匙吻鲟仔稚鱼消化酶发育的研究

吉红, 孙海涛, 田晶晶, 邱立疆

吉红, 孙海涛, 田晶晶, 邱立疆. 匙吻鲟仔稚鱼消化酶发育的研究[J]. 水生生物学报, 2012, 36(3): 457-465. DOI: 10.3724/SP.J.1035.2012.00457
引用本文: 吉红, 孙海涛, 田晶晶, 邱立疆. 匙吻鲟仔稚鱼消化酶发育的研究[J]. 水生生物学报, 2012, 36(3): 457-465. DOI: 10.3724/SP.J.1035.2012.00457
JI Hong, SUN Hai-Tao, TIAN Jing-Jing, QIU Li-Jiang. DIGESTIVE ENZYME ACTIVITY DURING EARLY LARVAL DEVELOPMENT OF THE PADDLEFISH POLYODON SPATHULA[J]. ACTA HYDROBIOLOGICA SINICA, 2012, 36(3): 457-465. DOI: 10.3724/SP.J.1035.2012.00457
Citation: JI Hong, SUN Hai-Tao, TIAN Jing-Jing, QIU Li-Jiang. DIGESTIVE ENZYME ACTIVITY DURING EARLY LARVAL DEVELOPMENT OF THE PADDLEFISH POLYODON SPATHULA[J]. ACTA HYDROBIOLOGICA SINICA, 2012, 36(3): 457-465. DOI: 10.3724/SP.J.1035.2012.00457

匙吻鲟仔稚鱼消化酶发育的研究

基金项目: 

西北农林科技大学安康水产试验示范站建设项目(Z222020704)

