军曹鱼线粒体DNA全序列与鲹鱼宗系的系统进化

王中铎, 郭昱嵩, 刘楚吾, 刘筠

王中铎, 郭昱嵩, 刘楚吾, 刘筠. 军曹鱼线粒体DNA全序列与鲹鱼宗系的系统进化[J]. 水生生物学报, 2011, 35(2): 229-237. DOI: 10.3724/SP.J.1035.2011.00229
引用本文: 王中铎, 郭昱嵩, 刘楚吾, 刘筠. 军曹鱼线粒体DNA全序列与鲹鱼宗系的系统进化[J]. 水生生物学报, 2011, 35(2): 229-237. DOI: 10.3724/SP.J.1035.2011.00229
WANG Zhong-Duo, GUO Yu-Song, LIU Chu-Wu, LIU Yun. THE COMPLETE MITOCHONDRIAL DNA OF COBIA (RACHYCENTRON|CANADUM) AND PHYLOGENETICS OF CARANGOID[J]. ACTA HYDROBIOLOGICA SINICA, 2011, 35(2): 229-237. DOI: 10.3724/SP.J.1035.2011.00229
Citation: WANG Zhong-Duo, GUO Yu-Song, LIU Chu-Wu, LIU Yun. THE COMPLETE MITOCHONDRIAL DNA OF COBIA (RACHYCENTRON|CANADUM) AND PHYLOGENETICS OF CARANGOID[J]. ACTA HYDROBIOLOGICA SINICA, 2011, 35(2): 229-237. DOI: 10.3724/SP.J.1035.2011.00229

军曹鱼线粒体DNA全序列与鲹鱼宗系的系统进化

基金项目: 

“十一五”国家科技支撑计划项目(2007BAD29B03)

国家自然科学基金项目(30972253)

湛江市科技计划项目(湛科[2008]56号)资助

THE COMPLETE MITOCHONDRIAL DNA OF COBIA (RACHYCENTRON|CANADUM) AND PHYLOGENETICS OF CARANGOID

  • 摘要: 通过长距PCR法测得军曹鱼(Rachycentron canadum)全长16758 bp的mtDNA基因组全序列(GenBank登录号:FJ154956和NC011219),结构组成与其他硬骨鱼类基本一致。Blast获取GenBank数据库的高相似度(score=10055—30213)全序列数据,运用最大简约法、邻位连接法、最大似然法和贝叶斯法重建了军曹鱼与其他鱼类的系统发育关系,并采样用松散分子钟(Uncorrected relaxed lognormal clock)对军曹鱼的起源时间进行了估算,结果表明:(1)军曹鱼与鲯鳅科的亲缘关系较参与分析的其他鱼类更为密切(后验概率为0.997),推测军曹鱼大约起源于56百万年(Million years ago,Ma)前的古新世塔内特阶(Thanetian)时期;(2)军曹鱼科、鲯鳅科和印鱼科聚为一支,但其置信度较低(后验概率为0.593),且丝帆鱼科、鲹科分别与鲭科和鲀科鱼类聚为不同分支,因此不支持鲹鱼宗系(Carangoid lineage)为单系群。
    Abstract: Cobia Rachycentron canadum is the only species of Rachycentridae distributing widely in subtropical andtropical oceans and seasonally in temperate waters. Cobia has the qualities that define an excellent candidate andemerging global potential for mariculture. Numerous comparative studies have been conducted in attempt to resolve therelationship (to be monophyletic) between Rachycentridae and the other teleosts using anatomical and behavioralmethods. The Coryphaenidae and the Rachycentridae and Echeneidae were thought to form a monophyletic group, withCoryphaenidae being the sister group to the clade of Rachycentridae and Echeneidae. Nematistiidae and Carangidaewere also hypothesized to be part of a clade with these three families, perhaps forming a trichotomy. However, molecularresearch regarding the evolutionary relationship of these families remained scarce. Adequate resolution of relationshipsin any organisms required longer DNA sequences. In this study, the whole mitogenome sequence was determinedfor cobia, using an approach that employs a long polymerase chain reaction technique and primer walking. It was thefirst complete mtDNA sequence of cobia (Accession No. FJ154956 and NC_011219, 16758 bp) in GenBank. The mitochondrialgenomic sequence contained the same 37 mitochondrial structural genes (two ribosomal RNA, 22 transferRNA, and 13 protein-coding genes) as found in other vertebrates, with the gene order identical to that in typical vertebrates.All following analyses were based on two datasets. Dataset 1 consisted of highly similar DNA sequences of mitogenomes(score=10055-30213) from GenBank; and dataset 2 included the 20 ND2 gene complete sequences of therepresentative species within Coryphaenidae, Nematistiidae, Echeneidae and all branches with high support values in thetrees based on dataset 1. The phylogenetic relationship among cobia and other teleost were reconstructed using maximumparsimony (MP), neighbor-joining (NJ), and maximum likelihood (ML) with dataset 1. MP bootstrap scores weremuch lower than those of NJ or ML, and the MP resolution among higher-level classification were also the lowest.While the NJ and ML analyses provided strong support for a sister group relationship between two clades of Perciformes,in which one clade contained cobia, Carangidae (Carangoides armatus, Trachurus japonicas, and T. trachurus), Istiophoridae(Makaira indica, Istiophorus platypterus)and Xiphiidae (Xiphias gladius) (bootstrap=78 and 97). Unexpectedly,another clade was composed of the other taxa of order Perciformes and two typical species(Ostracion immaculatusand triacanthodes anomalus)of order Tetraodontiformes. The origin time of cobia was estimated by Bayesian analysis ofthe dataset 2 under the GTR+G+I+relaxed model for 8.0×106 generations resulted in a posterior probability distributioncontaining 1000 samples per analysis. The results support that: (1) the relative between cobia and dolphinfish is theclosest (posterior probability=0.997), and identical with the period of first occurrence of cobia fossil, their most recentcommon ancestor (MRCA) lived in 56 million years ago (Ma), i.e. Thanetian. (2) Rachycentridae, Coryphaenidae andEcheneidae of the superfamily Echeneoidea proposed by Johnson (1984) cluster in a monophyletic group with low posteriorprobability(0.593). However, Nematistiidae and Carangidae are placed in clusters of scombridae and Tetraodontidae,repectively. Conclusively, Carangoid lineage is not a monophyly.
  • [1]

