基于matK基因和ITS序列探讨大叶藻科的系统发育关系

李渊, 李文涛, 孙典荣, 高天翔

李渊, 李文涛, 孙典荣, 高天翔. 基于matK基因和ITS序列探讨大叶藻科的系统发育关系[J]. 水生生物学报, 2011, 35(6): 900-907. DOI: 10.3724/SP.J.1035.2011.00900
引用本文: 李渊, 李文涛, 孙典荣, 高天翔. 基于matK基因和ITS序列探讨大叶藻科的系统发育关系[J]. 水生生物学报, 2011, 35(6): 900-907. DOI: 10.3724/SP.J.1035.2011.00900
LI Yuan, LI Wen-Tao, SUN Dian-Rong, GAO Tian-Xiang. PHYLOGENETIC RELATIONSHIPS IN ZOSTERACEAE BASED ON MATK AND ITS NUCLEOTIDE SEQUENCES[J]. ACTA HYDROBIOLOGICA SINICA, 2011, 35(6): 900-907. DOI: 10.3724/SP.J.1035.2011.00900
Citation: LI Yuan, LI Wen-Tao, SUN Dian-Rong, GAO Tian-Xiang. PHYLOGENETIC RELATIONSHIPS IN ZOSTERACEAE BASED ON MATK AND ITS NUCLEOTIDE SEQUENCES[J]. ACTA HYDROBIOLOGICA SINICA, 2011, 35(6): 900-907. DOI: 10.3724/SP.J.1035.2011.00900

基于matK基因和ITS序列探讨大叶藻科的系统发育关系

基金项目: 

海洋公益项目(200805069)

国家自然科学基金(30700615)资助

PHYLOGENETIC RELATIONSHIPS IN ZOSTERACEAE BASED ON MATK AND ITS NUCLEOTIDE SEQUENCES

  • 摘要: 比较分析了15种大叶藻的matK基因和ITS片段的核苷酸序列, 结果发现胞嘧啶(C)在两个目的片段上含量均较低。ITS基因片段检测到228处核苷酸替换, 表现出丰富的遗传多态性; matK基因片段上有249处核苷酸替换, 且大部分替换来自于第三密码子的同义替换, 种间在氨基酸水平上产生了一定的分化。基于matK基因和ITS片段, 利用邻接法、最大简约法、最大似然法和贝叶斯法构建的系统发育树结果基本一致, 明显分为4大支, 大叶藻亚属、异叶藻属、拟大叶藻亚属和虾形藻属分别构成一支。大叶藻亚属和拟大叶藻亚属的核苷酸差异值在29.09%-35.51%, 超过了屈良鹄等提出的大部分被子植物ITS属间核苷酸差异值(9.60%-28.80%), 在分子数据上两亚属都达到了属的水平。研究结果支持Tomlinson和Posluszny对大叶藻科的划分结果, 建议将大叶藻科分为4个属。
    Abstract: Seagrasses are composed of four families belonging to angiosperms and they are thought to become adaptive to aquatic life independently. The marine monocotyledonous Zosteraceae are one such family, which place in the order of Helobiae using traditional classifications and are typically circumscribed to comprise three genera (Heterozostera, Phyllospadix and Zostera) with approximately 18 species. Since Zosteraceae had been reported, the studies about the family were mainly focused on their morphological characters, physiological and biochemical characters and their flora. But the phylogenetic relationship between taxa of Zosteraceae was still hard to guarantee in terms of similar morphological characteristics. With sequencing by PCR amplification, we reconstructed the phylogenetic relationship of Zosteraceae based on fragments of the chloroplast (matK) and the nuclear ribosome (ITS) regions, which were successfully suitable for phylogenetic relationship analysis. Four species were collected from China and Korea, and eleven species were obtained from GenBank. The nucleotide composition analysis indicated a strong bias against cytimidine (C) in both fragments. 228 nucleotide substitutions were found in ITS gene, showing the high genetic polymorphism. 249 nucleotide substitutions were checked in matK gene, and most of them were synonymous transitions at the third codon positions. The Zosteraceae species had a certain degree of differentiation at the amino acid level. Based on partial sequences of matK and ITS gene, phylogenetic trees were constructed by neighbor joining, maximum parsimony, maximum likelihood and bayesian inference methods and the four methods produced trees with largely congruent topology. These phylogenetic trees showed four separate lineages: (1) subgenus Zostera, (2) Heterozostera, (3) subgenus Zosterella and (4) Phyllospadix. The pairwise percentage divergence values in the samples of subgenus Zostera and subgenus Zosterella were from 29.09% to 35.51% and were much higher than the standard values (9.60% to 28.80%) among genera of most angiosperm. The results suggested genetic differentiation of these two subgenus had reached the level of generic variation. Our results lend support to the classification by Tomlinson and Posluszny, who recommended taxonomic delimition of Zosteraceae as four genera: Heterozostera (one sp.), Nanozostera (eight spp.), Phyllospadix (five spp.) and Zostera (four spp.). The molecular evidence suggested that Phyllospadix was the most divergent taxon, while Heterozostera and Nanozostera were the most closely related taxa. The phylogenetic relationship was more complex, so, further molecular and morphological investigations were needed to classify the phylogentic relationships of Zosteraceae.
  • [1]