陕西省科技厅农业攻关项目(2006K01-G1-2)资助

DIGESTIVE ENZYME ACTIVITY DURING EARLY LARVAL DEVELOPMENT OF THE PADDLEFISH POLYODON SPATHULA

  • 摘要: 对出膜后0—53d 匙吻鲟的酸性蛋白酶、碱性蛋白酶、α-淀粉酶、脂肪酶以及磷酸酶的活性变化进行了测定。匙吻鲟出膜后饲养于室内水泥培育池中, 从第3 天开始投喂枝角类, 之后于第40 天将试验鱼转移至池塘。试验材料为受精卵及出膜后第3、第6、第12、第20、第30、第40、第44、第47、第53 天仔稚鱼样品。研究发现主要消化酶在出膜时或卵黄期即可检测出活力。碱性蛋白酶和酸性蛋白酶分别在出膜后3d(3DAH)和刚出膜时(0DAH)检测出活力。碱性蛋白酶活力在44DAH 达到最大值[(1.96±0.09)U/fish], 47DAH出现下降, 但在53DAH 开始上升, 比活力在53DAH 达到最大值[(8.84±0.59) U/mg protein]。酸性蛋白酶在44DAH 达到最大值[(0.52±0.05) U/fish], 比活力在6DAH 出现第一个峰值[(2.08±0.09) U/mg protein], 并在30DAH 出现最小值[(0.83±0.06) U/mg protein]。试验期间碱性蛋白酶活力高于酸性蛋白酶。在12DAH—40DAH期间α-淀粉酶活力相对稳定,并在47DAH 达到最大值[(0.42±0.03) U/fish], 比活力在12DAH 出现一个峰值[(1.18±0.12) U/mg protein], 并于47DAH 出现最大值[(1.94±0.16) U/mg protein]。发育早期脂肪酶活力较高,活力和比活力分别在30DAH [(0.20±0.02) U/fish]和6DAH [(2.28±0.22) U/mg protein]出现最大值。碱性磷酸酶活力变化趋势与比活力变化趋势相似, 但是最大值分别出现在44DAH [(0.08±0.00) U/fish]和30DAH[(1.96±0.15) U/mg protein]。酸性磷酸酶活力在3DAH 出现一个峰值[(0.01±0.00) U/fish], 之后显著升高, 并在44DAH 达到最大值[(0.05±0.00)U/fish], 其比活分别在30DAH [(1.19±0.10) U/mg protein]和44DAH[(1.10±0.08) U/mg protein]出现两个峰值。结果表明, 蛋白酶、α-淀粉酶和磷酸酶随个体发育活力增加, 碱性蛋白酶在个体发育早期对蛋白质的消化具有重要作用。养殖环境发生改变时, 酸性蛋白酶、α-淀粉酶、碱性磷酸酶和酸性磷酸酶活力在生长减慢时增加, 生长加快时降低, 而脂肪酶活力则维持稳定。
    Abstract: The ontogenesis of digestive enzymes (proteases, α-amylases, lipases and phosphatases) in paddlefish Polyodon spathula was determined in larvae between 0-53 days after hatching (DAH). From initiation of exogenous feeding (3 DAH), larvae were fed Cladocera for 37 days in indoor cement pit, and then transferred to pond fed natural food. Fertilized eggs and larval fish samples day 3, 6, 12, 20, 30, 40, 44, 47 and 53 after hatching were taken as the test materials. The results showed that most of the digestive enzymes activities could be detected before the onset of the exogenous feeding. Alkaline protease activity was detected at 3 DAH and acid protease activity was quantifiable from eggs. Alkaline protease activity reached to the maximum level at 44 DAH [(1.96±0.09) U/fish], followed by a decrease and then an increase on 47 DAH. The specific alkaline protease activity reached to the peak level at 53 DAH [(8.84±0.59) U/mg protein]. Acid protease had its maximum activity at 44 DAH [(0.52±0.05) U/fish], its specific activity reached the first peak on 6 DAH [(2.08±0.09) U/mg protein], followed by the minimum on 30 DAH [(0.83±0.06) U/mg protein]. Alkaline protease activity was consistently higher than acid protease activity. α-Amylases activity was relatively stable during incubation period in workshop (12 DAH-40 DAH) and reached to the maximum on 47 DAH [(0.42±0.03) U/fish]. Two peaks were found about the specific α-amylase activity, a small one on 12 DAH [(1.18±0.12) U/mg protein] and the maximum peak on 47 DAH [(1.94±0.16) U/mg protein]. Both lipase activity and specific lipase activity had one peak on 30 DAH [(0.20±0.02) U/fish] and 6 DAH [(2.28±0.22) U/mg protein] respectively. High lipase activity implied the importance of lipid utilization. The alkaline phosphatase activity and the specific phosphatase activity showed similar trends, with the exception of the maximum period, 44 DAH [(0.08±0.00) U/fish] and 30 DAH [(1.96±0.15) U/mg protein] respectively. Acid phosphatase activity had one peak on 3 DAH [(0.01±0.00) U/fish], followed by a significant increase and reached maximum on 44 DAH [(0.05±0.00) U/fish]. Two main peaks were detected about the specific of acid phosphatase activity, one on 30 DAH [(1.19±0.10) U/mg protein] and the other on 44 DAH [(1.10±0.08) U/mg protein]. It suggested that protease, α-amylase and phosphatase activities increased with the ontogenesis of paddlefish, and alkaline protease was important to paddlefish larval. Acid protease, α-amylase, acid and alkaline phosphatase activities increased with growth decreasing and decreased with growth increasing when fish transferred to pond.
  • [1]

    Alvarez-González C A, Moyano-López F J, Civera-Cerecedo R, et al. Development of digestive enzyme activity in larvae of spotted sand bass Paralabrax maculatofasciatus.1. Biochemical analysis [J]. Fish Physiology Biochemistry, 2008, 34: 373—384

    [2]

    Martínez I, Moyano F J, Fernández-Díaz C, et al. Digestive enzyme activity during larval development of the Senegal sole (Solea senegalensis) [J]. Fish Physiology Biochemistry, 1999, 21: 317—323

    [3]

    Comabella Y, Mendoza R, Aguilera C, et al. Digestive enzyme activity during early larval development of the Cuban gar Atractosteus tristoechus [J]. Fish Physiology Biochemistry, 2006, 32: 147—157

