不同氮源对异养小球藻生物量和油脂积累的影响
EFFECTS OF DIFFERENT NITROGEN SOURCES ON GROWTH AND LIPID ACCUMULATION OF A HETEROTROPHIC MICROALGAE-CHORELLA VULGARIS
-
摘要: 小球藻因其快速生长和易培养等特性可用于制备生物能源。与传统的光自养相比, 异养小球藻可获得更多的生物量和更高的油脂含量。低成本的马铃薯淀粉水解液可作为小球藻的理想碳源, 在氮饥饿条件下可诱导产生更多的油脂。为了探讨不同氮源对异养小球藻生物量和油脂积累的影响, 并筛选出异养条件下的最适氮源, 实验研究了不同浓度无机氮源NaNO3以及有机氮源丙氨酸和酪氨酸对异养小球藻生物量和油脂积累的影响。以马铃薯淀粉水解液为唯一碳源, 在SE培养基中分别添加不同氮源培养小球藻。设定的NaNO3和丙氨酸浓度均为1.5 mmol /L、3.0 mmol/L、6.0 mmol/L, 酪氨酸浓度为0.75 mmol/L、1.5 mmol /L 和3.0 mmol/L。所有小球藻培养实验均为暗培养并持续10 d时间。实验过程测定的指标为:小球藻的细胞数目、比生长速率、叶绿素含量、中性脂含量和总脂含量。实验结果表明: (1)在异养条件下以硝酸盐为无机氮源时, 氮源促进叶绿素积累从而促进小球藻的生长, 减少硝态氮可以使小球藻快速进入稳定期积累油脂。在NaNO3中氮含量为1.5 mmol/L时, 生物量和油脂含量分别为2.65 g/L和51.21%, 总油脂含量为1.36 g/L。(2)在不添加其他氮源的异养培养基中, 丙氨酸可促进小球藻的生物量增加, 在稳定期仍促进单位细胞的叶绿素含量, 但总油脂含量普遍偏低。(3)酪氨酸可抑制小球藻生物量增加, 使细胞膨大从而促进单位细胞内叶绿素和油脂合成, 油脂含量高达38.78%-47.02%。这些结果表明小球藻可通过诱导氨基酸转运系统适应氮源的变化, 其中酪氨酸所在的第三个转运系统在葡萄糖诱导条件下可促进油脂的合成。Abstract: Chlorella strains have great potential as a resource for production of biofuels due to their relatively fast growth rate and easy cultivation. Heterotrophic cultivation of Chlorella has been developed due to higher biomass concentration and accumulation of much higher lipid content than classical photoautotrophic culture. Instead of using glucose, using low cost materials, such as starch or cellulose-hydrolyzed solution, is a good strategy to reduce the cost of culture medium and the cost of microalgae-based biofuels from heterotrophic fermentation of Chlorella. Potato starch is relatively cheap material in comparison with cornstarch or cassava starch, hence it could be an ideal carbon source for cultivating Chlorella. In a number of oil-producing microalgal species, Chlorella has the capacity of accumulating much higher proportion of fatty acids by nitrogen starvation. The objective of this study was to investigate the effects of various nitrogen resources on cell growth and lipid accumulation in heterotrophic Chlorella vulgaris using potato starch hydrolysate (PSH) as the sole carbon source. In order to illustrate the influence of various nitrogen sources on biomass and lipid content in C. vulgaris, the effects of these nitrogen source including inorganic and organic nitrogen source such as alanine or tyrosine on cell growth and lipid accumulation of C. vulgaris were examined. As the sole carbon source PSH was added to SE medium for algal cultivation prior to addition of all nitrogen sources. NaNO3 and alanine were added to yield starting concentrations of 1.5 mmol /L, 3.0 mmol/L and 6.0 mmol/L, respectively. Tyrosine was added to yield starting concentrations of 0.75 mmol/L, 1.5 mmol /L and 3.0 mmol/L, respectively. Continuous cultivation of C. vulgaris was carried out under dark condition for 10 days. The cell number, special growth rate, cellular chlorophyll content, neutral lipid content and total lipid content of C. vulgaris under present cultural condition were determined throughout the entire experimental period. The results showed that: (1) Higher chlorophyll content and biomass production were observed with higher nitrate-nitrogen concentration, although low concentrations of nitrate-nitrogen can achieve high lipid accumulation in C. vulgaris. The highest biomass productivity was obtained at 1.5 mmol/L sodium nitrate, the biomass of 2.65 g/L, lipid concentration of 51.21% and the total lipid production of 1.36 g/L were achieved. (2) When alanine was used as the sole nitrogen source, it was also observed that the cell growth and total chlorophyll content increased but the lipid content reduced. (3) A low level of biomass production was observed while adding tyrosine as a nitrogen source; however, cell enlargement and high chlorophyll content were achieved under this condition, resulting in high lipid content of 38.78%-47.02%. Based on above results, it was concluded that the unicellular alga C. vulgaris was able to respond to nitrogen nutrient changes by inducing specific amino acid transport systems, and it seemed to have developed more specific mechanisms of amino-acid uptake and lipid production along with subtle regulatory phenomena such as induction by nitrogen starvation. Furthermore, tyrosine, as the part of the third uptake system induced by glucose transport system, can also enhance continually cellular lipid accumulation in C. vulgaris.
