饲料脂肪含量对两种规格的军曹鱼生长、体组成和血清生化指标的影响

刘迎隆, 麦康森, 徐玮, 张彦娇, 王震, 艾庆辉

刘迎隆, 麦康森, 徐玮, 张彦娇, 王震, 艾庆辉. 饲料脂肪含量对两种规格的军曹鱼生长、体组成和血清生化指标的影响[J]. 水生生物学报, 2019, 43(2): 233-242. DOI: 10.7541/2019.029
引用本文: 刘迎隆, 麦康森, 徐玮, 张彦娇, 王震, 艾庆辉. 饲料脂肪含量对两种规格的军曹鱼生长、体组成和血清生化指标的影响[J]. 水生生物学报, 2019, 43(2): 233-242. DOI: 10.7541/2019.029
Ying-Long LIU, Kang-Sen MAI, Wei XU, Yan-Jiao ZHANG, Zhen WANG, Qing-Hui AI. THE EFFECT OF DIFFERENT LIPID LEVELS ON THE GROWTH PERFORMANCE, BODY COMPOSITION AND PLASMA BIOCHEMICAL INDICES IN COBIA (RACHYCENTRON CANADUM L.) AT TWO DIFFERENT SIZES[J]. ACTA HYDROBIOLOGICA SINICA, 2019, 43(2): 233-242. DOI: 10.7541/2019.029
Citation: Ying-Long LIU, Kang-Sen MAI, Wei XU, Yan-Jiao ZHANG, Zhen WANG, Qing-Hui AI. THE EFFECT OF DIFFERENT LIPID LEVELS ON THE GROWTH PERFORMANCE, BODY COMPOSITION AND PLASMA BIOCHEMICAL INDICES IN COBIA (RACHYCENTRON CANADUM L.) AT TWO DIFFERENT SIZES[J]. ACTA HYDROBIOLOGICA SINICA, 2019, 43(2): 233-242. DOI: 10.7541/2019.029

饲料脂肪含量对两种规格的军曹鱼生长、体组成和血清生化指标的影响

基金项目: 水产养殖动物营养需求与高效配合饲料开发(2010030202)资助
详细信息
    作者简介:

    刘迎隆(1988—), 男, 黑龙江哈尔滨人; 博士研究生; 研究方向为水产动物营养与饲料。E-mail: lyl870517@126.com

    通信作者:

    艾庆辉, 教授; 研究方向为水产动物营养与饲料。E-mail: qhai@ouc.edu.cn

  • 中图分类号: S965.3

THE EFFECT OF DIFFERENT LIPID LEVELS ON THE GROWTH PERFORMANCE, BODY COMPOSITION AND PLASMA BIOCHEMICAL INDICES IN COBIA (RACHYCENTRON CANADUM L.) AT TWO DIFFERENT SIZES

    Corresponding author:
  • 摘要: 实验旨在确定2种规格军曹鱼的脂肪需求, 同时探索不同含量的脂肪对2种规格军曹鱼体组成及血清生化指标的影响。以鱼粉、酪蛋白和豆粕为蛋白源, 鱼油为脂肪源, 通过添加不同配比的鱼油配制6种脂肪水平[5.27%、8.22%、10.81%、14.26%、17.32%和20.94% (占干重)]的等氮实验饲料。挑选(38.24±0.30) g (25尾/箱, 40 g规格)和(529.17±5.67) g (10尾/箱, 500 g规格)2种规格的军曹鱼, 置于浮式网箱(1.3 m×1.3 m×2.5 m)中每日饱食投喂2次, 分别进行10周和8周的摄食生长实验。结果表明:随着饲料脂肪含量的增加, 2种规格军曹鱼特定生长率(SGR)和饲料效率(FER)均先上升再下降, 而脏体比(VSI)与肥满度(CF)均显著升高(P<0.05)。另外, 随着饲料脂肪水平的增加, 40 g规格的军曹鱼肝体比(HSI)、鱼体、肝脏和肌肉脂肪含量均显著升高, 鱼体水分和蛋白含量显著下降(P<0.05), 而500 g规格的军曹鱼各处理之间未发现显著差异(P>0.05)。随着饲料脂肪水平的增加, 40 g规格的军曹鱼, 血清总甘油三酯(TG)、血清总胆固醇(TC)、高密度脂蛋白-胆固醇(HDL-C)、低密度脂蛋白-胆固醇(LDL-C)及血糖(Glu)含量显著增加(P<0.05), 而500 g规格的军曹鱼, 除血清TG在各处理之间呈现出显著差异外(P<0.05), 其余指标在各处理之间均未发现显著差异(P>0.05)。综上所述, 以SGRFER为评价指标, 40 g左右规格的军曹鱼脂肪需求量为13.97%—14.16%, 500 g左右规格的军曹鱼脂肪需求量为13.18%—13.47%。
    Abstract: The purpose of this study was to investigate dietary lipid requirement and the effect of different lipid levels on the body composition and plasma biochemical indices in cobia (Rachycentron canadum L.) at two different body sizes (initial weight: 40 g vs. 500 g). Six isonitrogenous diets were formulated using fish meal, soybean meal and wheat meal as the protein source and fish oil as lipid source, with six different lipid contents of 5.27%, 8.22%, 10.81%, 14.26%, 17.32% and 20.94% (at a dry matter basis), respectively. Fish at two different growth stages were randomly distributed to seawater floating net cages (1.5 m×1.5 m×2.5 m) at a density of 25 and 10 fish per net cage, respectively. Each diet was fed to triplicate groups of fish twice daily to satiation for 10 weeks (40 g) and 8 weeks (500 g), respectively. Specific growth rate (SGR) and feed efficiency ratio (FER) significantly increased and then decreased with increasing dietary lipid levels at both developmental stages. The Viscerosomatic index (VSI) and Condition factor (CF) increased significantly with the increase of dietary lipid levels. Significantly higher Hepatosomatic index (HSI), whole-body, liver and muscle lipid contents and lower moisture and protein contents were observed in fish feed the diets containing higher lipid among small fish groups, but no significant difference was detected among large body size groups among above parameters. In addition, the contents of TC, TG, HDL-C, LDL-C and Glu increased significantly with the increasing lipid levels among small fish groups, there was no significant effect among large fish groups in these indices except TG. The overall results showed that based on SGR and FER, the diet containing 13.97%—14.16% and 13.18%—13.47% lipid was most suitable for the cobia culture at the body size of 40 g and 500 g, respectively.
  • 图  1   脂肪含量对2种规格的军曹鱼特定生长率(SGR)的影响

