Zn2+胁迫对绿球藻生长、生理特性及细胞结构的影响

邱昌恩, 毕永红, 胡征宇

邱昌恩, 毕永红, 胡征宇. Zn2+胁迫对绿球藻生长、生理特性及细胞结构的影响[J]. 水生生物学报, 2007, 31(4): 503-508.
引用本文: 邱昌恩, 毕永红, 胡征宇. Zn2+胁迫对绿球藻生长、生理特性及细胞结构的影响[J]. 水生生物学报, 2007, 31(4): 503-508.
QIU Chang-En, BI Yong-Hong, HU Zheng-Yu. THE EFFECTS OF Zn^2+ STRESS ON THE GROWTH, PHYSIOLOGICAL CHARACTERISTICS AND CELL STRUCTURE OF CHLOROCOCCUM SP[J]. ACTA HYDROBIOLOGICA SINICA, 2007, 31(4): 503-508.
Citation: QIU Chang-En, BI Yong-Hong, HU Zheng-Yu. THE EFFECTS OF Zn^2+ STRESS ON THE GROWTH, PHYSIOLOGICAL CHARACTERISTICS AND CELL STRUCTURE OF CHLOROCOCCUM SP[J]. ACTA HYDROBIOLOGICA SINICA, 2007, 31(4): 503-508.

Zn2+胁迫对绿球藻生长、生理特性及细胞结构的影响

基金项目: 

863计划(2002AA601021)

湖北省教育厅重点项目(D200522005)

黄石市科技局重点项目资助

THE EFFECTS OF Zn^2+ STRESS ON THE GROWTH, PHYSIOLOGICAL CHARACTERISTICS AND CELL STRUCTURE OF CHLOROCOCCUM SP

  • 摘要: Zn2+对绿球藻胁迫的实验浓度为0.1、1、10、50、100、200、400mg/L,BG11培养基作对照。实验结果表明,在特定浓度条件下,Zn2+对绿球藻的生长、生理特性以及细胞结构具有显著影响。低浓度Zn2+(0.1-1mg/L)对绿球藻生长基本没有影响;浓度在10-50mg/L时,绿球藻能维持一定的生长速率;但当Zn2+浓度大于100mg/L时,绿球藻的生长受到显著抑制。绿球藻Chla+Chlb以及Chla含量均随培养基中Zn2+浓度的升高而逐渐减少。当Zn2+浓度低于10mg/L时,绿球藻的净光合强度和呼吸强度均随Zn2+浓度的增加而逐渐增加,之后则随浓度的增加而逐渐降低。在设计的浓度下,绿球藻丙二醛含量和过氧化物酶(POD)活性都随培养基中Zn2+浓度的升高而逐渐增强;过氧化氢酶(CAT)和超氧化物歧化酶(SOD)则随Zn2+浓度的增大酶活性先升高后降低。与对照BG11培养基相比,在低浓度,即Zn2+浓度2+的绿球藻,细胞壁明显增厚,蛋白核消失。在≤10mg/L Zn2+浓度下,绿球藻Zn2+的去除率最高为100%;在能维持生长的Zn2+浓度下,去除率均高达80%以上。结果显示,绿球藻是一种耐受Zn2+胁迫的藻类,对锌的去除率也高,可以应用于含锌污水的处理。
    Abstract: ulture medium was served as the control. The results showed that Zn2+ affected markedly on the growth, physiological characteristics and cell structure of Chlorococcum sp. under certain concentration. When the concentration of Zn2+ was 0.1-1mg/L, the growth of Chlorococcum sp. showed no obvious difference compared with the control. When the concentration of Zn2+ was 10-50mg/L, Chlorococcum sp. could maintain certain growth rate yet. When the concentration of Zn2+ was higher than 100mg/L, the growth of Chlorococcum sp. was inhibited markedly. The contents of Chl a + Chl b and Chl a decreased gradually with the increase of the concentrations of Zn2+ in the medium. When the concentration of Zn2+ was less than 10rag/L, the photosynthesis and respiration of Chlorococcum sp. increased gradually with the increase of Zn2+ concentrations; and when the concentration of Zn2+ was higher than 10mg/L, they decreased gradually with the increase of Zn2+ concentrations. The content of malondiadehyde and activity of peroxidase increased gradually with the increase of Zn2+ concentrations, and the activities of catalase and superox-ide dismutase increased at first and later decreased with the increase of Zn2+ concentrations. Compared with the cell cultured in BG11, the cell cultured in low concentrations (≤10mg/L) showed few changes in pigment and thickness of cell wall. The cell wall of cell cultured in high concentrations of Zn2+ became thicker, and the pigment decreased and the pyrenoid disappeared. When the concentration of Zn2+ was≤10mg/L, the removal rate of Chlorococcum sp. on Zn2+ reached the maximum and was 100%, and it was above 80% under the concentrations that Chlorococcum sp. could maintain the growth. The results demonstrated that the Chlorococcum sp. could be applied to the treatment of wastewater containing Zn2+, because the Chlorococcum sp. could endure the stress of Zn2+ and was of high removal rate on Zn2+.
  • [1]