    [4]

    Ueberschä r B. Measurement of Proteolytic Enzyme Activity: Significance and Application in Larval Fish Research [M]. In: Walther B T, Fyhn H J (Eds.), Physiological and Biochemical Aspects of Fish Development. University of Bergen, Norway. 1993, 233—237

    [5]

    Lazo J P, Mendoza R, Holt G J, et al. Characterization of digestive enzymes during larval development of red drum (Sciaenops ocellatus) [J]. Aquaculture, 2007, 265: 194—205

    [6]

    Gisbert E, Giménez G, Fernández I, et al. Development of digestive enzymes in common dentex Dentex dentex during early ontogeny [J]. Aquaculture, 2009, 287: 381—387

    [7]

    Alvarez-González C A, Cervantes-Trujano M, Tovar- Ramírez D, et al. Development of digestive enzymes in California halibut Paralichthys californicus larvae [J]. Fish Physiology Biochemistry, 2006, 31: 83—93

    [8]

    R M Rathore, S Kumar, R Chakrabarti. Digestive enzyme patterns and evaluation of protease classes in Catla catla (Family: Cyprinidae) during early developmental stages [J]. Comparative Biochemistry and Physiology, Part B, 2005, 142: 98—106

    [9]

    Li Q, Long Y, Qu B, et al. Assessment of digestive enzymes activities during larval development of Pelteobagrus vachelli[J]. Journal of Fishery Sciences of China, 2008, 15(1): 73— 78 [李芹, 龙勇, 屈波, 等. 瓦氏黄颡鱼仔稚鱼发育过程中消化酶活性变化研究. 中国水产科学, 2008, 15(1): 73— 78]

    [10]

    Ji H, Wang C Z. China’s limited Paddlefish culture focused on meat production [J]. Global Aquaculture Advocate, 2009, July/August: 30—32

    [11]

    Liu J H, Chen C Q, Diao X M, et al. Study on post-embryo development of quantitative characters of feeding organs in paddlefish, Polyodon spathula [J]. Journal of Shanghai Fisheries University, 1998, 7(4): 288—293 [刘建虎, 陈昌齐, 刁晓明, 等. 匙吻鲟摄食器官数量性状胚后发育研究. 上海水产大学学报, 1998, 7(4): 288—293]

    [12]

    Ji H, Shan S T, Cao F Y, et al. Study on rearing paddlefish Polyodon spathula juvenile using spawning pool of Chinese carp in Ankang area [J]. China Fisheries, 2009, 3: 43—44 [吉红, 单世涛, 曹福余, 等. 安康地区利用家鱼产卵池培育匙吻鲟苗种技术研究. 中国水产, 2009, 3: 43—44]

    [13]

    Mims S D, Shelton W L, Wynne F S, et al. Production of Paddlefish [M]. SRAC Publication. 1999, 437

    [14]

    Shen S, Zhou J C, Zhao S M, et al. The nutritional composition and evaluation of muscle of Polyodom spathula [J]. Acta Nutrimenta Sinica, 2009, 31(3): 295—297 [沈硕, 周继成, 赵思明, 等. 匙吻鲟的营养成分及肌肉营养评价. 营养学报, 2009, 31(3): 295—297]

    [15]

    Ji H, Sun H T, Shan S T. Evaluation of nutrient components and nutritive quality of muscle between pond- and cagereared paddlefish (Polyodon spathula) [J]. Journal of Fisheries of China, 2011, 35(2): 261—267 [吉红, 孙海涛, 单世涛. 池塘与网箱养殖匙吻鲟肌肉营养成分及品质评价. 水产学报, 2011, 35(2): 261—267]

    [16]

    Liu X D, Liang M Q, Zhang L M, et al. Effect of fish protein hydrolysate levels on growth performance and biological and physiological parameters in tongue sole (Cynoglossus Semilaevis Günther, 1983) Post-larvae [J]. Acta Hydrobiologica Sinica, 2010, 34(2): 242—249 [刘旭东, 梁萌青, 张利民, 等. 饲料中添加水解鱼蛋白对半滑舌鳎稚鱼生长及生理生化指标的影响. 水生生物学报, 2010, 34(2): 242—249]