    Figure  1.   Relationship between different lipid levels and SGR of cobia at two body sizes

    图  2   脂肪含量对2种规格的军曹鱼饲料效率(FER)的影响

    Figure  2.   Relationship between different lipid levels and FER of cobia at two body sizes

    表  1   饲料配方及主要营养成分组成(%, 干重)

    Table  1   The formulation and proximate composition of the experimental diets (%, dry matter)

    原料Ingredient (%)组别Group
    处理1
    Diet 1
    处理2
    Diet 2
    处理3
    Diet 3
    处理4
    Diet 4
    处理5
    Diet 5
    处理6
    Diet 6
    鱼粉Fish meal a31.1031.1031.1031.1031.1031.10
    酪蛋白Caseina10.0010.0010.0010.0010.0010.00
    豆粕Soybean meal a17.0017.0017.0017.0017.0017.00
    小麦粉Wheat meal a18.0018.0018.0018.0018.0018.00
    小麦淀粉Wheat starchb19.3516.3513.3510.357.354.35
    鱼油Fish oil0.003.006.009.0012.0015.00
    大豆卵磷脂Soy lecithin1.501.501.501.501.501.50
    矿物质混合物Mineral mixture c1.001.001.001.001.001.00
    维生素混合物Vitamin mixture d2.002.002.002.002.002.00
    乙氧基喹啉Ethosyquin0.050.050.050.050.050.05
    主要营养成分(%, 干重)Proximate composition (%, dry matter)
    粗蛋白Crude protein (%)44.4844.8844.5344.6744.3144.55
    粗脂肪Crude lipid (%)5.278.2210.8114.2617.3220.94
    灰分Ash (%)8.978.888.878.818.708.61
    注: a 鱼粉、酪蛋白、豆粕和小麦粉均来自广东粤海饲料集团(中国, 广东); b 小麦淀粉来自鄄城明珠淀粉厂(中国, 山东); c矿物质混合物 (mg or g/kg diet): NaF, 2 mg; KI, 0.8 mg; CoCl2·6H2O (1%), 50 mg; CuSO4·5H2O, 10 mg; FeSO4·H2O, 80 mg; ZnSO4·H2O, 50 mg; MnSO4·H2O, 60 mg; MgSO4·7H2O, 1200 mg; Ca (H2PO3)2·H2O, 3000 mg; NaCl, 100 mg; zoelite, 10.45 g; d 维生素混合物 (mg or g/kg diet): thiamin (B1), 25 mg; riboflavin, 45 mg; pyridoxine HCl, 20 mg; vitamin B12, 0.1 mg; vitamin K3,10 mg; inositol, 800 mg; pantothenic acid, 60 mg; niacin acid, 200 mg; folic acid, 20 mg; biotin, 1.20 mg; retinal acetate, 32 mg; cholecalciferol, 5 mg; α-tocopherol, 120 mg; ascorbic acid, 2000 mg; cholinechloride, 2000 mg; ethoxyquin 150 mg; wheat middling, 14.52 gNote: a Fish meal, Casein, Soybean meal and wheat meal obtained from Guangdong Yuehai Feed Group Co. Ltd. (Guangzhou, China);b Wheat starch, obtained from Juancheng Mingzhu Starch Factory (Shandong, China); c Mineral premix (mg or g/kg diet):NaF, 2 mg; KI, 0.8 mg; CoCl2·6H2O (1%), 50 mg; CuSO4·5H2O, 10 mg; FeSO4·H2O, 80 mg; ZnSO4·H2O, 50 mg; MnSO4·H2O, 60 mg; MgSO4·7H2O, 1200 mg; Ca (H2PO3)2·H2O, 3000 mg; NaCl, 100 mg; zoelite, 10.45 g; dVitamin premix (mg or g/kg diet): thiamin (B1), 25 mg; riboflavin, 45 mg; pyridoxine HCl, 20 mg; vitamin B12, 0.1 mg; vitamin K3,10 mg; inositol, 800 mg; pantothenic acid, 60 mg; niacin acid, 200 mg; folic acid, 20 mg; biotin, 1.20 mg; retinal acetate, 32 mg; cholecalciferol, 5 mg; α-tocopherol, 120 mg; ascorbic acid, 2000 mg; cholinechloride, 2000 mg; ethoxyquin 150 mg; wheat middling, 14.52 g
    下载: 导出CSV