    Bake M D, M ayfied C I, Inniss W E. Toxicity of pH, heavy metals and bisulphate to a freshwater green algae[J]. Chemosphere, 1983,12(1): 35)44

    [2]

    Travieso L, Caizares K O, Borja K, et al. Heavy metal removal by microalgae[J]. Bulletin of Environmental Contamination And Tox-icology, 1999, 62: 141)151

    [3]

    Valdman E, Leite S G F. Biosorption of Cd, Zn and Cu by S arga-ssum sp. waste biomass[J]. Bioprocess Engineering, 2000, 22:171)173

    [4]

    Vymazal J. Shor-t term uptake of heavy metals by periphyton algae[J]. Hydrobiologic, 1984, 119: 171)179

    [5]

    Sheng P X, Ting Y P, Chen J P, et al. Sorption of Lead, Copper,Cadmium, Zinc and Nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms[J]. Journal of Colloid and Interf ace Science, 2004, 275: 131)141

    [6]

    Chong A M Y, Wang Y S, Tam N F Y. Performance of different mi-croalgal species in removing Nickel and Zinc from industrial wastewater[J]. Chemosphere, 2000, 41: 251)257

    [7]

    Tang Z C. The experimental guide of modern plant physiology[M].Beijing: Academic Press. 1999, 95, 305, 314[汤章城主编. 现代植物生理学实验指南. 北京: 科学出版社. 1999, 95, 305,314]

    [8]

    Li H S. Principles and techniques of plant physiological biochemical experiment[M]. Beijing: Higher Education Press. 2000, 164)165[李合生主编. 植物生理生化实验原理和技术. 北京: 高等教育出版社. 2000, 164)165]

    [9]

    Chen S Y. Injury of menbrane lipid peroxidation to plant cell[J].Pl ant Physiology Communicati ons, 1991, 27(2): 84)90[陈少裕.膜脂过氧化对植物细胞的伤害. 植物生理学通讯, 1991,27(2): 84)90]

    [10]

    Kuang Q J, Xia Y C, Hui Y. Toxic effects of heavy metals on algae[J]. Acta Hydrobiologica Sinica, 1996, 20 (3): 277)283[况琪军, 夏宜, 惠阳. 重金属对藻类的致毒效应. 水生生物学报, 1996, 20(3): 277)283]

    [11]

    Sicko G L. A morphometric analysis of algae response to low dose,short term heavy metal exposure[J]. Protoplasma, 1982, 110:75)86

    [12]

    Dai L F, Gao H, Xia J R. Tolerance to heavy metal Cd and detoxif-ication of Synechococcus cedrorum[J]. Chin. J. Appl. Environ.Biol.,1998, 4(3): 192)195[戴玲芬, 高宏, 夏建荣. 雪松聚球藻对重金属镉的抗性和解毒作用. 应用与环境生物学报,1998, 4(3): 192)195]

    [13]

    Pistocchi R, Mormile A M, GuerriniF, et al. Increased production of extra-and intracellular meta-l ligands in phytoplankton exposed to cop-per and cadmium[J]. Journal of Applied phycology, 2000, 12:469)477

计量
  • 文章访问数:  883
  • HTML全文浏览量:  0
  • PDF下载量:  429
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-01-03
  • 修回日期:  2007-01-12
  • 发布日期:  2007-07-24

目录

    /

    返回文章
    返回