饲料中铜浓度对异育银鲫和斑点叉尾鮰的影响

种香玉, 周立志, 韩冬, 朱晓鸣, 杨云霞, 金俊琰, 解绶启

种香玉, 周立志, 韩冬, 朱晓鸣, 杨云霞, 金俊琰, 解绶启. 饲料中铜浓度对异育银鲫和斑点叉尾鮰的影响[J]. 水生生物学报, 2014, 38(4): 751-763. DOI: 10.7541/2014.106
引用本文: 种香玉, 周立志, 韩冬, 朱晓鸣, 杨云霞, 金俊琰, 解绶启. 饲料中铜浓度对异育银鲫和斑点叉尾鮰的影响[J]. 水生生物学报, 2014, 38(4): 751-763. DOI: 10.7541/2014.106
CHONG Xiang-Yu, ZHOU Li-Zhi, HAN Dong, ZHU Xiao-Ming, YANG Yun-Xia, JIN Jun-Yan, XIE Shou-Qi. EFFECTS OF DIETARY COPPER AT DIFFERENT CONCENTRATIONS ON GIBEL CARP AND CHANNEL CATFISH[J]. ACTA HYDROBIOLOGICA SINICA, 2014, 38(4): 751-763. DOI: 10.7541/2014.106
Citation: CHONG Xiang-Yu, ZHOU Li-Zhi, HAN Dong, ZHU Xiao-Ming, YANG Yun-Xia, JIN Jun-Yan, XIE Shou-Qi. EFFECTS OF DIETARY COPPER AT DIFFERENT CONCENTRATIONS ON GIBEL CARP AND CHANNEL CATFISH[J]. ACTA HYDROBIOLOGICA SINICA, 2014, 38(4): 751-763. DOI: 10.7541/2014.106

饲料中铜浓度对异育银鲫和斑点叉尾鮰的影响

基金项目: 

饲料高效低耗加工技术研究与示范公益性行业(农业)科研专项(201203015);现代农业产业技术体系-大宗淡水鱼类产业技术体系-鲫鱼营养需求与饲料岗位(CARS-46-19);水产养殖动物营养需求与高效配合饲料开发公益性行业(农业)科研专项(201003020)资助

EFFECTS OF DIETARY COPPER AT DIFFERENT CONCENTRATIONS ON GIBEL CARP AND CHANNEL CATFISH

  • 摘要: 通过4周的生长实验,研究饲料中不同铜含量对异育银鲫(Carassius auratus gibelio) [初始体重(128.62.0) g]和斑点叉尾鮰 (Ictalurus punctatus)[初始体重(159.42.0) g]的生长、饲料利用、血液生化以及组织中铜积累量的影响。两种实验鱼的实验饲料均以CuSO45H2O为铜源,铜含量分别为3.1(对照)、7.5、49.8、100.5、506.9、965.1和1491.1 mg/kg饲料。实验结果表明,异育银鲫摄食量(FI)随饲料中铜含量的增加无显著影响(P0.05),特定生长率(SGR)随着饲料中铜含量的增加而显著下降,在铜含量为1491.1 mg/kg时出现最低值(P0.05),饲料效率(FE)表现出与特定生长率相似的变化趋势。肝体比(HSI)和脏体比(VSI)均随着饲料中铜含量的增加而显著下降(P0.05),各处理组间的肥满度(CF)差异不显著(P0.05)。血浆中谷草转氨酶(GOT)在铜含量为7.5 mg/kg时达到最低值(P0.05),然而血浆中谷丙转氨酶(GPT)、铜锌超氧化物歧化酶(Cu-ZnSOD)活性及红细胞压积(Hct)、血红蛋白浓度(Hb)均不受饲料中铜含量的影响(P0.05)。肝脏中铜积累量随着饲料中铜含量的增加而无显著影响(P0.05),而肌肉中铜含量没有显著差异(P0.05)。斑点叉尾鮰FI随饲料中铜含量的增加而显著上升(P0.05),SGR随饲料中铜含量的增加表现出下降的趋势,但是差异不显著(P0.05),FE随饲料中铜含量的增加显著降低(P0.05)。HSI和CF随饲料中铜含量的变化而显著下降。Hct随铜含量的增加呈现出先上升后下降的趋势,当铜含量为100.5 mg/kg时达到最大值(P0.05),然而饲料铜水平对血浆中GPT、GOT、Cu-Zn SOD活性及Hb、VSI均无显著影响(P0.05)。铜在各组织中的积累表现出与异育银鲫相同的变化趋势。饲料中较高浓度铜可抑制斑点叉尾鮰和异育银鲫的生长和饲料利用,且异育银鲫对铜的耐受性高于斑点叉尾 。
    Abstract: Experiments were conducted for 4 weeks to investigate the effect of dietary copper at different levels on the growth, feed utilization, hematological parameters and the copper accumulation in gibel carp (Carassius auratus gibelio) CAS III [initial body weight of (128.62.0) g] and channel catfish (Ictalurus punctatus)[initial body weight of (159.42.0) g]. Seven semipurified diets were supplemented with dietary copper (CuSO45H2O) at graded levels (3.1, 7.5, 49.8, 100.5, 506.9, 965.1 and 1491.1 mg/kg diet). The results showed that feeding rate (FI) of gibel carp was not aftected by the increase in the dietary copper concentration (P0.05); in the contrast the specific growth rate (SGR) significantly decreased. The SGR reached the lowest value when dietary copper concentration was 1491.1 mg/kg (P0.05). The feed efficiency (FE) showed a similar trend to the SGR. The viscerosomatic index (VSI) and the hepatosomatic index (HSI) also significantly decreased along with the increase in the dietary copper level (P0.05), but the condition factor (CF) was not affected (P0.05). The activity of the serum glutamie-oxalacetic transaminase (GOT) was the lowest when dietary copper concentration was 7.5 mg/kg (P0.05). However, the concentration of the dietary copper did not affect hematocrit (Hct), hemoglobin (Hb), and the activities of serum glutamic-pyruvic transaminase (GPT) and copper-zinc superoxide dismutase (Cu-Zn SOD) (P0.05). As the concentration of the dietary copper increased, the copper accumulation in the liver and the fish body was significantly elevated accordingly (P0.05), but the accumulation in fish muscles was not affected (P0.05). Similarly in channel catfish the FI was not aftected by the concentration of the dietary copper rose (P0.05); the SGR showed an apparent but non-significant decrease (P0.05); the FE dropped along with the increase in the dietary copper level (P0.05); the HSI and the CF significantly decreased as well (P0.05); but the VSI was not affected by the concentration of the dietary copper (P0.05). In channel catfish, except for Hct (P0.05) the dietary copper level did not affect the activities of serum GPT, GOT, Cu-Zn SOD and Hb. The copper accumulation in channel catfish showed a similar trend to gibel carp. In conclusion, dietary copper at high concentrations could decrease the growth and feed utilization in gibel carp and channel catfish, and channel catfish could be more sensitive than gibel carp.
  • [1]