    表  2   军曹鱼2个不同生长阶段成活率(SR)、特定生长率(SGR)、饲料效率(FER)、脏体比(VSI)、肝体比(HSI)、肥满度(CF) (%, 湿重; 均值±标准误)*

    Table  2   Effect of lipid levels on Survival ratio (SR), Specific growth rate (SGR), Feed efficiency ratio (FER), Viscerosomatic index (VSI), Hepatosomatic index (HSI) and Condition factor (CF) of cobia at two different body weight (%, wet weight; Means±SEM)*

    编号No.脂肪含量Lipid level (%)SR (%)SGR (%/d)FERVSI (%)HSI (%)CF
    实验1 Trial 1 初始体重: (38.24±0.30) g
    处理1 Diet 1 5.2796.00±2.311.76±0.01d0.48±0.01d7.95±0.34c1.29±0.01d0.88±0.03c
    处理2 Diet 2 8.2296.00±2.311.96±0.01bc0.55±0.01c9.59±0.47bc1.36±0.04cd0.92±0.02bc
    处理3 Diet 310.8198.67±1.332.05±0.05ab0.64±0.00b9.64±0.57bc1.41±0.02cd1.00±0.04bc
    处理4 Diet 414.2698.67±1.332.13±0.02a0.70±0.01a10.52±0.71b1.47±0.02c1.08±0.03ab
    处理5 Diet 517.3297.33±1.332.10±0.02a0.64±0.01b11.65±0.59ab1.63±0.03b1.16±0.03a
    处理6 Diet 620.9496.00±2.311.86±0.01cd0.56±0.01c13.47±0.43a1.78±0.03a1.22±0.04a
    F0.48340.012153.88847.14812.7915.291
    P0.782<0.001<0.0010.001<0.001<0.001<
    实验2 Trial 2 初始体重: (529.17±5.67) g
    处理1 Diet 1 5.27100.00±0.000.21±0.02c0.09±0.01d6.99±0.18d1.04±0.120.92±0.01c
    处理2 Diet 2 8.22100.00±0.000.35±0.05ab0.15±0.01bc7.37±0.15cd1.14±0.100.98±0.01bc
    处理3 Diet 310.81100.00±0.000.43±0.02a0.18±0.01ab8.48±0.10abc1.27±0.101.07±0.05abc
    处理4 Diet 414.26100.00±0.000.46±0.04a0.20±0.01a8.06±0.29bcd1.38±0.131.07±0.05abc
    处理5 Diet 517.32100.00±0.000.36±0.05ab0.16±0.01ab8.80±0.39ab1.15±0.031.17±0.04ab
    处理6 Diet 620.9496.67±3.330.26±0.06bc0.11±0.01cd9.36±0.20a1.38±0.061.23±0.08a
    F1.00015.52420.9232.18513.8515.866
    P0.4580.001<0.001<0.120.001<0.001<
    注: *数值为三个重复的平均值, 标相同字母上标表示组间经Tukey多重检验差异不显著(P>0.05); 下同Note: *Date are means of triplicate. Means in the same row sharing the same superscript letter are not significantly different determined by the Turkey’s test (P>0.05); the same applies below
    下载: 导出CSV

    表  3   两种规格的军曹鱼全鱼组成(%, 湿重; 均值±标准误)

    Table  3   Effect of lipid level on whole-body composition of cobia at two body weight (%, wet weight; Means±SEM)

