYDROBIOLOGICA SINICA, 2005, 29(4): 449-455.
Citation: XIA Jian-Rong. INFLUENCES OF EXTERNAL HIGH CO2CONCENTRATION ON THE ENERGY FLUXES AND YIELD OF PSII IN THE GREEN ALGA CHLAMYDOMONAS REINHARDTII[J]. ACTA HYDROBIOLOGICA SINICA, 2005, 29(4): 449-455.

高浓度CO2对莱茵衣藻光系统Ⅱ能量流和能量利用效率的影响

基金项目: 

广东省自然科学基金资助

INFLUENCES OF EXTERNAL HIGH CO2CONCENTRATION ON THE ENERGY FLUXES AND YIELD OF PSII IN THE GREEN ALGA CHLAMYDOMONAS REINHARDTII

  • 摘要: 研究了短期内高浓度CO2培养下莱茵衣藻光系统Ⅱ行为的变化,结果表明高浓度CO2培养导致叶绿素a、b和类胡萝卜素含量明显增加,同时随培养时间的延长叶绿素a荧光动力学(快相)曲线中O、J、I、P期的荧光强度明显增加。与空气培养的细胞相比,高浓度CO2在J期的相对可变荧光均维持在较高水平;单位反应中心复合体吸收的能量在高浓度CO2培养6小时后有明显的增加,但单位反应中心捕获和用于电子传递的能量并没有明显地增加。高浓度CO2培养使光系统Ⅱ最大光化学效率、传递的电子能引起的光化学反应效率和电子传递的量子效率均明显低于通空气培养的细胞。以上结果表明不同CO2浓度培养导致莱茵衣藻叶绿素a荧光动力学快相的变化与其光系统Ⅱ功能的变化密切相关,也可能与HCO3转运过程中能量需求的变化有关。
    Abstract: Eukaryotic algae exhibit marked differences in photosynthetic carbon metabolism dependent on the CO2concentrationduring growth. The lower affinity for inorganic carbon, high CO2compensation and decreased carbonic anhydrase in high CO2con-centration have been reported. However, little attention has been paid to the response of PSII to elevated CO2concentration in a-lgae. Chlorophyll a fluorescence has been widely used to study thePSII behavior under different stress conditions which results inthe establishment of different physiological states. A suitable cell model to study the CO2effects in algae is the protist Chlamy-domonas reinhardtii. To investigate the influences of external high CO2concentration on the energy fluxes and yield of PSII, thechanges of PSII behavior in thegreen alga Chlamydomonas reinhardtii cells exposed to high CO2concentration for 12h were stud-ied by analyzing the chlorophyll a fluorescence transients. High CO2concentration resulted in significant increase by 16.1%,13.7%and 13.9%in the content of chlorophyll a, b and carotenoids, respectively. The polyphasic fluorescencetransients(O-J--IP)was measured by using Plant Efficiency Analyser (PEA) after the cells were dark-adapted, and showed that the level at O, J, Iand P in high-CO2-grown cells significantly raised with the increasing exposure time compared with air-grown ones. The relativevariable fluorescence at the phase J (VJ) maintained a higher value in high-CO2-grown cells in contrast to air-grown ones. Thespecific energy flux for absorption(ABS/RC) after cells were cultured in high CO2concentration (4%CO2) for 6 h had a markedincrease,whereas the specific energy fluxes for electron transport (ETO/RC) and trapping (TRo/RC)were not affected by high CO2concentration. The maximal quantum yield of primary photochemistry (UPo),the efficiencywith which a trapped exciton can movean electron into the electron transport chain further than QA (W O), and the quantum yield of electron transport (UEo) were lower inhigh-CO2-grown cells than in air-grown ones. These results in this study suggested that the difference of chlorophyll a fluores-cence reported here reflected the changes of PSII function which may be associated with active transport of HCO3. The analysisof polyphasic chlorophyll a fluorescence transients was a powerful tool to study the changes of the energy fluxes and yield of PSIIin high CO2concentration.
  • [1]

    Badger M R, Kaplan A, Berry J A. Internal inorganic carbon pool ofChlamydomonas reinhardtii. Evidence for a carbon dioxide concen -trating mechanism[J]. Plant Physiol. 1980, 66:407-413

    [2]

    He P M, Wu W N, Zhao J H, et al. Studies on ultrastructure ofpyrenoid from several algae[J]. Acta Hydrobiologica Sinica, 2002,26: 328-334[何培民, 吴维宁, 赵建华, 等. 几种藻类的蛋白核超微结构研究. 水生生物学报. 2002, 26: 328-334]

    [3]