    Nelson J S. Fishes of the world [M]. New Jersey: John Wiley& Sons, Inc. 2006, 5

    [2] Cheng Q T, Zheng B S. Systematic Synopsis of ChineseFishes [M]. Beijing: Science Press. 1987, 316 [成庆泰, 郑葆珊. 中国鱼类系统检索. 北京: 科学出版社. 1987, 316]

    Cheng Q T, Zheng B S. Systematic Synopsis of ChineseFishes [M]. Beijing: Science Press. 1987, 316 [成庆泰, 郑葆珊. 中国鱼类系统检索. 北京: 科学出版社. 1987, 316]

    [3] Luo J, Liu C W, Luo W L. Studies on breeding parent fish ofRachycentron canadum in netting tank and artificial seedbreeding [J]. Marine Fisheries Research, 2005, 26(2):18—25 [罗杰, 刘楚吾, 罗伟林. 网箱培育军曹鱼亲鱼及人工育苗研究. 海洋水产研究, 2005, 26(2): 18—25]

    Luo J, Liu C W, Luo W L. Studies on breeding parent fish ofRachycentron canadum in netting tank and artificial seedbreeding [J]. Marine Fisheries Research, 2005, 26(2):18—25 [罗杰, 刘楚吾, 罗伟林. 网箱培育军曹鱼亲鱼及人工育苗研究. 海洋水产研究, 2005, 26(2): 18—25]

    [4]

    Joan H G, Faulk C K, Schwarz M H. A review of the larvicultureof cobia Rachycentron canadum, a warm water marinefish [J]. Aquaculture, 2007, 268: 181—187

    [5] Han T, Wang J T, Wang Y, et al. Effect of Different FishProtein Hydrolysate (FPH) level of dietary supplements ongrowth and body composition of larvae of cobia (RachycentronCanadum) [J]. Acta Hydrobiologica Sinica, 2010, 34(1):94—100 [韩涛, 王骥腾, 王勇, 等. 饲料中不同水平鱼蛋白水解物对军曹鱼稚鱼生长及体组成的影响. 水生生物学报, 2010, 34(1): 94—100]

    Han T, Wang J T, Wang Y, et al. Effect of Different FishProtein Hydrolysate (FPH) level of dietary supplements ongrowth and body composition of larvae of cobia (RachycentronCanadum) [J]. Acta Hydrobiologica Sinica, 2010, 34(1):94—100 [韩涛, 王骥腾, 王勇, 等. 饲料中不同水平鱼蛋白水解物对军曹鱼稚鱼生长及体组成的影响. 水生生物学报, 2010, 34(1): 94—100]