    编号No.脂肪含量Lipid level (%)水分Moisture (%)蛋白质Crude protein (%)脂肪Crude lipid (%)灰分Ash (%)
    实验1 Trial 1 初始体重: (38.24±0.30) g
    处理1 Diet 1 5.2773.44±0.05a18.01±0.05a5.86±0.06f3.33±0.13
    处理2 Diet 2 8.2273.12±0.24ab17.48±0.15ab6.51±0.09e3.14±0.17
    处理3 Diet 310.8171.77±0.34c17.40±0.13b7.97±0.14d2.96±0.04
    处理4 Diet 414.2671.60±0.18c17.18±0.07bc8.48±0.06c3.25±0.11
    处理5 Diet 517.3272.19±0.28bc16.69±0.18c9.01±0.15b3.36±0.09
    处理6 Diet 620.9471.82±0.16c15.94±0.08d9.87±0.10a3.06±0.07
    F11.55136.662201.5702.035
    P<0.001<0.001<0.0010.122
    实验2 Trial 2 初始体重: (529.17±5.67) g
    处理1 Diet 1 5.2777.67±0.7015.33±0.266.14±0.083.60±0.16
    处理2 Diet 2 8.2277.11±1.6416.23±0.666.15±0.063.44±0.23
    处理3 Diet 310.8174.89±0.8015.78±0.526.20±0.053.56±0.08
    处理4 Diet 414.2675.96±1.0315.11±0.616.32±0.143.50±0.12
    处理5 Diet 517.3276.57±0.2615.93±0.276.25±0.093.76±0.11
    处理6 Diet 620.9476.51±0.6415.46±0.286.18±0.083.56±0.04
    F1.0340.7930.5920.643
    P0.4410.5750.7070.672
    下载: 导出CSV

    表  4   两种规格的军曹鱼肝脏组成(%, 湿重; 均值±标准误)

    Table  4   Effect of lipid level on liver composition of cobia at two body weight (%, wet weight; Means±SEM)

    编号No.脂肪含量Lipid level (%)水分Moisture (%)蛋白质Crude protein (%)脂肪Crude lipid (%)糖原Glucogen (mg/g)
    实验1 Trial 1 初始体重: (38.24±0.30) g
    处理1 Diet 1 5.2773.84±0.55a12.77±0.2512.35±0.35c4.33±0.42a
    处理2 Diet 2 8.2273.21±0.31ab12.98±0.1413.69±0.44bc4.05±0.20a
    处理3 Diet 310.8171.84±0.51abc13.30±0.1415.20±0.35b3.46±0.26ab
    处理4 Diet 414.2672.44±0.69abc12.14±0.6717.41±0.33a3.42±0.21ab
    处理5 Diet 517.3271.22±0.52bc11.92±0.5717.68±0.68a3.20±0.33ab
    处理6 Diet 620.9470.56±0.28c12.52±0.4517.39±0.34a2.49±0.21b
    F6.0791.48527.0775.298
    P0.0050.265<0.0010.008
    实验2 Trial 2 初始体重: (529.17±5.67) g
    处理1 Diet 1 5.2774.79±0.5214.36±0.767.69±0.904.50±0.06
    处理2 Diet 2 8.2276.24±0.2414.00±1.176.90±0.904.56±0.29
    处理3 Diet 310.8175.66±0.8713.20±0.348.47±0.765.06±0.34
    处理4 Diet 414.2675.59±0.4611.96±0.6710.00±0.965.37±0.24
    处理5 Diet 517.3275.21±0.6812.88±0.488.68±1.565.44±0.16
    处理6 Diet 620.9473.71±0.9711.46±0.2111.57±0.495.38±0.13
    F1.6962.7432.9173.583
    P0.2100.0710.0600.033
    下载: 导出CSV

    表  5   两种规格的军曹鱼肌肉组成(%, 湿重; 均值±标准误)

    Table  5   Effect of lipid level on muscle composition of cobia at two body weight (%, wet weight; Means±SEM)

    编号
    No.
    脂肪含量
    Lipid level (%)
    水分
    Moisture (%)
    蛋白质
    Crude protein (%)
    脂肪
    Crude lipid (%)
    灰分
    Ash (%)
    糖原
    Glucogen (mg/g)
    实验1 Trial 1 初始体重: (38.24±0.30) g
    处理1 Diet 1 5.2778.72±0.29a19.41±0.205.27±0.11b1.52±0.040.18±0.01a
    处理2 Diet 2 8.2277.95±0.10ab19.77±0.145.41±0.09b1.48±0.040.15±0.01ab
    处理3 Diet 310.8176.84±0.35ab20.16±0.235.55±0.06b1.47±0.030.15±0.00ab
    处理4 Diet 414.2676.47±0.17abc20.17±0.115.52±0.10b1.47±0.010.14±0.02ab
    处理5 Diet 517.3275.79±0.31bc20.19±0.416.18±0.10a1.62±0.020.10±0.01bc
    处理6 Diet 620.9474.09±1.12c21.20±0.806.58±0.17a1.60±0.040.08±0.01c
    F10.0682.3122.5264.67411.517
    P0.0010.109<0.0010.013<0.001
    实验2 Trial 2 初始体重: (529.17±5.67) g
    处理1 Diet 1 5.2779.30±0.4518.42±0.285.50±0.451.33±0.010.14±0.01a
    处理2 Diet 2 8.2277.91±0.4518.97±0.405.50±0.421.38±0.020.14±0.00a
    处理3 Diet 310.8178.18±0.2818.21±0.065.50±0.041.39±0.010.09±0.01b
    处理4 Diet 414.2678.88±0.6918.35±0.305.38±0.541.31±0.040.09±0.01b
    处理5 Diet 517.3279.28±0.5118.45±0.395.62±0.591.40±0.030.07±0.01b
    处理6 Diet 620.9479.12±0.4618.51±0.285.76±0.241.33±0.020.06±0.01b
    F1.4860.7150.0921.89314.164
    P0.2650.6240.9920.169<0.001
    下载: 导出CSV