    Tomlinson P B. Anatomy of the Monocotyledons. VII. Helobiae (Alismatidae) [C]. New York: Oxford University Press. 1982

    [3]

    Les D H, Cleland M A, Waycott M. Phylogenetic studies in Alismatidae. II: Evolution of marine angiosperms (sea-grasses) and hydrophily [J]. Systematic Botany, 1997, 22(3): 443-463

    [5]

    Kuo J, den Hartog C. Seagrass taxonomy and identification key [A]. In: Short F T, Coles R G (Eds.), Global Seagrass Research Methods [C]. Amsterdam: Elsevier Science. 2001, 31-58

    [7]

    Tanaka N, Kuo J, Omori Y, et al. Phylogenetic relationships in the genera Zostera and Heterozostera (Zosteraceae) based on matK sequence data [J]. Journal of Plant Research, 2003, 116(4): 273-279

    [9]

    den Hartog C. The Seagrasses of the World [M]. Amsterdam: North Holland Publication Co. 1970, 1-275

    [11]

    Nakaoka M, Aioi K. Ecology of seagrass Zostera spp. (Zos-teraceae) in Japanese water: A review [J]. Otsuchi Marine Science, 2001, 26: 7-22

    [13]

    Short F T, Coles R G, Pergent-Martini C. Global seagrass distribution [A]. In: Short F T, Coles R G (Eds.), Global Seagrass Research Methods [C]. Amsterdam: Elsevier Press. 2001, 5-30

    [15]

    Kato Y, Aioi K, Omori Y, et al. Phylogenetic analyses of Zostera species based on rbcL and matK nucleotide se-quences: Implications for the origin and diversification of seagrasses in Japanese waters [J]. Genes Genetic Systems, 2003, 78(5): 329-342

    [17]

    Fan H Q, Shi Y J, Qiu G L. China Seagrass Plant [M]. Beijing: Ocean Press. 2009, 6-23 [范航清, 石雅君, 邱广龙. 中国海草植物. 北京: 海洋出版社. 2009, 6-23]

    [19]

    Coyer J A, Miller K A, Engle J M, et al. Eelgrass meadows in the California Channel Islands and adjacent coast reveal a mosaic of two species, evidence for introgression and variable clonality [J]. Annals of Botany, 2007, 101(1): 73-87

    [21]

    Les D H, Moody M L, Jacobs S W L, et al. Systematics of seagrasses (Zosteraceae) in Australia and New Zealand [J]. Systematic Botany, 2002, 27(3): 468-484

    [23]

    Taylor A R A. A reconsideration of the taxonomic position of Zostera tasmanica [A]. In: XIII International Botanical Con-gress [C]. Sydney: Australian Academy of Science. 1981, 338

    [25]

    Tomlinson P B, Posluszny U. Generic limits in the seagrass family Zosteraceae [J]. Taxon, 2001, 50(2): 429-437

    [27]

    Li Q, Gu L, Xie S L. Phylogenetic analysis of Batrachospe-males (Florideophyceae, Rhodophyta) based on chloroplast rbcL sequences [J]. Acta Hydrobiologica Sinica, 2010, 34(1): 20-28 [李强, 古莉, 谢树莲. 串珠藻目植物的系统发育-基于rbcL序列的证据. 水生生物学报, 2010, 34(1): 20-28]

    [29]

    Mei H, Liu G X, Hu Z Y. Phylogenetic studies of Oedogo-niales (Chlorophyceae, Chlorophyta) based on 28S rDNA sequences [J]. Acta Hydrobiologica Sinica, 2007, 31(4): 492-498 [梅洪, 刘国祥, 胡征宇. 基于28S rDNA序列的鞘藻目系统发育研究. 水生生物学报, 2007, 31(4): 492-498]

    [31]

    Sun X Z. Flora of China (Vol.8) [M]. Beijing: Science Press. 1992, 85-95 [孙祥钟. 中国植物志(第8卷). 北京: 科学出版社. 1992, 85-95]

    [33]