-
Keywords:
- Chlorella vulgaris /
- Heterotrophic fermentation /
- Nitrogen source /
- Alanine /
- Tyrosine
-
-
[1] Li X F, Xu H, Wu Q Y. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors [J]. Biotechnology and Bioengineering, 2007, 98(4): 764-771
[2] Lu Y, Zhai Y, Liu M S, et al. Biodiesel production from algal oil using cassava (Manihot esculenta Crantz) as feedstock [J]. Journal of Applied Phycology, 2010, 22(5): 573-578
[3] Shen Y, Yuan W, Pei Z. Heterotrophic culture of Chlorella protothecoidesin various nitrogen sources for lipid production [J]. Applied Biochemistry and Biotechnology, 2010, 160(6): 1674-684
[4] Xiong W, Li X F, Xiang J Y, et al. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production [J]. Applied Microbiology and Biotechnology, 2008, 78(1): 29-36
[5] Huang K. Study on methods and mechanism for removal nitrogen and phosphorus in waste water by algae. Thesis for Master of Science [D]. Nanchang University, Nanchang. 2007 [黄魁. 藻类去除污水中氮磷及其机理的研究. 硕士学位论文, 南昌大学, 南昌. 2007]
[6] Ye L C, Ye J A, Xu G Z, et al. Effects of nitrogen sources on growth of alga Chlorella vulgaris [J]. Fisheries Science, 2007, 26(6): 319-322 [叶林超, 叶均安, 徐国忠, 等. 碳酸氢铵等不同氮源对小球藻生长的影响. 水产科学, 2007, 26(6): 319-322]
[7] Alan R W. The spectral determination of chlrorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution [J]. Journal of Plant Physiology, 1994, 144(3): 307-313
[8] Chen W, Milton S, Hu Q. Microwave-assisted Nile red method for in vivo quanti?cation of neutral lipids in microalgae [J]. Bioresource Technology, 2011, 102: 135-141
[9] Liu Z Y, Wang G C, Zhou B C. Effect of iron on growth and lipid accumulation in Chlorella vulgaris[J]. Bioresource Technology, 2008, 99(11): 4717-4722
[10] Qiao H J, Wang G C, Zhang X J. Isolation and characterization of Chlorella sorokiniana GXNN01 (Chlorophyta) with the properties of heterotrophic and microaerobic growth [J]. Journal of Phycology, 2009, 45(5): 1153-1162
[11] Zhao W. Fatty acid metabolite regulation of Porphyridium cruentum. Thesis for Master of Science [D]. Fujian Normal University, Fuzhou. 2006 [赵薇. 紫球藻脂肪酸代谢调控. 硕士学位论文, 福建师范大学, 福州. 2006]
[12] Wu Q Y. Fine cells structure and biochemical compositions of Chlorella protothecoides after transferring from autotrophic to heterotrophic metabolism [J]. Journal of Nanjing University, 1993, 29(4): 622-630 [吴庆余. 自养小球藻转化为异养代谢生长后细胞的超微结构与相关生化组成. 南京大学学报, 1993, 29(4): 622-630]
[13] Illman A M, Scragg A H, Shales S W. Increase in Chlorellastrains calorific values when grown in low nitrogen medium [J]. Enzyme and Microbial Technology, 2000, 27(8): 631-635
[14] Takagi M, Watanabe K, Yamaberi K, et al. Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochlorissp. UTEX LB1999 [J]. Applied Microbiology and Biotechnology, 2000, 54(1): 112-117
[15] Svetlana V K, Irina M Y. Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance [J]. Phytochemistry, 2005, 66(1): 73-79
[16] Li X B, Xu X D, Kong R Q. Studies on the production of oil and polyunsaturated fatty acids in five species of Nannochloropsis[J]. Acta Hydrobiologica Scinica, 2010, 34(5): 893-897 [李秀波, 徐旭东, 孔任秋. 五种微绿球藻产油和产多不饱和脂肪酸的研究. 水生生物学报, 2010, 34(5): 893-897]