    表  6   两种规格的军曹鱼血清生化指标(%, 湿重; 均值±标准误)

    Table  6   Effect of lipid level on serum biochemical indices of cobia at two body weight (%, wet weight; Means±SEM)

    编号
    No.
    脂肪含量
    Lipid level (%)
    TG
    (mmol/L)
    TC
    (mmol/L)
    TP
    (g/L)
    LDL-C
    (mmol/L)
    HDL-C
    (mmol/L)
    GLU
    (mmol/L)
    实验1 Trial 1 初始体重: (38.24±0.30) g
    处理1 Diet 1 5.271.03±0.05c1.52±0.06c28.5±0.20.0768±0.0130c0.4518±0.0511d0.90±0.29c
    处理2 Diet 2 8.221.05±0.07c1.76±0.03b28.8±0.30.0886±0.0092bc0.5923±0.0429cd1.95±0.32c
    处理3 Diet 310.811.31±0.02b1.76±0.01b27.8±0.40.1101±0.0039abc0.7100±0.0784bc2.45±0.23bc
    处理4 Diet 414.261.37±0.05b1.79±0.01ab27.6±1.10.1063±0.0088abc0.7473±0.0633bc3.70±0.54ab
    处理5 Diet 517.321.36±0.03b1.88±0.02ab27.2±0.70.1269±0.0059ab0.9159±0.0091ab4.11±0.15a
    处理6 Diet 620.941.59±0.03a1.92±0.01a27.4±0.80.1298±0.0034a1.0305±0.0373a3.96±0.30ab
    F23.49421.8260.8696.65916.49615.41
    P<0.001<0.0010.5290.003<0.001<0.001
    实验2 Trial 2 初始体重: (529.17±5.67) g
    处理1 Diet 1 5.270.69±0.15b1.45±0.1628.1±1.70.1031±0.01661.0208±0.17513.10±0.53
    处理2 Diet 2 8.220.90±0.21ab1.78±0.1527.6±0.40.1117±0.01180.4410±0.20752.71±0.59
    处理3 Diet 310.811.12±0.24ab1.93±0.1427.9±1.80.0986±0.01670.9687±0.14063.27±0.87
    处理4 Diet 414.260.90±0.18ab1.59±0.1026.4±3.40.1066±0.00540.9571±0.11452.02±0.79
    处理5 Diet 517.321.25±0.13ab1.47±0.1423.7±1.20.0967±0.02010.6918±0.08712.72±0.21
    处理6 Diet 620.941.63±0.18a1.64±0.1923.9±2.50.0899±0.01910.6236±0.05284.02±0.57
    F3.1591.5440.9390.242.7911.131
    P0.0480.2490.490.9370.0670.396
    注: TG. 总甘油三酯Triglyceride; TC. 总胆固醇Total cholesterol; TP. 总蛋白Total protein; LDL-C. 低密度脂蛋白-胆固醇Low density lipoportein-cholesterol; HDL-C. 高密度脂蛋白-胆固醇Low density lipoportein-cholesterol; GLU. 葡萄糖Glucose
    下载: 导出CSV
  • [1]

    Ng W K, Abdullah N, De Silva S S. The dietary protein requirement of the Malaysian mahseer, Tor tambroides (Bleeker), and the lack of protein-sparing action by dietary lipid [J]. Aquaculture, 2008, 284(1-4): 201—206 doi: 10.1016/j.aquaculture.2008.07.051

    [2]

    Tian J, Wu F, Yang C G, et al. Dietary lipid levels impact lipoprotein lipase, hormone-sensitive lipase, and fatty acid synthetase gene expression in three tissues of adult GIFT strain of Nile tilapia, Oreochromis niloticus [J]. Fish Physiology and Biochemistry, 2015, 41(1): 1—18 doi: 10.1007/s10695-014-0001-1

    [3]

    Xu H, Dou B, Zheng K, et al. Lipid requirements in on-growing Japanese seabass (Lateolabrax japonicus) of two different fish sizes [J]. The Israeli Journal of Aquaculture-Bamidgeh, 2015, 67

    [4]

    Watanabe T. Lipid nutrition in fish [J]. Comparative Biochemistry and Physiology, 1982, 73(1): 3—15

    [5] 杨俊江. 三个生长阶段斜带石斑鱼蛋白质、脂肪和碳水化合物需要量研究. 湛江: 广东海洋大学. 2013

    Yang J J. The requirement of protein, lipid and carbohydrate for grouper (Epinephelus coioides) at three growth stages [D]. Thesis for Master of Science. Guangdong Ocean University, Zhanjiang. 2013

    [6]

    Yan J, Liao K, Wang T J, et al. Dietary lipid levels influence lipid deposition in the liver of large yellow croaker (Larimichthys crocea) by regulating lipoprotein receptors, fatty acid uptake and triacylglycerol synthesis and catabolism at the transcriptional level [J]. PloS One, 2015, 10(6): e0129937 doi: 10.1371/journal.pone.0129937

