基于栖息地斑块尺度的青弋江河源溪流鱼类群落的时空格局

朱仁, 司春, 储玲, 芮明, 吴添天, 严云志

朱仁, 司春, 储玲, 芮明, 吴添天, 严云志. 基于栖息地斑块尺度的青弋江河源溪流鱼类群落的时空格局[J]. 水生生物学报, 2015, 39(4): 686-694. DOI: 10.7541/2015.91
引用本文: 朱仁, 司春, 储玲, 芮明, 吴添天, 严云志. 基于栖息地斑块尺度的青弋江河源溪流鱼类群落的时空格局[J]. 水生生物学报, 2015, 39(4): 686-694. DOI: 10.7541/2015.91
Zhu Ren, Si Chun, Chu Ling, Rui Ming, Wu Tian-tian, Yan Yun-zhi. THE SPATIO-TEMPORAL DISTRIBUTION OF FISH POPULATION IN THE HEADWATERS OF THE QINGYI RIVER: A STUDY BASED ON THE HABITAT PATCHS[J]. ACTA HYDROBIOLOGICA SINICA, 2015, 39(4): 686-694. DOI: 10.7541/2015.91
Citation: Zhu Ren, Si Chun, Chu Ling, Rui Ming, Wu Tian-tian, Yan Yun-zhi. THE SPATIO-TEMPORAL DISTRIBUTION OF FISH POPULATION IN THE HEADWATERS OF THE QINGYI RIVER: A STUDY BASED ON THE HABITAT PATCHS[J]. ACTA HYDROBIOLOGICA SINICA, 2015, 39(4): 686-694. DOI: 10.7541/2015.91

基于栖息地斑块尺度的青弋江河源溪流鱼类群落的时空格局

基金项目: 

国家自然科学基金(31172120, 31372227)资助

THE SPATIO-TEMPORAL DISTRIBUTION OF FISH POPULATION IN THE HEADWATERS OF THE QINGYI RIVER: A STUDY BASED ON THE HABITAT PATCHS