    Sun S, Qin J, Yu N, et al. Effect of dietary copper on the growth performance, non-specific immunity and resistance to aeromonas hydrophila of juvenile Chinese mitten crab, Eriocheir sinensis [J]. Fish and Shellfish Immunology, 2013, 34(5): 1195-1201

    [2]

    Jenkins N K, Morris T R, Valamotis D. The effect of diet and copper supplementation on chick growth [J]. British Poultry Science, 1970, 11(2): 241-248

    [3]

    Berntssen M H G, Lundebye A K, Maage A. Effects of elevated dietary copper concentrations on growth, feed utilisation and nutritional status of Atlantic salmon (Salmo salar) fry [J]. Aquaculture, 1999, 174(1-2): 167-181

    [4]

    Clearwater S J, Farag A M, Meyer J S. Bioavailability and toxicity of dietborne copper and zinc to fish [J]. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 2002, 132(3): 269-313

    [5]

    Dethloff G M, Bailey H C, Maier K J. Effects of dissolved copper on select hematological, biochemical, and Immunological parameters of wild rainbow trout (Oncorhynchus mykiss) [J]. Archives of Environmental Contamination and Toxicology, 2001, 40(3): 371-380

    [6]

    Dautremepuits C, Marcogliese D J, Gendron A D, et al. Gill and head kidney antioxidant processes and innate immune system responses of yellow perch (Perca flavescens) exposed to different contaminants in the St. Lawrence River, Canada [J]. Science of The Total Environment, 2009, 407(3): 1055-1064

    [7]

    Carvalho C S, Fernandes M N. Effect of temperature on copper toxicity and hematological responses in the neotropical fish Prochilodus scrofa at low and high Ph [J]. Aquaculture, 2006, 251(1): 109-117

    [8]

    Jarup L. Hazards of heavy metal contamination [J]. British Medical Bulletin, 2003, 68(1): 167-182

    [9]

    Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction [J]. Annual Review of Plant Biology, 2004, 55(1): 373-399

    [10]

    Guo T F, Huang X S, Su M, et al. Effects of dietary copper levels on the immunity, vibrio-resistant ability, lysozyme mRNA and Toll receptor mRNA expressions in the white shrimp, Litopenaeus vannamei [J]. Acta Hydrobiologica Sinica, 2012, 36(5): 809-816[郭腾飞, 黄旭雄, 苏明, 等.饲料中铜水平对凡纳滨对虾免疫相关基因表达和抗菌能力的影响. 水生生物学报, 2012, 36(5): 809-816]

    [11]

    Shaw B J, Handy R D. Dietary copper exposure and recovery in Nile tilapia, Oreochromis niloticus [J]. Aquatic Toxicology, 2006, 76(2): 111-121

    [12]

    Kim S G, Kang J C. Effect of dietary copper exposure on accumulation, growth and hematological parameters of the juvenile rockfish, Sebastes schlegeli [J]. Marine Environmental Research, 2004, 58(1): 65-82

    [13]