    [7]

    Hemre G I, Sandnes K. Effect of dietary lipid level on muscle composition in Atlantic salmon Salmo salar [J]. Aquaculture Nutrition, 1999, 5(1): 9—16 doi: 10.1046/j.1365-2095.1999.00081.x

    [8]

    Wang J T, Liu Y J, Tian L X, et al. Effect of dietary lipid level on growth performance, lipid deposition, hepatic lipogenesis in juvenile cobia (Rachycentron canadum) [J]. Aquaculture, 2005, 249(1): 439—447

    [9]

    López L M, Torres A L, Durazo E, et al. Effects of lipid on growth and feed utilization of white seabass (Atractoscion nobilis) fingerlings [J]. Aquaculture, 2006, 253(1): 557—563

    [10]

    Dias J, Alvarez M J, Diez A, et al. Regulation of hepatic lipogenesis by dietary protein energy in juvenile European sebass (Dicentrarchus labrax) [J]. Aquaculture, 1998, 161: 169—186 doi: 10.1016/S0044-8486(97)00268-8

    [11] 徐革锋, 刘洋, 谷伟, 等. 不同生长阶段细鳞鲑(Brachymystax lenok)消化酶活性比较研究. 东北农业大学学报, 2012, 43(12): 109—113 doi: 10.3969/j.issn.1005-9369.2012.12.022

    Xu G F, Liu Y, Gu W, et al. Study on digestive enzyme activities of Brachymystax lenok at different growth stages [J]. Journal of Northeast Agricultural University, 2012, 43(12): 109—113 doi: 10.3969/j.issn.1005-9369.2012.12.022

    [12] 刘迎隆. 不同添加量的糖对军曹鱼生长代谢的影响. 青岛: 中国海洋大学. 2014

    Liu Y L. The effect of carbohydrate to growth and metabolism on cobia [D]. Thesis for Master of Science. Ocean University of China, Qingdao. 2014

    [13] 邹祺. 黄颡鱼不同生长阶段适宜营养水平的研究. 武汉: 华中农业大学. 2005

    Zou Q. Optimum Nutrition Levels of different growth phases of Pelteobagrus fulvidraco Rich [D]. Huazhong Agriculture University, Wuhan. 2005

    [14] 覃笛根. 二个生长阶段斜带石斑鱼胆碱需要量的研究. 湛江: 广东海洋大学. 2016

    Qin D G. Dietary choline requirement for grouper, Epinephelus coioides at two growth stages [D]. Thesis for Master of Science. Guangdong Ocean University, Zhanjiang. 2016

    [15] 姚林杰. 团头鲂三个生长阶段适宜蛋白/脂肪(蛋白/能量)比和脂肪需求量的研究. 苏州: 苏州大学. 2013

    Yao L J. Research on the optimal protein to lipid (energy) ratio and lipid content of blunts nout bream (Megalobrama amblycephala) in different growth stages [D]. Suzhou: Suzhou University. 2013

    [16] 申玉春. 鱼类增养殖学. 北京: 中国农业出版社. 2008, 32—33

    Shen Y C. Culture and Enhancement of Fish [M]. Beijing: China Agriculture Press. 2008, 32—33

    [17] 陈浩如, 孙丽华, 胡建兴, 等. 军曹鱼生物学特性及苗种规模化繁育技术. 海洋科学, 2006, 30(2): 5—9 doi: 10.3969/j.issn.1000-3096.2006.02.002

    Chen H R, Sun L H, Hu J X, et al. Biological characteristics and artificial breeding technique in a large scale of cobia, Rachycentron canadum [J]. Marine Sciences, 2006, 30(2): 5—9 doi: 10.3969/j.issn.1000-3096.2006.02.002

    [18]

    Hassler W W, Rainville R P. Techniques for Hatching and Rearing Cobia, Rachycentron canadum, Through Larval and Juvenile Stages [M]. North Carolina State University, 1975

    [19] 何伟聪. 二种益生菌对军曹鱼幼鱼生长性能、免疫酶和消化酶活性、肠道菌群结构及TLR9基因表达量的影响. 湛江: 广东海洋大学. 2015

    He W C. Effect of two probiotics on the growth performance, immune enzymes, digestive enzymes, intestinal microflora and TLR9 gene expression in tissues of juvenile cobia (Rachycentron canadum) [D]. Zhanjiang: Guangdong Ocean University. 2015

    [20]

    Association of Official Analytical Chemists, Official Method Analysis, 16th edn [M]. Association of Official Analytical Chemists, Arlington, VA, USA. 1995

    [21]

    Folch J, Lees M, Stanley-Sloane G-H. A simple method for the isolation and purification of total lipids from animal tissues [J]. Journal of Biological Chemistry, 1957, 266(1): 497—507

    [22]

    Hassid W Z, Abraham S. Chemical procedure for analysis of polusaccharides. In: Colwick S P, Kaplan N O (Eds.), Methods in Enzymology. Academic Press Inc., New York, USA. 1957, 34

