RESPONSE OF STREAM FISH ASSEMBLAGES TO THE SIZE AND FUNCTION OF LOW-HEAD DAMS: A CASE STUDY IN THE HEADWATER STREAMS OF THE WANNAN MOUNTAINS
-
摘要: 以皖南山区的河源溪流为研究区域, 根据2016年7月和11月两次的调查数据, 在区分土著物种和本地入侵物种的基础上, 初步比较研究了低水头坝的坝上蓄水区和冲刷区鱼类群落的季节动态及所受水坝大小和功能的影响。共采集鱼类24种, 隶属4目10科, 其中土著鱼类13种, 本地入侵鱼类11种。尽管坝下冲刷区的鱼类群落无显著季节变化, 但坝上蓄水区的鱼类群落季节动态显著, 其中11月的鱼类个体数显著高于7月。水坝大小对鱼类群落的影响相对较小, 仅冲刷区入侵鱼类群落结构随水坝大小显著变化; 水坝功能对鱼类群落的影响较大, 蓄水区土著鱼类群落及冲刷区入侵鱼类群落等都随水坝功能显著变化——同蓄水坝相比, 引渠坝的蓄水区中宽鳍鱲较少但中华花鳅和吻虾虎鱼较多, 且引渠坝的冲刷区中高体鳑鲏和泥鳅具有更高多度。研究表明, 在研究区域内, 低水头坝对鱼类群落分布的影响视水坝蓄水功能而不同, 而水坝大小的相对重要性较低。研究也进一步证实, 因亲流性土著鱼类与广布性入侵鱼类对低水头坝干扰的响应不同, 在开展有关人类活动对溪流鱼类多样性的影响评价时, 有必要区分土著物种和入侵物种来进行, 以确保研究结论的科学性。Abstract: It has been discovered that low-head dam could impact local habitat conditions, and alter fish assemblages in streams. However, how fish assemblages respond to the size and function of low-head dams is still not clear. Based on the data collected from 15 impounding segments upstream and 15 plunging areas downstream of low-head dams in the Wannan Mountains at July and November 2016, respectively, we examined how habitat factors and fish assemblages varied seasonally, and the differences in their response to dam size and function. Furtherly, after classifying the collected samples into two types (indigenous species and native-invasive species), we determined whether the indigenous fishes and native-invasive fishes were different in their responses to dam disturbance. A total of 24 fish species representing four orders and ten families were collected, including 11 indigenous species and 13 native-invasive species. Although fish assemblages in the plunging areas did not vary seasonally, the assemblages in the impounding areas was significantly different between July and November, where fishes were more abundant in November than in July. Only the assemblage structure of native-invasive fishes in the plunging areas was influenced by dam size. However, both native fish assemblages in the impounding areas and native-invasive fish assemblages in the plunging areas showed difference in their response to the between-dam-function, suggesting that dam function was more important in impacting fish assemblages than dam size. Compared to those associated with the impounding dams, the irrigating dams had less Zacco platypus but more Cobitis sinensis and Ctenogobius spp. in the impounding areas, and more Rhodeus ocellatus and Misgurnus anguillicaudatus in the plunging areas. In addition, the response of the whole fish assemblages (including both indigenous and native-invasive species) to dam disturbance was similar to the indigenous fish assemblages, instead of the native-invasive fish assemblages. Our results suggest that, in this study area, dam function was more important in influencing local fish assemblages than dam size. Due to their potential differences in response to dam disturbance for the indigenous species and native-invasive species, it is necessary for us to distinguish these two types of species when we assess how anthropogenic activities affect fish diversity in streams.