    Ban Y. Methods of DNA and RNA isolation of Oryza sativa [A]. In: Shimamoto K, Sasaki T (Eds.), PCR Experiments Protocol of Plants [C]. Shujunsha, Tokyo. 1997, 34-40

    [35]

    White T J, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics [A]. In: Innis M, Gelfand D, Sninsky J, et al. (Eds.), PCR Protocols: A Guide to Methods and Application [C]. San Di-ego: Academic Press. 1990, 315-322

    [37]

    Wang J B, Zhang W J, Chen J K. Application of ITS sequences of nuclear rDNA in phylogenetic and evolutionary studies of angiosperms [J]. Acta Phytotaxonomica Sinica, 1999, 37(2): 407-416 [王建波, 张文驹, 陈家宽. 核rDNA的ITS序列在被子植物系统与进化研究中的应用. 植物分类学报, 1999, 37(2): 407-416]

    [39]

    Meyer A. Evolution of Mitochondrial DNA in Fishes [M]. Amsterdam: Elsevier Press, 1993, 1-36

    [41]

    Kuo J. Chromosome numbers of the Australian Zosteraceae [J]. Plant Systematics and Evolution, 2001, 226(3): 155-163

    [43]

    Setchell W A. A preliminary survey of the species of Zostera [J]. Proceedings of the National Academy of Sciences, 1933, 19(9): 810-817

    [45]

    Soros-Pottruff C L, Posluszny U. Developmental morphology of reproductive structures of Zostera and a reconsideration of Heterozostera (Zosteraceae) [J]. International Journal of Plant Sciences, 1995, 156(2): 143-158

    [47]

    Yip M. The anatomy and morphology of the vegetative and floral parts of Zostera L. M. Sc. [D]. Thesis, Guelph University, Guelph, Ontario. 1988

    [49]

    Jin H, Shi S H, Pan H C, et al. Phylogenetic relationships between Michelia (Magnoliaceae) and its related genera based on the matK gene sequence [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1999, 38(1): 93-97 [金虹, 施苏华, 潘恒昶, 等. 含笑亚族及其近源植物matK基因序列分析. 中山大学学报(自然科学版), 1999, 38(1): 93-97]

    [51]

    Xiang J Y, Guan K Y, Yang J B. Study on the classification of Begonia Sect. Sphenanthera based on nuclear ribosomal DNA ITS sequence data [J]. Acta Botanica Yunnanica, 2002, 24(4): 455-462 [向建英, 管开云, 杨俊波. 应用ITS区序列对秋海棠属无翅组分类学问题的探讨. 云南植物研究, 2002, 24(4): 455-462]

    [53]

    Zhang Z Y, Li D Z. Molecular phylogeny of section Parrya of Pinus (Pinaceae) based on chloroplast matK gene sequence data [J]. Acta Botanica Sinica, 2004, 46(2): 171-179

    [55]

    Jacobs S W L, Les D H, Moody M L. New combinations in Australasian Zostera (Zosteraceae) [J]. Telopea, 2006, 11(2): 127-128

    [57]

    Jones T C, Gemmill C E C, Pilditch C A. Genetic variability of New Zealand seagrass (Zostera muelleri) assessed at multiple spatial scales [J]. Aquatic Botany, 2008, 88(1): 39-46

    [59]

    Qu L H, Chen Y Q. Key to molecular taxonomy-principles and methods [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1999, 38(1): 1-6 [屈良鹄, 陈月琴. 生物分子分类检索表-原理与方法. 中山大学学报(自然科学版), 1999, 38(1): 1-6]

    [61]

    Zhang H Y, Liao W B, Chen Y Q, et al. Analysis of rDNA ITS sequences of Sargentodoxa cuneata [J]. Guihaia, 2008, 28(6): 737-740 [张宏意, 廖文波, 陈月琴, 等. 大血藤的rDNA ITS序列分析. 广西植物, 2008, 28(6): 737-740]

  • 期刊类型引用(2)

    1. 黄琼林,马新业,詹若挺,陈蔚文. 基于matK基因的高良姜及其同属混伪品的分子鉴别. 中华中医药学刊. 2017(02): 445-447 . 百度学术
    2. 孙典荣,李渊,李文涛,高天翔. 大叶藻居群微卫星遗传多样性研究. 水生生物学报. 2013(01): 82-89 . 本站查看

    其他类型引用(7)

计量
  • 文章访问数:  1406
  • HTML全文浏览量:  2
  • PDF下载量:  640
  • 被引次数: 9
出版历程
  • 收稿日期:  2010-06-27
  • 修回日期:  2011-04-30
  • 发布日期:  2011-11-24

目录

    /

    返回文章
    返回