    [6]

    Mclean E, Salze G, Craig S R. Parasites, diseases and deformitiesof cobia [J]. Ribarstvo, 2008, 66: 1—16

    [7] Liu L, Liu C W, Liang N. Population genetic analysis forCobia, Rachycentron canadum in Zhanjiang area of the southChina sea with microsatellite [J]. Journal of Tropical Oceanography,2008, 27: 57—61 [刘丽, 刘楚吾, 梁宁. 利用微卫星DNA 标记对南海湛江海域军曹鱼群体遗传多样性的分析. 热带海洋学报, 2008, 27: 57—61]

    Liu L, Liu C W, Liang N. Population genetic analysis forCobia, Rachycentron canadum in Zhanjiang area of the southChina sea with microsatellite [J]. Journal of Tropical Oceanography,2008, 27: 57—61 [刘丽, 刘楚吾, 梁宁. 利用微卫星DNA 标记对南海湛江海域军曹鱼群体遗传多样性的分析. 热带海洋学报, 2008, 27: 57—61]

    [8]

    Freihofer W C. Cranial nerves of a percoid fish, Polycentrusschomburgkii (family Nandidae), a contribution to the morphologyand classification of the order Perciformes [J]. Occasionalpapers in California Academy of Sciences. 1978,128: 1—78

    [9]

    Johnson, G. D. Percoidei: development and relationships [A].In: H G Moser, W J Richards, D M Cohen, et al (Eds.), Ontogenyand Systematics of Fishes [C]. Special PublicationNo. 1, American Society of Ichthyologists and Herpetologists.1984, 464—498

    [10]

    Smith-Vaniz, W. F. Percoidei: development and relationships[A]. In: H G Moser, W J Richards, D M Cohen, et al(Eds.), Ontogeny and Systematics of Fishes [C]. SpecialPublication No. 1, American Society of Ichthyologists andHerpetologists. 1984, 522—530

    [11]

    Johnson J D. Percomorph phylogeny: progress and problems[J]. Bulletin of Marine Science, 1993, 52: 3—28

    [12]

    O’Toole B. Phylogeny of the species of the superfamilyEcheneoidea (Perciformes: Carangoidei: Echeneidae, Rachycentridae,and Coryphaenidae), with an interpretation ofecheneid hitchhiking behaviour [J]. Canadian Journal of Zoology,2002, 80: 596—623

    [13]

    Gray K N, Mcdowell J R, Collette B B, et al. A MolecularPhylogeny of the Remoras and their Relatives [J]. Bulletin ofMarine Science, 2009, 84: 183—197

    [14]

    Reed D L, Carpenter K E, Degravelle M J. Molecular systematicsof the Jacks (Perciformes: Carangidae) based onmitochondrial cytochrome b sequences using parsimony,likelihood, and Bayesian approaches [J]. Molecular Phylogeneticsand Evolution, 2002, 23: 513—524

    [15]

    Miya M, Takeshima H, Endo H, et al. Major patterns ofhigher teleostean phylogenies: a new perspective based on100 complete mitochondrial DNA sequences [J]. MolecularPhylogenetics and Evolution, 2003, 26: 121—138

    [16]

    Guo Y S, Wang Z D, Liu C W, et al. Sequencing and analysisof the complete mitochondrial DNA of Russell's snapper(L. russellii) [J]. Progress in Natural Science, 2008, 18:1233—1238

    [17] Wang Z D, Guo Y S, Chen R L, et al. COⅠbarcoding sequencesof teleosts in the south china sea [J]. Oceanologia etLimnologia Sinica, 2009, 40: 608—614 [王中铎, 郭昱嵩,陈荣玲, 等. 南海常见硬骨鱼类COⅠ条码序列. 海洋与湖沼, 2009, 40: 608—614]

    Wang Z D, Guo Y S, Chen R L, et al. COⅠbarcoding sequencesof teleosts in the south china sea [J]. Oceanologia etLimnologia Sinica, 2009, 40: 608—614 [王中铎, 郭昱嵩,陈荣玲, 等. 南海常见硬骨鱼类COⅠ条码序列. 海洋与湖沼, 2009, 40: 608—614]

    [18] Lu S D. Current Protocols for Molecular Biology [M]. Beijing:China Union Medical College Press. 1999, 61 [卢圣栋.现代分子生物学实验技术. 北京: 中国协和医科大学出版社. 1999, 61]