-
-
表 1 蓄水区和冲刷区的鱼类物种组成及其出现频率与相对多度
Table 1 Species composition, occurrence frequency and relative abundance of fishes collected in the impounding and plunging segments, respectively
目/科/物种Order/Family/Species 出现频率Frequency of occurrence (%) 相对多度Relative abundance (%) 蓄水区Impounding 冲刷区Plunging 蓄水区Impounding 冲刷区Plunging 鲤形目Cypriniformes 鳅科Cobitidae 泥鳅Misgurnus anguillicaudatus* 40.00 43.33 6.73 2.80 稀有花鳅Cobitis rarus 36.67 40.00 5.94 2.97 中华花鳅Cobitis sinensis 30.00 10.00 5.51 0.27 桂林薄鳅Leptobotia guiiinensis / 3.33 / 0.05 鲤科Cyprinidae 宽鳍鱲Zacco platypus 96.67 100.00 50.18 52.97 光唇鱼Acrossocheilus fascitus 80.00 83.33 8.59 8.47 高体鳑鲏Rhodeus ocellatus* 26.67 26.67 2.08 5.29 鲫Carassius auratus* 6.67 6.67 0.29 0.70 棒花鱼Abbottina rivularis* 10.00 13.33 0.43 0.38 台湾白甲鱼Varicorhinus barbatulus 6.67 13.33 0.29 0.38 似䱻Belligobio nummifer* 3.33 3.33 0.07 0.11 短须鱊Acheilognathus barbatulus 6.67 / 1.57 / 麦穗鱼Pseudorasbora parva* / 3.33 / 0.16 异华鲮Parasinilabeo assimilis / 3.33 / 0.05 尖头鱥Phoxinus oxycephalus / 3.33 / 0.11 平鳍鳅科Homalopteridae 原缨口鳅Vanmanenia stenosoma 50.00 76.67 4.01 9.06 鲇形目Siluriformes 鲿科Bagridae 黄颡鱼Pelteobagrus fulvidraco* / 3.33 / 0.11 切尾拟鲿Pseudobagru struncatus 3.33 13.33 0.21 0.22 鲇科Siluridae 鲇Silurus asotus* / 3.33 / 0.16 钝头科Amblycipitidae 司氏䱀Liobagrus styani 13.33 20.00 0.36 0.65 合鳃鱼目Synbranchiformes 合鳃鱼科Synbranchidae 黄鳝Monopoterus albus* 16.67 20.00 0.64 0.38 刺鳅科Mastacembelidae 刺鳅Mastacembelus aculeatus* / 3.33 / 0.05 鲈形目Perciformes 沙塘鳢科Odontobutidae 河川沙塘鳢Odontobutis potamophila* 3.33 6.67 0.07 0.22 虾虎鱼科Gobiidae 吻虾虎鱼Ctenogobius spp. 73.33 90.00 13.03 14.46 注: * 代表本地入侵种 Note: * represents native invaders 表 2 基于多因素方差分析的季节、水坝大小和功能对蓄水区和冲刷区鱼类多样性的影响
Table 2 Effects of season, dam size and function on fish diversity in the impounding and plunging areas based on multi-way ANOVA
生境类型
Habitat type物种类型
Species type鱼类多样性
Fish diversity季节
Season水坝大小
Dam size水坝功能
Dam function交互影响
Interactive effect蓄水区Impounding area 土著物种 物种数 0.01 0.79 1.07 / 个体数 2.05 0.05 0.01 / 入侵物种 物种数 2.24 0.53 0.08 / 个体数 0.70 0.24 4.50* 水坝大小×功能 全部物种 物种数 0.58 0.16 0.78 / 个体数 10.88* 0.62 0.39 / 冲刷区Plunging area 土著物种 物种数 0.11 0.01 1.26 / 个体数 1.99 0.12 0.66 季节×水坝功能 入侵物种 物种数 0.64 0.50 0.02 / 个体数 0.10 0.08 0.82 / 全部物种 物种数 0.60 0.37 1.25 / 个体数 2.67 0.43 0.09 / 注: 表格中的数字代表多因素方差分析的F值, *代表P<0.05; 下同 Note: Data in this table represent the F value of ANOVA; * represents the significance of P<0.05; the same applies below 表 3 基于三因素交互相似性分析的季节、水坝大小和功能对蓄水区和冲刷区鱼类群落结构的影响
Table 3 Effects of season, dam size and function on fish assemblage structures in the impounding and plunging areas based on three-way crossed ANOSIM
生境类型Habitat type 物种类型Species type 季节Season 水坝大小Dam size 水坝功能Dam function GlobalR P GlobalR P GlobalR P 蓄水区Impounding area 土著物种 0.21 * 0.06 ns 0.24 * 入侵物种 –0.04 ns 0.16 ns 0.19 ns 全部物种 0.22 * 0.13 ns 0.25 * 冲刷区Plunging area 土著物种 0.02 ns –0.05 ns 0.06 ns 入侵物种 0.10 ns 0.30 * 0.28 * 全部物种 0.15 ns –0.04 ns 0.10 ns 表 4 蓄水区土著鱼类群落结构随季节和水坝功能显著变化的关键贡献物种