    [17]

    Chong A, Hashim R, Chow Y, et al. Partial characterization and activities of proteases from the digestive tract of discus fish (Symphysodon aequifasciata) [J]. Aquaculture, 2002, 203: 321—333

    [18]

    Liu Z Y, Wang Z, Xu S Y, et al. Partial characterization and activity distribution of proteases along the intestine of grass carp, Ctenopharyngodon idella (Val.) [J]. Aquaculture Nutrition, 2008, 14: 31—39

    [19]

    Han Q, Liu L G, Zhang J P, et al. The effects of temperature and pH on activities of digestive enzymes in catfish (Silurus Asotus Linnaeus) in Dongting Lake area [J]. Acta Hydrobiologica Sinica, 2011, 35(1): 22—29 [韩庆, 刘良国, 张建平, 等. 温度和pH 对洞庭鲇鱼消化酶活性的影响. 水生生物学报, 2011, 35(1): 22—29]

    [20]

    Natalia Y, Hashim R, Ali A, et al. Characterization of digestive enzymes in a carnivorous ornamental fish, the Asian bony tongue Scleropages formosus (Osteoglossidae) [J]. Aquaculture, 2004, 233: 305—320

    [21]

    Jiang H F, Wang Y Q, Liu C G. Comparison and improvement of three determination methods for lipase activity [J]. Chemistry and Bioengineering, 2007, 24(8): 72—75 [江慧芳, 王雅琴, 刘春国. 三种脂肪酶活力测定方法的比较及改进. 化学与生物工程, 2007, 24(8): 72—75]

    [22]

    Fu Y H, Wang J G. Improvement of the method for determining the protein quantity of Huai’er granules [J]. Chinese Journal of Drug Application and Monitoring, 2005, (6): 21— 23 [傅应华, 王金观. 槐耳颗粒蛋白含量测定方法的改进. 中国药物应用与监测, 2005, (6): 21—23]

    [23]

    Govoni J J, Boehlert G W, Watanabe Y. The physiology of digestion in fish larvae [J]. Environmental Biology of Fishes, 1986, 16: 59—77

    [24]

    Zambonino Infante J L, Cahu C. Development and response to a diet change of some digestive enzymes in sea bass (Dicentrarchus labrax) larvae [J]. Fish Physiology Biochemistry, 1994, 12: 399—408

    [25]

    Segner H, Storch V, Reinecke M, et al. The development of functional digestive and metabolic organs in turbot, Scophthalmus maximus [J]. Marine Biology, 1994, 119: 471—486

    [26]

    Gawlicka A, The S J, Hung SSO, et al. Histological and histochemical changes in the digestive tract of white sturgeon larvae during ontogeny [J]. Fish Physiology Biochemistry, 1995, 14: 357—371

    [27]

    Lundstedt L M, Bibiano J F, Moraes G. Digestive enzymes and metabolic profile of Pseudoplatystoma corruscans (Teleostei: Siluriformes) in response to diet composition [J]. Comparative Biochemistry Physiology, 2004, 137B: 33— 339

    [28]

    Kolkovski S. Digestive enzymes in fish larvae and juveniles- implications and applications to formulated diets [J]. Aquaculture, 2001, 200: 181—201

    [29]

    Ma H, Cahu C, Zambonino Infante J L, et al. Activities of selected digestive enzymes during larval development of large yellow croaker (Pseudosciaena crocea) [J]. Aquaculture, 2005, 245: 239—248

    [30]

    Oozeki Y, Bailey K M. Ontogenetic development of digestive enzyme activities in larval walleye pollock, Theragra chalcogramma [J]. Marine Biology, 1995, 122: 177—186

计量
  • 文章访问数:  1227
  • HTML全文浏览量:  0
  • PDF下载量:  704
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-06
  • 修回日期:  2012-01-01
  • 发布日期:  2012-05-24

目录

    /

    返回文章
    返回