  • 摘要: 确定鱼类的栖息地利用格局是研究物种与环境关系的基础, 也是鱼类多样性保护和管理的必要前提。目前, 有关溪流鱼类群落的栖息地斑块利用格局尚存在争议。基于2012年9月至2013年8月对青弋江河源溪流的逐月调查数据, 初步研究了鱼类群落的栖息地斑块利用格局, 着重在栖息地斑块尺度上解析了鱼类群落的时空变化规律。主要研究结果显示, 深潭和急滩2类斑块间的底质、流速、水深、溶氧栖息地因子显著差异, 且深潭斑块的环境稳定性高于急滩。研究共采集鱼类15种, 其中鲤科鱼类8种, 占采集物种数50%以上。基于鱼类物种存在与否的不连续变量的分析结果显示, 鱼类物种组成的斑块间和月份间变化均不具显著性。但是, 基于鱼类物种多度的连续变量的分析结果显示, 鱼类群落结构存在有显著的斑块间变化和时间动态; 就斑块间变化而言, 原缨口鳅(Vanmanenia stenosoma)在急滩斑块中的多度更高, 而宽鳍 (Zacco platypus)、光唇鱼(Acrossocheilus fasciatus)和尖头 (Phoxinus oxycephalus)等其他关键物种则在深潭中具有更高多度。深潭斑块的鱼类物种数显著高于急滩, 但2类斑块间的个体数无显著差异。深潭斑块的鱼类物种数较稳定, 而个体数月变化显著, 可能与鱼类繁殖和群体补充以及越冬死亡等有关; 急滩鱼类物种数和个体数的月变化均显著, 除了与鱼类群体补充和越冬死亡有关以外, 还可能受越冬时栖息地斑块选择变化的影响。上述结果表明, 在栖息地斑块空间尺度上, 由于研究区域内大多数物种在栖息地斑块选择上无明显的特化性, 深潭和急滩斑块间鱼类的物种组成分布不符合前人所报道的生境-共位群格局, 但区域内常见种多度的变化可引起鱼类群落结构的斑块间差异和季节动态。
    Abstract: The knowledge on the habitual preference of stream fish is the key to understand the species-environment relationship and is important for the protection and management of the diversity in fish. However, to date it is still unclear how a fish population varies in different habitat patches in the shallow streams. In this study, we investigated the fish species diversity and the population structures in different patches and months in local habitual conditions, based on the data collected monthly in 10 habitat patches (involving five pools and five riffles) in the headwaters of the Qingyi River from September 2012 to August 2013. The principal component analysis showed that pools and riffles varied substantially in local habitual conditions, such as the substrate size, the current velocity, the water depth and the concentration of dissolved oxygen. According to the results of paired t-test, the coefficients of the variability of the water depth, the current velocity and the concentration of dissolved oxygen in the riffles were significantly higher than those in the pools. This suggested that the habitual conditions in the pools were more stable than those in the riffles. Fifteen species were collected including 8 species of Cyprinidae fish that accounted for more than 50% of the entire samples in this study. We applied two-way crossed ANOSIM based on discontinuous variables of the occurrence of fish and found that the habitat patches and time (months) did not significantly affect the species composition. However, analysis based on continuous variables of the abundance of each species showed that the assemblage structure varied significantly in different patches and months. We performed SIMPER analysis to identify the key species that contributed to the inter-patch dissimilarity of the assemblage structure, and found that Vanmanenia stenosoma was more abundant in the riffles, and that other seven key species (e.g., Zacco platypus, Acrossocheilus fasciatus and Phoxinus oxycephalus) were more abundant in the pools. According to the results of ANOVA test there were more species in the pools than in the riffles, but there was no difference in fish abundance between the two patches. We observed that there were marked monthly changes in the fish abundance in the pools, and this may be associated with the fish cohort recruitment and the overwintering death which caused an increase in the abundance in October and a decrease in December. We also found that both the diversity and the abundance of fish in the riffles varied significantly over months, which may be caused by the cohort recruitment and death, as well as the overwintering shift in the habitat-patch. These suggested that in this area the distribution of fish species in different habitat patches might not conform to the conventional habitat-guild model because most fish species were habitat-generalists. However, the spatial and temporal changes in fish abundance may lead to a dynamic assemblage structure in different patches and months.
  • [1]

    Ers T, Botta-Dukt Z, Grossman G D. Assemblage structure and habitat use of fishes in a Central European submontane stream: a patch-based approach [J]. Ecology of Freshwater Fish, 2003, 12(2): 141―150

    [2]

    Schlosser I J. Fish community structure and function along two habitat gradients in a headwater stream [J]. Ecological Monograph, 1982, 52(4): 395―414

    [3]

    Ers T, Grossman G D. Effects of within-patch habitat structure and variation on fish assemblage characteristics in the Bernecei stream, Hungary [J]. Ecology of Freshwater Fish, 2005, 14(3): 256―266

    [4]

    Gorman O T, Karr J R. Habitat structure and stream fish communities [J]. Ecology, 1978, 59(3): 507―515

    [5]

    Martin-Smith K M. Relationships between fishes and habitat in rainforest streams in Sabah, Malaysia [J]. Journal of Fish Biology, 1998, 52(3): 458―482

    [6]

    Mazzoni R, Lobn-Cervi J. Longitudinal structure, density and production rates of a neotropical stream fish assemblage: the river Ubatiba in the Serra do Mar, southeast Brazil [J]. Ecography, 2000, 23(5): 588―602

    [7]

    Suvarnaraksha A, Lek S, Lek-Ang S, et al. Fish diversity and assemblage patterns along the longitudinal gradient of a tropical river in the Indo-Burma hotspot region (Ping-Wang River Basin, Thailand) [J]. Hydrobiologia, 2012, 694(1): 153―169

    [8]