Table 4 Key species contributing to the between-season and between-dam-function variations in the assemblage structures of endemic fishes in the impounding areas
土著鱼类
Endemic fishes季节: 7月vs. 11月Season: July vs. November 水坝功能: 蓄水坝vs. 引渠坝
Dam function: Impounding dams vs. Irrigating damsAA AD Con AA AD Con 7月 11月 蓄水 引渠 宽鳍鱲
Zacco platypus0.33 0.61 20.18 38.07 0.53 0. 39 15.45 31.80 吻虾虎鱼
Ctenogobius spp.0.23 0.06 10.05 18.97 0.08 0.22 9.34 19.22 稀有花鳅
Cobitis rarus0.04 0.10 7.01 13.22 0.08 0.07 6.59 13.57 中华花鳅
Cobitis sinensis0.01 0.12 6.66 13.71 注: AA、AD、Con分别代表平均多度、平均不相似性、贡献率; 下同 Note: AA, AD, Con represent the average abundance, average dissimilarity, and contribution; the same applies below 表 5 冲刷区入侵鱼类群落结构随水坝大小和功能显著变化的关键贡献物种
Table 5 Key species contributing to the between-dam-size and between-dam-function variations in the assemblage structures of native-invasive fishes in the plunging areas
入侵鱼类
Native-invasive fishes水坝大小: 矮坝vs. 高坝
Dam size: Low dams vs. High dams水坝功能: 蓄水坝vs. 引渠坝
Dam function: Impounding dams vs. Irrigating damsAA AD Con AA AD Con 矮坝 高坝 蓄水 引渠 高体鳑鲏
Rhodeus ocellatus0.02 0.16 34.59 41.15 0.02 0.16 26.37 30.72 泥鳅
Misgurnus anguillicaudatus0.05 0.04 31.89 37.94 0.03 0.08 31.39 36.56 棒花鱼
Abbottina rivularis0.00 0.01 9.25 10.77 表 6 基于多因素方差分析的季节、水坝大小和功能对栖息地变量的影响
Table 6 Effects of season, dam size and function on habitat variables based on the multi-way ANOVA
生境类型
Habitat
type栖息地
变量
Habitat
variables季节
Season水坝大小
Dam
size水坝功用
Dam
function交互作用
Interactive
effect蓄水区
Impounding
area溶氧量 23.39* 0.10 0.18 / 水温 211.14* 1.34 0.00 / 电导率 2.48 0.03 17.42* / pH 15.71* <0.01 0.11 / 植被覆盖率 0.69 0.80 1.19 / 水宽 0.18 2.89 0.03 / 水深 0.05 1.78 0.01 / 流速 0.00 0.77 0.55 / 底质 2.81 1.93 0.36 / 冲刷区
Plunging
area溶氧量 12.56* 0.23 8.08* / 水温 268.45* 0.61 0.00 / 电导率 3.04 <0.01 17.25* / pH 25.42* 0.43 0.33 / 植被覆盖率 0.12 0.74 3.09 / 水宽 0.01 3.01 5.11* / 水深 0.20 0.05 14.66* / 流速 0.00 0.83 5.72* / 底质 1.54 0.22 <0.01 / -
[1] Cummings G S. The impact of low-head dams on fish species richness in Wisconsin, USA [J]. Ecological Applications, 2004, 14(5): 1495—1506
[2] Poff N L, Hart D D. How dams vary and why it matters for the emerging science of dam removal [J]. BioScience, 2002, 52(8): 659—668
[3] Yan Y, Wang H, Zhu R, et al. Influences of low-head dams on the fish assemblages in the head-water streams of the Qingyi watershed, China [J]. Environmental Biology of Fishes, 2013, 96(4): 495—506
[4] Li X, Li Y R, Chu L, et al. Influences of local habitat, tributary position, and dam characteristics on fish assemblages within impoundments of low-head dams in the tributaries of the Qingyi River, China [J]. Zoological Research, 2016, 37(2): 67—74
[5] Gillette D P, Tiemann J S, Edds D R et al. Spatiotempo ral patterns of fish assemblage structure in a river impoundment by low-head dams [J]. Copeia, 2005, (3): 539—549