    [23]

    Barham, Denise, Trinder P. An improved colour reagent for the determination of blood glucose by the oxidase system [J]. Analyst, 1972, 97: 142 doi: 10.1039/an9729700142

    [24]

    Peters T. Proposals for standardization of total protein assays [J]. Clinical Chemistry, 1968, 14: 1147—1159

    [25]

    Richmond W. Preparation and properties of a cholesterol oxidase from Norcardiu sp. and its application to the enzymatic assay of total cholesterol in serum [J]. Clinical Chemistry, 1973, 19: 1350—1356

    [26]

    Schettler G, Nussel E. Determination of triglycerides [J]. Arbeitsmed Sozialmed Praventivmed, 1975, 10: 10—25

    [27]

    Gordan T, Castelli Wp, Hjortland Mc, et al. High density lipoprotein as a protective factor against coronary heart disease [J]. The American Journal of Medicine, 1977, 62: 707—714 doi: 10.1016/0002-9343(77)90874-9

    [28]

    Okada M, Matsui H, Ito Y, et al. Low-density lipoprotein cholesterol can be chemically measured: a new superior method [J]. The Journal of Laboratory and Clinical Medicine, 1998, 132: 195—201 doi: 10.1016/S0022-2143(98)90168-8

    [29]

    Jover M A, Garéıa-Gómez A T, Gándara F D L, et al. Growth of mediterranean yellowtail (Seriola dumerilii) fed extruded diets containing different levels of protein and lipid [J]. Aquaculture, 1999, 179(1): 25—33

    [30]

    Kima L O, Lee S M. Effects of the dietary protein and lipid levels on growth and body composition of bagrid catfish, Pseudobagrus fulvidraco [J]. Aquaculture, 2005, 243(1): 323—329

    [31]

    Luo Z, Liu Y J, Mai K S, et al. Effect of dietary lipid level on growth performance, feed utilization and body composition of grouper Epinephelus coioides juveniles fed isonitrogenous diets in floating netcages [J]. Aquaculture International, 2005, 13(1): 257—269

    [32] 张帆. 大黄鱼(Pseudosciaena crocea R.)脂类营养生理和饲料替代蛋白源的研究. 青岛: 中国海洋大学. 2012

    Zhang F. Lipid requirement and fishmeal replacement in diets of large yellow croaker, Pseudosciaena crocea R. [D]. Qingdao: Ocean University of China. 2012

    [33]

    Lee S M, Jeon I G, Lee J Y. Effects of digestible protein and lipid levels in practical diets on growth, protein utilization and body composition of juvenile rockfish (Sebastes schlegeli) [J]. Aquaculture, 2002, 211(1): 227—239

    [34]

    Skalli A, Hidalgo M C, Abellan E, et al. Effects of the dietary protein/lipid ratio on growth and nutrient utilization in common dentex (Dentex dentex L.) at different growth stages [J]. Aquaculture, 2004, 235(1): 1—11

    [35]

    Silverstein J T, Shearer K D, Dickoff W W, et al. Regulation of nutrient intake and energy balance in salmon [J]. Aquaculture, 1999, 177(1): 161—169

    [36]

    Espinós F J, Tomás A, Pérez L M, et al. Growth of dentex fingerlings (Dentex dentex) fed diets containing different levels of protein and lipid [J]. Aquaculture, 2003, 218(1): 479—490

    [37]

    Pei Z, Xie S, Lei W, et al. Comparative study on the effect of dietary lipids level on growth and feed utilization for gibel carp (Carassius auratus gibelio) and Chinese longsnout catfish (Leiocassis longirostris Gunther) [J]. Aquaculture Nutrition, 2004, 10(1): 209—216

    [38]

    Jobling M. Growth studies with fish overcoming the problem of size variation [J]. Journal of Fish Biology, 1983, 22: 153—157 doi: 10.1111/jfb.1983.22.issue-2

    [39] 彭树锋, 王云新, 叶富良, 等. 体重对斜带石斑鱼能量收支的影响. 水生生物学报, 2008, 32(6): 934—940

    Peng S F, Wang Y X, Ye F L, et al. Effects of body weight on energy budget of Epinephelus coioides [J]. Acta Hydrobiologica Sinica, 2008, 32(6): 934—940

    [40] 谢小军, 孙儒泳. 南方鲇的最大摄食率及其与体重和温度的关系. 生态学报, 1992, 12(3): 225—231

    Xie X J, Sun R Y. Maximum ration level in the southern catfish (Silurus meridionalis Chen.) in relation to body weight and temperature [J]. Acta Ecologica Sinica, 1992, 12(3): 225—231

    [41] 刘勇、孙耀. 不同大小玉筋鱼摄食、生长和生态转换效率的比较. 海洋湖沼通报, 2005, (1): 73—78 doi: 10.3969/j.issn.1003-6482.2005.01.013