    Torgersen C E, Baxter C V, Li H W, et al. Landscape influences on longitudinal patterns of river fishes: spatially continuous analysis of fish-habitat relationships [J]. American Fisheries Society, 2006, 48: 473―492

    [9]

    Grenouillet G, Pont D, Hriss C. Within-basin fish assemblage structure: the relative influence of habitat versus stream spatial position on local species richness [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61(1): 93―102

    [10]

    Osborne L L, Wiley M J. Influence of tributary spatial position on the structure of warmwater fish communities [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1992, 49(4): 671―681

    [11]

    Smith T A, Kraft C E. Stream fish assemblages in relation to landscape position and local habitat variables [J]. Transactions of the American Fisheries Society, 2005, 134(2): 430―440

    [12]

    Yan Y Z, Xiang X Y, Chu L, et al. Influences of local habitat and stream spatial position on fish assemblages in a dammed watershed, the Qingyi Stream, China [J]. Ecology of Freshwater Fish, 2011, 20(2): 199―208

    [13]

    Herbold B. Structure of an Indiana stream fish association: choosing an appropriate model [J]. The American Naturalists, 1984, 124(4): 561―572

    [14]

    Prenda J, Armitage P D, Grayston A. Habitat use by the fish assemblages of two chalk streams [J]. Journal of Fish Biology, 1997, 51(1): 64―79

    [15]

    Bain M B. Substrate [A]. In: Bethesda M D (Eds.), Aquatic Habitat Assessment: Common Methods [C]. American Fisheries Society. 1999, 95―103

    [16]

    Bart H L. Fish habitat association in an Ozark stream [J]. Environmental Biology of Fishes, 1989, 24(3): 173―186

    [17]

    Peterson J T, Rabeni C F. The relation of fish assemblages to channel units in an Ozark stream [J]. Transactions of the American Fisheries Society, 2001, 130(5): 911―926

    [18]

    Yin M C. Ecology of Fish [M]. Beijing: China Agriculture Press. 1993, 69―71 [殷名称. 鱼类生态学. 北京: 中国农业出版社. 1993, 69―71]

    [19]

    Copp G H. Comparative microhabitat use of cyprinid larvae and juveniles in a lotic floodplain channel [J]. Environmental Biology of Fishes, 1992, 33(1-2): 181―193

    [20]

    Grossman G D, Freeman M C. Microhabitat use in a stream fish assemblage [J]. Journal of Zoology (London), 1987, 212(1): 151―176

    [21]

    Chu L, Wang W J, Yan L L, et al. Fish assemblages and longitudinal patterns in the headwater streams of the Chencun Reservoir of the Huangshan Area [J]. Acta Ecologica Sinica, 2015, Doi: 10.5846/stxb201304140706 [储玲, 王文剑, 闫莉莉, 等. 黄山陈村水库上游河源溪流的鱼类群落及其纵向梯度格局. 生态学报, 2015, Doi: 10.5846/stxb201304140706]

    [22]

    Chu L, Wang W J, Zhu R, et al. Variation in fish assemblages across impoundments of low-head dams in headwater streams of the Qingyi River, China: effects of abiotic factors and native invaders [J]. Environmental Biology of Fishes, 2015, 98(1): 101―122

    [23]

    Yan Y Z, Wang H, Zhu R, et al. Influences of low-head dams on the fish assemblages in the headwater streams of the Qingyi watershed, China [J]. Environmental Biology of Fishes, 2013, 96(4): 495―506

    [24]

    Liu H Z, Chen Y Y. Distributional pattern of freshwater fishes in China and evolution freshwater fishes in Eastern Ais [J]. Acta Zootaxonomica Sinica, 1998, 23(2): 10―16 [刘焕章, 陈宜瑜. 中国淡水鱼类的分布格局与东亚淡水鱼类的起源演化. 动物分类学报, 1998, 23(2): 10―16]

    [25]