[6] Rosenberg D M, McCully P, Pringle C M. Global-scale environmental effects of hydrological alterations [J]. Bioscience, 2000, 50(9): 746—751
[7] March J G, Benstead J P, Pringle C M, et al. Damming tropical island streams: problems, solutions, and alterna tives [J]. BioScience, 2003, 53(11): 1069—1078
[8] Dodd H R, Hayes D B, Baylis J R, et al. Low-head sea lamprey barrier effects on stream habitat and fish communities in Great Lakes basin [J]. Journal of Great Lakes Research, 2003, 29(Suppl. 1): 386—402
[9] Raborn S W, Schramm S W. Fish assemblage response to recent mitigation of a channelized warm water stream [J]. River Research and Applications, 2003, 19: 289—301
[10] Poulet N. Impact of weirs on fish communities in a piedmont stream [J]. River Research and Applications, 2007, 23(9): 1038—1047
[11] Wan A, Zhang X K, Xie F, et al. Low-head-dam fish culture effects on spatial-temporal patterns of local habitat and fish assemblages in the upstream and downstream of rivers [J]. Journal of Lake Sciences, 2016, 28(1): 178—186 [万安, 张晓可, 谢枫, 等. 低头坝养鱼对上下游局域栖息地和鱼类群落时空格局的影响. 湖泊科学, 2016, 28(1): 178—186] Wan A, Zhang X K, Xie F, et al. Low-head-dam fish culture effects on spatial-temporal patterns of local habitat and fish assemblages in the upstream and downstream of rivers [J]. Journal of Lake Sciences, 2016, 28(1): 178—186 [万安, 张晓可, 谢枫, 等. 低头坝养鱼对上下游局域栖息地和鱼类群落时空格局的影响. 湖泊科学, 2016, 28(1): 178—186]
[12] Tiemann J S, Gillette D P, Wildhaber M L, et al. Effects of low head dams on riffle-dwelling fishes and macroinvertebrates in a Midwestern river [J]. Transactions of American Fisheries Society, 2004, 133(3): 705—717
[13] Fencl J S, Mather M E, Costigan K H, et al. How big of an effect do small dams have? Using geomorphological footprints to quantify spatial impact of low-head dams and identify patterns of across-dam variation [J]. PLoS One, 2015, 10(11): e0141210
[14] Ward J V, Stanford J A. Ecological Factors Controlling Stream Zoobenthos with Emphasis on Thermal Modification of Regulated Streams [M]. The Ecology of Regulated Streams Springer US. 1979, 35—55
[15] Mclaughlin R L, Porto L, Noakes D L, et al. Effects of low-head barriers on stream fishes: taxonomic affiliations and morphological correlates of sensitive species [J]. Canadian Journal of Fisheries & Aquatic Sciences, 2006, 63(4): 766—779
[16] Chu L, Wang W J, Zhu R, et al. Variations in fish assemblages across impoundments by low-head dam in headwater streams of the Qingyi River, China: effects of abiotic and native invaders [J]. Environmental Biology of Fishes, 2015, 98(1): 101—112
[17] Buisson L, Grenouillet G. Contrasted impacts of climate change on stream fish assemblages along an environmen tal gradient [J]. Diversity and Distributions, 2009, 15(4): 613—626
[18] Li Y R, Tao J, Chu L, et al. Effects of anthropogenic disturbances on α and β diversity of fish assemblages and their longitudinal patterns in subtropical streams, China [J]. Ecology of Freshwater Fish, 2018, 27: 433—441