    Liu Y, Sun Y. Comparing the food consumptions, growths and conversion efficiencies of sandlance (Ammodyte personatus Girard) between two weight groups [J]. Transactions of Oceanology and Limnology, 2005, (1): 73—78 doi: 10.3969/j.issn.1003-6482.2005.01.013

    [42] 陈毕生, 柯浩, 冯娟, 等. 军曹鱼(Rachycentron canadum)的生物学特征及网箱养殖技术. 现代渔业信息, 1999, 14(9): 16—19

    Chen B S, Ke H, Feng X, et al. Biological Characterization and Net-cage Cultured Technology of Canadian Sergeant Fish, Rachucentron canadum (Linnaeus) [J]. Modern Fisheries Information, 1999, 14(9): 16—19

    [43]

    Shearer K D. Factors affecting the proximate composition of cultured fishes with emphasis on salmonids [J]. Aquaculture, 1994, 119(1): 63—88 doi: 10.1016/0044-8486(94)90444-8

    [44]

    Weil C, Lefèvre F, Bugeon J. Characteristics and metabolism of different adipose tissues in fish [J]. Reviews in Fish Biology and Fisheries, 2012, 23: 157—173

    [45]

    Magkos F. Basal very low-density lipoprotein metabolism in response to exercise: mechanisms of hypotriacylglycerolemia [J]. Progress in Lipid Research, 2009, 48: 171—190 doi: 10.1016/j.plipres.2009.02.003

    [46] 严晶. 饲料脂肪水平和脂肪酸种类对大黄鱼脂肪沉积的影响. 青岛: 中国海洋大学. 2015

    Yan J. Effects of dietary lipid levels and types of fatty acids on lipid deposition in large yellow croaker (Larmichthys crocea) [D]. Qingdao: Ocean University of China. 2015

    [47]

    Du Z Y, Clouet P, Zheng W H, et al. Biochemical hepatic alterations and body lipid composition in the herbivorous grass carp (Ctenopharyngodon idella) fed high-fat diets [J]. British Journal of Nutrition, 2006, 95: 905—915 doi: 10.1079/BJN20061733

    [48]

    Du Z, Clouet P, Huang L, et al. Utilization of different dietary lipid sources at high level in herbivorous grass carp (Ctenopharyngodon idella): mechanism related to hepatic fatty acid oxidation [J]. Aquaculture Nutrition, 2008, 14: 77—92 doi: 10.1111/j.1365-2095.2007.00507.x

    [49]

    Kikuchi K, Furuta T, Iwata N, et al. Effect of dietary lipid levels on the growth, feed utilization, body composition and blood characteristics of tiger puffer Takifugu rubripes [J]. Aquaculture, 2009, 298: 111—117 doi: 10.1016/j.aquaculture.2009.10.026

    [50]

    Wang X, Li Y, Hou C, et al. Physiological and molecular changes in large yellow croaker (Pseudosciaena crocea R.) with high‐fat diet‐induced fatty liver disease [J]. Aquaculture Research, 2013: 1—11

    [51] 彭墨. 脂肪水平和脂肪酸组成对大菱鲆幼鱼脂沉积的影响. 青岛: 中国海洋大学. 2014

    Peng M. The effects of dietary lipid level and fatty acids composition on lipid deposition in juvenile turbot (Scophthalmus maximus L.) [D]. Qingdao: Ocean University of China. 2014

    [52]

    Adiels M, Taskinen M R, Packard C, et al. Overproduction of large VLDL particles is driven by increased liver fat content in man [J]. Diabetologia, 2006, 49: 755—765 doi: 10.1007/s00125-005-0125-z

    [53]

    Adiels M, Westerbacka J, Soro-Paavonen A, et al. Acute suppression of VLDL1 secretion rate by insulin is associated with hepatic fat content and insulin resistance [J]. Diabetologia, 2007, 50: 2356—2365 doi: 10.1007/s00125-007-0790-1

    [54]

    Ribiero A, Mangeney M, Cardot P, et al. Effect of dietary fish oil and corn oil on lipid metabolism and apolipoprotein gene expression by rat liver [J]. European Journal of Biochemistry, 1991, 196: 499—507 doi: 10.1111/ejb.1991.196.issue-2

    [55]

    Roche H M, Gibney M J. Effect of long-chain n-3 polyunsaturated fatty acids on fasting and postprandial triacylglycerol metabolism [J]. The American Journal of Clinical Nutrition, 2000, 71: 232s—237s doi: 10.1093/ajcn/71.1.232s

    [56]

    Davidson M H. Mechanisms for the hypotriglyceridemic effect of marine omega-3 fatty acids [J]. The American Journal of Cardiology, 2006, 98: 27—33

    [57]

    Shearer G C, Savinova O V, Harris W S. Fish oil-How does it reduce plasma triglycerides [C]? Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2012, 1821, 843—851

图(2)  /  表(6)
计量
  • 文章访问数:  2491
  • HTML全文浏览量:  932
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-28
  • 修回日期:  2018-06-27
  • 网络出版日期:  2018-12-20
  • 发布日期:  2019-02-28

目录

    /

    返回文章
    返回