    Schlosser I J. Flow regime, juvenile abundance, and the assemblage structure of stream fishes [J]. Ecology, 1985, 66(5): 1484―4190

    [26]

    Vannote R L, Minshall G W, Cummins K W, et al. The river continuum concept [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1980, 37(1):130―137

    [27]

    Harvey B C, Stewart A J. Fish size and habitat depth relationships in headwater streams [J]. Oecologia, 1991, 87(3): 336―342

    [28]

    Mahon R, Portt C B. Local size related segregation of fishes in streams [J]. Archiv fr Hydrobiologie, 1985, 103(2): 267―271

    [29]

    Schlosser I J. The role of predation in age- and size-related habitat use by stream fishes [J]. Ecology, 1987, 68(3): 651―659

    [30]

    Grossman G D, Moyle P B, Whitaker Jr J O. Stochasticity in structural and functional characteristics of an Indian stream fish assemblage: a test of community theory [J]. The American Naturalists, 1982, 120(4): 423―454

    [31]

    Matthews W J. Fish faunal structure in an Ozark stream: stability, persistence and a catastrophic flood [J]. Copeia, 1986, (2): 388―397

    [32]

    Tallent-Halsell N G, Walker L R. Responses of Salix gooddingii and Tamarix ramosissima to flooding [J]. Wetlands, 2002, 22(4): 776―785

    [33]

    Sui X Y, Yan Y Z, Chen Y F. Age, growth, and reproduction of Opsariichthys bidens (Cyprinidae) from the Qingyi River at Huangshan Moutain, China [J]. Zoological Studies, 2012, 51(4): 476―483

    [34]

    Wang W J, Chu L, Si C, et al. Spatial and temporal patterns of stream fish assemblages in the Qiupu Headwaters National Wetland Park [J]. Zoological Research, 2013, 34(4): 417―428 [王文剑, 储玲, 司春, 等. 秋浦河源国家湿地公园溪流鱼类群落的时空格局. 动物学研究, 2013, 34(4): 417―428]

    [35]

    Yan Y Z, Guo L L, Xiang X Y, et al. Breeding strategy of Acrossocheilus fasciatus in the Puxi Stream of the Huangshan Mountain [J]. Current Zoology, 2009, 55(5): 350―356

    [36]

    Yan Y Z, Zhu R, He S, et al. Life-history strategies of Acrossocheilus fasciatus in the Huishui Stream of the Qingyi watershed, China [J]. Ichthyological Research, 2012, 59(3): 202―211

    [37]

    Yan Y Z, Yan L L, Chu L, et al. Age, growth and reproduction of Zacco platypus in the Huishui Stream [J]. Acta Hydrobiologica Sinica, 2012, 36(3): 474―481 [严云志, 闫莉莉, 储玲, 等. 徽水河宽鳍 的年龄、生长和繁殖. 水生生物学报, 2012, 36(3): 474―481]

    [38]

    Langeani F, Casatti L, Gameiro H S, et al. Riffle and pool fish communities in a large stream of southeastern Brazil [J]. Neotropical Ichthyology, 2005, 3(3): 305―311

    [39]

    Pires D F, Pires A M, Collares-Pereira M J, et al. Variation in fish assemblages across dry-season pools in a Mediterranean stream: effects of pool morphology, physicochemical factors and spatial context [J]. Ecology of Freshwater Fish, 2010, 19(1): 74―86

    [40]

    Taylor C M. Fish species richness and incidence patterns in isolated and connected stream pools: effects of pool volume and spatial position [J]. Oecologia, 1997, 110(4): 560―566

    [41]

    Taylor C M. A large-scale comparative analysis of riffle and pool fish communities in an upland stream system [J]. Environmental Biology of Fishes, 2000, 58(1): 89―95

    [42]

    Yan Y Z, He S, Chu L, et al. Spatial and temporal variation of fish assemblages in a subtropical small stream of the Huangshan Mountain [J]. Current Zoology, 2010, 56(6): 670―677

    [43]