[19] Strayer D L, Hattala K A, Kahnle A W. Effects of an invasive bivalve ( Dreissena polymorpha) on fish in the Hudson River estuary [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61(6): 924—941
[20] Crook D A, Macdonald J I, Mcneil D G, et al. Recruitment sources and dispersal of an invasive fish in a large river system as revealed by otolith chemistry analysis [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70(7): 953—963
[21] Scott M C, Helfman G S. Native Invasions, Homogenization, and the Mismeasure of Integrity of Fish Assemblages [J]. Fisheries, 2001, 26(11): 6—15
[22] Walters D M, Leigh D S, Bearden A B. Urbanization, sedimentation, and the homogenization of fish assemblages in the Etowah River basin, USA [J]. Hydrobiologia, 2003, 494(1-3): 5—10
[23] Bain M B. Substrate [A]. In: Bethesda M D (Eds.), Bain M B, Stevenson N J. Aquatic Habitat Assessment: Common Methods [C]. American Fisheries Society. 1999, 95—103
[24] Clarke K R, Warwick R M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation [M]. 2nd Edition. Primer-E Ltd: Plymouth, UK. 2001, 172
[25] Grossman G D, Moyle P B, Whitaker J R. Stochasticity in structural and functional characteristics of an Indiana stream fish assemblage: a test of community theory [J]. The American Naturalist, 1982, 120(4): 423—454
[26] Matthews W J. Fish faunal " breaks” and stream order in the easternand central United States [J]. Environmental Biology of Fishes, 1986, 17(2): 81—92
[27] TallentHalsell N G, Walker L R. Responses of Salix gooddingii and Tamarix ramosissima to flooding [J]. Wetlands, 2002, 22(4): 776—785
[28] Welcomme R L. The biology and ecology of the fishes of a small tropical stream [J]. Journal of Zoology, 1969, 158(4): 485—529
[29] Wang W J, Chu L, Si C, et al. Spatial and temporal patterns of stream fish assemblages in the Qiupu Headwaters National Wetland Park [J]. Zoological Research, 2013, 34(4): 417—428 [王文剑, 储玲, 司春, 等. 秋浦河源国家湿地公园溪流鱼类群落的时空格局. 动物学研究, 2013, 34(4): 417—428] Wang W J, Chu L, Si C, et al. Spatial and temporal patterns of stream fish assemblages in the Qiupu Headwaters National Wetland Park [J]. Zoological Research, 2013, 34(4): 417—428 [王文剑, 储玲, 司春, 等. 秋浦河源国家湿地公园溪流鱼类群落的时空格局. 动物学研究, 2013, 34(4): 417—428]
[30] Diao Z S, Shen J R. Geographical distribution of fish in southern mountainous of Anhui Province [J]. Journal of Anhui Agricultural Sciences, 1981, (1): 82—88 [刁铸山, 沈菊人. 安徽省皖南山区的鱼类及其地理分布. 安徽农业科学, 1981, (1): 82—88] Diao Z S, Shen J R. Geographical distribution of fish in southern mountainous of Anhui Province [J]. Journal of Anhui Agricultural Sciences, 1981, (1): 82—88 [刁铸山, 沈菊人. 安徽省皖南山区的鱼类及其地理分布. 安徽农业科学, 1981, (1): 82—88]
[31] Yan Y Z, Xiang X Y, Chu L, et al. Influences of local habitat and stream spatial position on fish assemblages in a dammed watershed, the Qingyi Stream, China [J]. Ecology of Freshwater Fish, 2011, 20(2): 199—208