[17] Renaud S M, Thinh L V, Lambrinidis G, et al. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures [J]. Aquaculture, 2002, 211(1-4): 195-214
[18] Qiao H J, Wang G C. Effect of carbon source on growth and lipid accumulation in Chlorella sorokiniana GXNN01 [J]. Chinese Journal of Oceanology and Limnology, 2009, 27(4): 762-768
[19] Liang Y N, Nicolas S, Cui Y. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions [J]. Biotechnology Letters, 2009, 31(7): 1043-1049
[20] Greenspan P, Mayer E P, Fowler S D. Nile red: a selective fluorescent stain for intracellular lipid droplets [J]. Th e Journal of Cell Biology, 1985, 100(3): 965-973
[21] Alonzo F, Mayzaud P. Spectrofluorometric quantification of neutral and polar lipids in zooplankton using Nile red [J]. Marine Chemistry, 1999, 67(3-4): 289-301
[22] Elsey D, Jameson D, Raleigh B, et al. Fluorescent measurement of microalgal neutral lipids [J]. Journal of Microbiological Methods, 2007, 68(3): 639-642
[23] Cho B H, Sauer N, Komor E, et al. Glucose induced two amino acid transport systems in Chlorella[J]. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(6): 3591-3594
[24] Cho B H, Komor E. Mechanism of proline uptake by Chlorella vulgaris [J]. Biochimica et Biophysica Acta (BBA)- Biomembranes, 1983, 735(3): 361-366
[25] Cho B H, Komor E. Mechanism of arginine transport in Chlorella [J]. Planta, 1984, 162(1): 23-29
[26] Sauer N. A general amino-acid permease is inducible in Chlorella vulgaris [J]. Planta, 1984, 161(5): 425-431
-
期刊类型引用(15)
1. Yongfu LI,Tianze ZHAO,Wei SUN,Ruiwen GAO,Guangyuan MA. Supplementation of alanine improves biomass accumulation and lipid production of Chlorella pyrenoidosa by increasing the respiratory and metabolic processes. Journal of Oceanology and Limnology. 2024(02): 570-579 . 必应学术
2. 刘婷婷,程莉蓉,谢恩,郑蕾,丁爱中,黄绵松. 磷源对蛋白核小球藻生长和产油性能的影响. 中国给水排水. 2023(07): 81-88 . 百度学术
3. 肖雪花,占凌云,戴静璇,何勇锦,陈必链. 培养条件对蛋白核小球藻生长及油脂合成的影响. 中国油脂. 2021(01): 132-136 . 百度学术
4. 李澜鹏,廖莎,王鹏翔,孙启梅,师文静,李晓姝,张霖,彭绍忠. 含油微藻的选育及其冷冻保藏研究. 水产学杂志. 2021(03): 34-41 . 百度学术
5. 甘旭,陈玉珂,王秋举,郭志欣,张东鸣. L-肉碱强化对异养小球藻种群增长、脂肪酸组成及相关酶活性的影响. 吉林农业大学学报. 2021(05): 597-606 . 百度学术
6. 刘尧,刘成晟,成艳,陈明. 氮源调控Schizochytrium sp. DP-16发酵产DHA油脂. 大连工业大学学报. 2020(03): 169-173 . 百度学术
7. 廖莎,孙启梅,王鹏翔,师文静,李晓姝,李澜鹏,彭绍忠. 一株单针藻的筛选、鉴定及保藏. 现代化工. 2020(S1): 181-185 . 百度学术
8. 黄冬丽,王福彬,吴柳芬. 光照强度CO_2体积分数和氮源质量浓度对小球藻干质量积累的影响. 农产品加工. 2018(15): 46-48+51 . 百度学术
9. 荆晓丽,米铁柱,甄毓,付保忠,李成峰,于志刚. 基于玛氏骨条藻(Skeletonema marinoi)转录组的氮代谢途径解析. 海洋环境科学. 2016(05): 703-711 . 百度学术
10. 王亚丽,徐泽东,蒋思婧,黄开耀. 小球藻细胞壁缺陷型突变体的筛选及转化系统的建立. 水生生物学报. 2016(02): 370-377 . 本站查看
11. 陈金花,夏小乐,杨海麟,王武,张玲. 氮源对C.vulgaris油脂积累的影响. 工业微生物. 2015(02): 29-34 . 百度学术
12. 逯南南,刘明辉,宋武昌,李桂芳,孙韶华,贾瑞宝,陈亮. 氮磷对引黄水库水中小球藻生长的影响. 环境工程学报. 2015(03): 1098-1102 . 百度学术
13. 葸玉琴,崇梅,朱巧巧,杨红,达文燕. 不同氮源对混养小球藻生长和部分生化组成的影响. 西北师范大学学报(自然科学版). 2015(01): 82-86 . 百度学术
14. 程海翔,邵瑜,李建辉,徐天有,田光明. 曝气对栅藻(Desmodesmus sp.CHX1)细胞生长和油脂生产的影响. 中国油料作物学报. 2014(06): 808-814 . 百度学术
15. 江丽丽,温小斌,耿亚洪,梅洪,李夜光. 一株产油微藻的筛选及分子鉴定. 水生生物学报. 2013(04): 606-612 . 本站查看
其他类型引用(17)
计量
- 文章访问数: 1502
- HTML全文浏览量: 4
- PDF下载量: 870
- 被引次数: 32