    Song L R, Yu J W, Price D, et al. Isolation and analysis of a highCO2requiring mutant of cyanobacterium Synechococcus PCC7942[J].4期夏建荣: 高浓度 CO2对莱茵衣藻光系统ò 能量流和能量利用效率的影响453ActaHydrobiologica Sinica, 1998, 22: 330-335[宋立荣, 俞建伟,Price, 等. 蓝藻聚球藻高浓度CO2需求突变株的研究. 水生生物学报. 1998, 22: 330-335]

    [4]

    Kaplan A, Reinhold L. CO2concentrating mechanisms in photosyn -thetic microorganisms[J]. Annu. Rev. Plant. Plant. Physiol. Plant.Mol. Biol. 1999,50: 539-570

    [5]

    Raven J A. Physiology of inorganic C acquisition and implications forresource use efficiency by marine phytoplankton: relation to increasedCO2and temperature[J]. Plant Cell Environ. 1991, 14:779-794

    [6]

    Sultemeyer D F,FockH P,Canvin D T. Mass spectrometric measure -ment of intracellular carbonic anhydrase activity in high and low Cicells of Chlam ydomonas [J]. Plant Physiol. 1990, 94: 1250-1257

    [7]

    Shiraiwa Y,Miyachi S. Effects of temperature and CO2concentrationon induction of carbonic anhydrase and changes in efficiency of photo-synthesis in Chlorella vulgaris 11 h[J]. Plant Cell Physiol. 1985,26:543-549

    [8]

    Satoh A,Kurano N, Miyachi S. Inhibition of photosynthesis by intra -cellular carbonic anhydrase in microalgae under excess concentrationof CO2[J]. Photosyn Res. 2001,68: 215-224

    [9]

    Govindjee. Sixty -three years since Kautsky: chlorophyll a fluorescence[J]. Aust. J. Plant. Physiol. 1995,22: 131-160

    [10]

    Strasser R J, Srivastava A, Govindjee. Polyphasic chlorophyll a fluo-rescence transient in plants and cyanobacteria[J]. Photochem. Pho-tobiol. 1995, 61: 32-42

    [11]

    Appenroth K J,Stê ckel J, Srivastava A et al. Multiple effects of chro-mate on the photosynthetic apparatus of Spirodela polyrhiza as probeby OJIP chlorophyll a fluorescence measurements[J]. Environ. Pol-lut. 2001, 115:49-64

    [12]

    Lu C M, Vonshak A. Effects of salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells [J]. Physiol. Plant.2002, 114: 405-413

    [13]

    Srivastava A,Friedrich J, Strasser R J. Action of the allelochemical,fischerellin a, on photosystem ò [J]. Biochim BiophysActa. 1998,1364: 326-336

    [14]

    Bozzo G G, Colman B. The induction of inorganic carbonic transportand external carbonic anhydrase in Chlamydomonas reinhardtii is reg -ulated by external CO2 concentration[J]. Plant Cell Environ. 2000,23: 1137-1144

    [15]

    LichtenthalerH K,Wellburn A R. Determinations of total carotenoidsand chlorophyll a and b of leaf extracts in different solvents[J].Biochem. Soc. Trans. (London). 1983, 63: 591-592

    [16]

    Srivastava A,Govindjee, StrasserR J. Greening of peas:parallel mea -sures on 77k emission spectra, OJIP chlorophyll a fluorescence transient, period four oscillation of the initial fluorescence levels, delayedlight emission, and P700[J]. Photosynthetica. 1999, 37: 365-392

    [17]

    Strasser R J,Stirbet A D. Estimation of the energetic connectivity ofPSò centres in plants using the fluorescence rise O - J -I -P fitting ofexperimental data to three different PSò models [J]. Math. Comp.Sim. 2001, 56: 451-461

    [18]

    Lazar D. Chlorophyll a fluorescence induction[J]. Biochim. BiophysActa, 1999, 1412: 1-28

    [19]

    Spalding M H, Critchley C, Govindjee, et al. Influence of carbondioxide concentration during growth on fluorescence induction charac -teristics of the green alga Chlamydomonas reinhardtii [J].PlantPhysiol. 1984, 5:169-176

    [20]

    Li Q, Canvin D T. Energy sources forHCO-3and CO2transport in air -grown cells of Synechococcus UTEX 625[J]. Plant Physiol. 1998,116:1125-1132

    [21]

    Raven J A,LucasW J. The energetic of carbon acquisition. Inorganiccarbon uptake by aquatic photosynthetic organisms[M]. The Amer- ican Society of Plant Physiologists, Maryland: Rockville, 1985

计量
  • 文章访问数:  890
  • HTML全文浏览量:  3
  • PDF下载量:  559
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-01-10
  • 修回日期:  2005-04-12
  • 发布日期:  2005-07-24

目录

    /

    返回文章
    返回