[32] Yan Y Z, Yan L L, Chu L, et al. Age, growth and reproduction of Zacco platypus in the Huishui Stream [J]. Acta Hydrobiologica Sinica, 2012, 36(3): 474—481 [严云志, 闫丽丽, 储玲, 等. 徽水河宽鳍鱲的年龄、生长和繁殖. 水生生物学报, 2012, 36(3): 474—481] Yan Y Z, Yan L L, Chu L, et al. Age, growth and reproduction of Zacco platypus in the Huishui Stream [J]. Acta Hydrobiologica Sinica, 2012, 36(3): 474—481 [严云志, 闫丽丽, 储玲, 等. 徽水河宽鳍鱲的年龄、生长和繁殖. 水生生物学报, 2012, 36(3): 474—481]
[33] Yan Y Z, Li L, Xiu Y, et al. Breeding strategy of Acrossocheilus fasciatus in the Puxi Stream of the Huangshan Mountain [J]. Current Zoology, 2009, 55(5): 350—356
[34] Sui X Y, Yan Y Y, Chen Y F. Age, growth and reproduction of Opsariichthys bidens (Cyprinidae) from the Qingyi River at Huangshan Mountain, China [J]. Zoological Studies, 2012, 51(4): 476—483
[35] Zhu R, Si C, Chu L, et al. The spatio-temporal distribution of fish population in the headwaters of the Qingyi River: a study based on the habitat patchs [J]. Acta Hydrobiologica Sinica, 2015, 39(4): 686—694 [朱仁, 司春, 储玲, 等. 基于栖息地斑块尺度的青弋江河源溪流鱼类群落的时空格局. 水生生物学报, 2015, 39(4): 686—694] Zhu R, Si C, Chu L, et al. The spatio-temporal distribution of fish population in the headwaters of the Qingyi River: a study based on the habitat patchs [J]. Acta Hydrobiologica Sinica, 2015, 39(4): 686—694 [朱仁, 司春, 储玲, 等. 基于栖息地斑块尺度的青弋江河源溪流鱼类群落的时空格局. 水生生物学报, 2015, 39(4): 686—694]
[36] Yan Y Z, Zhan Y J, Chu L, et al. Effects of stream size and spatial position on stream-dwelling fish assemblages [J]. Acta Hydrobiologica Sinica, 2010, 34(5): 1022—1030 [严云志, 占姚军, 储玲, 等. 溪流大小及其空间位置对鱼类群落结构的影响. 水生生物学报, 2010, 34(5): 1022—1030] Yan Y Z, Zhan Y J, Chu L, et al. Effects of stream size and spatial position on stream-dwelling fish assemblages [J]. Acta Hydrobiologica Sinica, 2010, 34(5): 1022—1030 [严云志, 占姚军, 储玲, 等. 溪流大小及其空间位置对鱼类群落结构的影响. 水生生物学报, 2010, 34(5): 1022—1030]
[37] Vannote R L, Minshall G W, Cummins K W, et al. The river continuum concept [J]. Canadian Journal of Fish eries and Aquatic Sciences, 1980, 37(1): 130—137
[38] Meyer J L, Strayer D L, Wallace J B, et al. The contribution of headwater streams to biodiversity in river networks [J]. Journal of the American Water Resources Association, 2007, 43(1): 86—103
[39] Allan J D. Landscapes and riverscapes: The influence of land use on stream ecosystems [J]. Annual Review of Ecology, Evolution, and Systematics, 2004, 35(1): 257—284
[40] Hering D, Borja A, Carsrensen J, et al. The European water framework directive at the age of 10: a critical review of the achievements with recommendations for the future [J]. Science of the Total Environment, 2010, 408(19): 4007—4019
-
期刊类型引用(2)
1. 钱霞. 石鳖齿舌牙齿中的磁铁矿物质. 四川大学学报(自然科学版). 2018(04): 788-794 . 百度学术
2. 钱霞, 王明红, 阮树仁, 盛淑芳, 孙桂芳. 红条毛肤石鳖齿舌主侧齿中的纳米磁铁矿Fe_3O_4. 人工晶体学报. 2015(06): 1656-1661 . 百度学术
其他类型引用(2)