    Lu S D. Current Protocols for Molecular Biology [M]. Beijing:China Union Medical College Press. 1999, 61 [卢圣栋.现代分子生物学实验技术. 北京: 中国协和医科大学出版社. 1999, 61]

    [19]

    Kawahara R, Miya M, Mabuchi K, et al. Interrelationships ofthe 11 gasterosteiform families (sticklebacks, pipefishes, andtheir relatives): A new perspective based on whole mitogenomesequences from 75 higher teleosts [J]. Molecular Phylogeneticsand Evolution, 2008, 46: 224—236

    [20] Guo X H, Liu S J, Yan J P, et al. The analysis of geneticvariability of mtDNA 12S rRNA Genes in the allotetraploid,triploid crucian carp and their parents [J]. Hereditas, 2004,26: 875—880 [郭新红, 刘少军, 颜金鹏, 等. 异源四倍体鲫鲤、三倍体湘云鲫和它们父母本线粒体DNA 12S rRNA基因遗传变异的分析. 遗传, 2004, 26: 875—880]

    Guo X H, Liu S J, Yan J P, et al. The analysis of geneticvariability of mtDNA 12S rRNA Genes in the allotetraploid,triploid crucian carp and their parents [J]. Hereditas, 2004,26: 875—880 [郭新红, 刘少军, 颜金鹏, 等. 异源四倍体鲫鲤、三倍体湘云鲫和它们父母本线粒体DNA 12S rRNA基因遗传变异的分析. 遗传, 2004, 26: 875—880]

    [21]

    Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular EvolutionaryGenetics Analysis (MEGA) Software Version 4.0[J]. Molecular Biology and Evolution, 2007, 24: 1596—1599

    [22]

    Lowe T M, Eddy S R. tRNAscan-SE: a program for improveddetection of transfer RNA genes in genomic sequence[J]. Nucleic Acids Research, 1997, 25: 955—964

    [23]

    J D Thompson D G H T. CLUSTAL W: improving the sensitivityof progressive multiple sequence alignment throughsequence weighting, position-specific gap penalties andweight matrix choice [J]. Nucleic Acids Research, 1994, 22:4673—4680

    [24]

    Chen S, Su S, Lo C, et al. PALM: A Paralleled and IntegratedFramework for Phylogenetic Inference with AutomaticLikelihood Model Selectors [J]. PLos One, 2009, 4:e8116

    [25]

    Drummond A J, Rambaut A. BEAST: Bayesian evolutionaryanalysis by sampling trees [J]. BMC Evolutionary Biology,2007, 7: 214

    [26]

    Benton M J, Donoghue P C J. Paleontological evidence todate the tree of life [J]. Molecular Biology and Evolution,2007, 24: 26—53

    [27] Tan W, Wang Z D, Guo Y S, et al. Structure and evolutionof complete mitochondrial genome of Lutjanus bengalensis[J]. Chinese Journal of Biochemistry and Molecular Biology,2009, 25: 82—86 [谭围, 王中铎, 郭昱嵩, 等. 孟加拉笛鲷线粒体基因组序列结构及其进化. 中国生物化学与分子生物学报, 2009, 25: 82—86]

    Tan W, Wang Z D, Guo Y S, et al. Structure and evolutionof complete mitochondrial genome of Lutjanus bengalensis[J]. Chinese Journal of Biochemistry and Molecular Biology,2009, 25: 82—86 [谭围, 王中铎, 郭昱嵩, 等. 孟加拉笛鲷线粒体基因组序列结构及其进化. 中国生物化学与分子生物学报, 2009, 25: 82—86]

    [28]

    Leache A D, Reeder T W. Molecular systematics of theEastern Fence Lizard (Sceloporus undulatus): a comparisonof Parsimony, Likelihood, and Bayesian approaches [J]. SystematicBiology, 2002, 51: 44—68

    [29]

    Ronquist F, Huelsenbeck J P. MrBayes 3: Bayesian phylogeneticinference under mixed models [J]. Bioinformatics,2003, 19: 1572—1574

    [30]

    Miya M, Kawaguchi A, Nishida M. Mitogenomic explorationof higher teleostean phylogenies: a case study formoderate-scale evolutionary genomics with 38 newlydetermined complete mitochondrial DNA sequences [J].Molecular Biology and Evolution, 2001, 18: 1993—2009

计量
  • 文章访问数:  2609
  • HTML全文浏览量:  2
  • PDF下载量:  763
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-02-01
  • 修回日期:  2010-11-24
  • 发布日期:  2011-03-24

目录

    /

    返回文章
    返回