    Yu D, Chen M, Zhou Z C, et al. Global climate change will severely decrease potential distribution of the East Asian coldwater fish Rhynchocypris oxycephalus (Actinopterygii, Cyprinidae) [J]. Hydrobiologia, 2013, 700(1): 23―32

  • 期刊类型引用(15)

    1. 姚禹佳,毛志刚,谷孝鸿,王奕杨,曾庆飞,陈辉辉,兰海今. 乌梁素海鱼类群落结构特征及其与环境因子的关系. 湖泊科学. 2024(05): 1459-1470 . 百度学术
    2. 王剑武,谢哲根,陈利星,刘宝权,谢文远. 河流型湿地公园栖息地研究:以浙江仙居永安溪湿地公园为例. 西部林业科学. 2024(06): 66-73 . 百度学术
    3. 孙久星,徐光来,池建宇,杨亦然. 基于大型底栖动物的青弋江河流健康评价. 长江流域资源与环境. 2023(06): 1254-1266 . 百度学术
    4. 杨静,史子莫,华杰,占阳,银旭红,刘婧,李云娟,胡茂林. 潦河永安段夏季鱼类群落的空间分布特征. 水产学杂志. 2022(03): 63-72 . 百度学术
    5. 王银平,刘思磊,杨彦平,胡敏琦,刘燕,刘凯. 滁河襄河口至马汊河段冬春季鱼类群落结构及其多样性. 上海海洋大学学报. 2021(06): 960-969 . 百度学术
    6. 吕立鑫,祝亚楠,潘瑞松,隋海潮,刘晨宇,王继华. 常州市运北水系鱼类群落结构及多样性的变化研究. 安徽农业科学. 2020(08): 92-97+101 . 百度学术
    7. 郑从奇,武玮,魏杰,庄会波,桑国庆. 黄河下游支流大汶河鱼类多样性及影响因子分析. 水资源保护. 2020(06): 31-38+52 . 百度学术
    8. 王旭,王永刚,武大勇,李亚翠. 山东省德州市河流水生生物完整性评估及时空异质性分析. 生态与农村环境学报. 2020(12): 1579-1587 . 百度学术
    9. 徐田振,徐东坡,周彦锋,景丽,葛优,张晏江,赵立祥,刘鹏飞. 淮河入海通道及其附近水系鱼类群落空间分布格局. 大连海洋大学学报. 2020(06): 914-921 . 百度学术
    10. 杨强强,徐光来,杨先成,李爱娟,陈晨. 青弋江流域土地利用/景观格局对水质的影响. 生态学报. 2020(24): 9048-9058 . 百度学术
    11. 李强,张东,宛凤英,李羽如,储玲,严云志. 溪流鱼类群落对低水头坝的大小及功能的响应——以皖南山区河源溪流为例. 水生生物学报. 2018(05): 965-974 . 本站查看
    12. 张东,宛凤英,储玲,严云志. 青弋江鱼类分类群和功能群的α和β多样性纵向梯度格局. 生物多样性. 2018(01): 1-13 . 百度学术
    13. 卜倩婷,李献,朱仁,储玲,严云志. 低头坝驱动山区溪流局域栖息地和鱼类群落的同质化. 生物多样性. 2017(08): 830-839 . 百度学术
    14. 钱红,严云志,储玲,朱仁,高俊峰,蔡永久. 巢湖流域河流鱼类群落的时空分布. 长江流域资源与环境. 2016(02): 257-264 . 百度学术
    15. 李其芳,严云志,储玲,朱仁,高俊峰,高永年. 太湖流域河流鱼类群落的时空分布. 湖泊科学. 2016(06): 1371-1380 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  1686
  • HTML全文浏览量:  1
  • PDF下载量:  539
  • 被引次数: 21
出版历程
  • 收稿日期:  2014-08-03
  • 修回日期:  2015-01-08
  • 发布日期:  2015-07-24

目录

    /

    返回文章
    返回