    Kamunde C N, Grosell M, Lott J N A, et al. Copper metabolism and gut morphology in rainbow trout (Oncorhynchus mykiss) during chronic sublethal dietary copper exposure [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58(2): 293-305

    [14]

    Gui J F, Zhou L. Genetic basis and breeding application of clonal diversity and dual reproduction modes in polyploid Carassius auratus gibelio [J]. Science China Life Sciences, 2010, 53(4): 409-415

    [15]

    Duan Y H, Zhu X M, Han D, et al. Dietaryvitamin K requirement of juvenile gibel carp, Carassius auratus gibelio [J]. Acta Hydrobiologica Sinica, 2013, 37(1): 8-15 [段元慧, 朱晓鸣, 韩冬, 等. 异育银鲫幼鱼对饲料中维生素 K 需求的研究. 水生生物学报, 2013, 37(1): 8-15]

    [16]

    Wang K Y, Huang J L, Xiao D, et al. The immunoprotection effect of stenotrophomonas maltophilia lipopolysaccharide in channel catfish, Ictalurus punctatus [J]. Acta Hydrobiologica Sinica, 2012, 36(3): 433-440 [汪开毓, 黄锦炉, 肖丹, 等.嗜麦芽寡养单胞菌脂多糖对斑点叉尾 免疫保护作用. 水生生物学报, 2012, 36(3): 433-440]

    [17]

    AOAC. Official Methods of Analysis [A]. 14th edn. Washington D C: Association of Official Analytical Chemists. 1984, 152-163

    [18]

    Handy R D, Sims D W, Giles A, et al. Metabolic trade-off between locomotion and detoxification for maintenance of blood chemistry and growth parameters by rainbow trout (Oncorhynchus mykiss) during chronic dietary exposure to copper [J]. Aquatic Toxicology, 1999, 47(1): 23-41

    [19]

    zmen B, zmen D, Erkin E, et al. Lens superoxide dismutase and catalase activities in diabetic cataract [J]. Clinical Biochemistry, 2002, 35(1): 69-72

    [20]

    Gatlin D M, Wilson R P. Dietary copper requirement of fingerling channel catfish [J]. Aquaculture, 1986, 54(4): 277-285

    [21]

    Dezfuli B, Giari L, Simoni E, et al. Histopathology, immunohistochemistry and ultrastructure of the intestine of leuciscus cephalus naturally infected with pomphorhynchus laevis (Acanthocephala) [J]. Journal of Fish Diseases, 2002, 25(1): 7-14

    [22]

    Hoyle I, Shaw B J, Handy R D. Dietary copper exposure in the African walking catfish (Clarias gariepinus): transient osmoregulatory disturbances and oxidative stress [J]. Aquatic Toxicology, 2007, 83(1): 62-72

    [23]

    De Boeck G, Vlaeminck A, Blust R. Effects of sublethal copper exposure on copper accumulation, food consumption, growth, energy stores, and nucleic acid content in common carp [J]. Archives Environmental Contamination and Toxicology, 1997, 33(4): 415-422

    [24]

    Lundebye A K, Berntssen M H G, Bonga S E W, et al. Biochemical and physiological responses in atlantic salmon (Salmo salar) following dietary exposure to copper and cadmium [J]. Marine Pollution Bulletin, 1999, 39(1-12): 137-144

    [25]

    Mustafa S A, Davies S J, Jha A N. Determination of hypoxia and dietary copper mediated sub-lethal toxicity in carp (Cyprinus carpio) at different levels of biological organisation [J]. Chemosphere, 2012, 87(4): 413-422

    [26]

    Samanta B, Biswas A, Ghosh P R. Effects of dietary copper supplementation on production performance and plasma biochemical parameters in broiler chickens [J]. British Poultry Science, 2011, 52(5): 573-577

    [27]

    Atli G, Canli M. Natural occurrence of metallothionein-like proteins in the liver of fish oreochromis niloticus and effects of cadmium, lead, copper, zinc, and Iron exposures on their profiles [J]. Bulletin of Environmental Contamination and Toxicology, 2003, 70(3): 619-627

    [28]

    De C C, Petit-Ramel M, Faure R, et al. Kinetics of cadmium accumulation and elimination in carp (Cyprinus carpio) tissues [J]. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 1999, 122(3): 345-352

    [29]

    Roche H, Bog G. Fish blood parameters as a potential tool for identification of stress caused by environmental factors and chemical intoxication [J]. Marine Environmental Research, 1996, 41(1): 27-43

    [30]

    Fang Y Z, Yang S, Wu G Y. Free radicals, antioxidants, and nutrition [J]. Nutrition, 2002, 18(10): 872-879

    [31]

    Wang W F, Mai K S, Zhang W B, et al. Effects of dietary copper on survival, growth and immune response of juvenile abalone, Haliotis discus hannai Ino[J]. Aquaculture, 2009, 297(1-4): 122-127

计量
  • 文章访问数:  3578
  • HTML全文浏览量:  2
  • PDF下载量:  4787
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-03
  • 修回日期:  2014-04-30
  • 发布日期:  2014-07-24

目录

    /

    返回文章
    返回