COMPARATIVE STUDY OF THE DIFFERENCE IN GLUCOSE AND DEXTRIN UTILIZATION IN THE CHINESE PERCH (SINIPERCA CHUATSI)
-
摘要: 研究通过比较鳜(Siniperca chuatsi)对不同碳水化合物的利用差异, 探究肉食性鱼类对碳水化合物利用的分子机制。按照1670 mg/kg剂量对鳜灌喂葡萄糖和糊精后, 分别在0、1h、2h、3h、4h、8h、12h和24h收集水样、血浆、肝脏和肌肉, 检测尿糖、血糖、血甘油三酯、血胰岛素、肝糖原、肌糖原含量及糖代谢相关基因表达水平等指标。结果显示: (1) 灌喂后1—12h内, 两组鳜相比, 葡萄糖组尿糖显著高于糊精组, 血糖及胰岛素含量在两组间无显著差异; (2) 两组鳜甘油三酯含量在2h时达到最大值, 糊精组甘油三酯含量在4h时显著高于葡萄糖组, 糊精组肝糖原含量在1h时显著高于葡萄糖组, 且糊精组肌糖原含量在24h内均显著高于葡萄糖组; (3) 灌喂后1h, 灌喂糊精组葡萄糖激酶(Glucokinase, GK)、脂肪酸合成酶(Fatty Acid Synthetase, FAS)、乙酰辅酶A羧化酶Ⅰ型(Acetyl-CoA Carboxylase Type Ⅰ, ACC1)、柠檬酸合成酶(Citroyl Synthetase, CS)基因表达水平显著高于葡萄糖组, 而在灌喂后8h, 糊精组糖原合酶(Glycogen Synthase, GS)和CS基因表达水平却显著低于葡萄糖组。结果表明, 肉食性鱼类鳜摄入糖后可以促进糖原和脂肪的合成, 转化为糖原和甘油三酯, 从而减少未利用糖的排出, 且鳜对葡萄糖的利用效率低于糊精。Abstract: In this study, we compared the utilization of different carbohydrates in Chinese perch and further explored the molecular mechanism of carbohydrate utilization in carnivorous fish. Water, plasma, liver and muscle samples were collected at 0, 1, 2, 3, 4, 8, 12 and 24h after Chinese perch were fed glucose and dextrin at a 1670 mg/kg dose. The parameters urine sugar, blood glucose, blood triglycerides, blood insulin, and liver and muscle glycogen and the mRNA expression levels of glucose metabolism-related genes were detected. The results showed the following: (1) Within 1—12h after feeding, the blood glucose level was significantly higher in the glucose group than in the dextrin group, while the blood glucose and insulin levels were not significantly different between the two groups. (2) The triglyceride content at 2—4h was higher in the dextrin group than in the glucose group, and the liver glycogen content at 1h was significantly higher in the dextrin group than in the glucose group. Furthermore, the muscle glycogen content at 24h was significantly higher in the dextrin group than in the glucose group. (3) One hour after feeding, the mRNA expression levels of glucokinase (GK), fatty acid synthetase (FAS), acetyl-CoA carboxylase type I (ACC1) and citrate synthase (CS) were significantly higher in the dextran group than in the glucose group, and the expression levels of glycogen synthase (GS) and CS mRNA at 8h were significantly lower in the dextrin group than in the glucose group. These results demonstrated that the utilization efficiency of dextrin was better than that of dextrose and that the intake of dextrin could promote the synthesis of glycogen and fat.
-
Keywords:
- Glucose metabolism /
- Siniperca chuatsi /
- Glucose /
- Dextrin /
- Oral administration
-
-
图 1 灌喂不同碳水化合物对鳜尿糖及血糖含量的影响
数据表示为平均值±标准误(n=4), 星号(*)表示同一时间点两组之间显著差异(P<0.05); 不同字母表示两组分别在各个时间点有显著性差异(P<0.05); 下同
Figure 1. Effects of the oral administration of different carbohydrates on the urine glucose and plasma glucose concentrations in Chinese perch
Data are presented as the mean±SEM (n=4). The significance level is marked with an asterisk (P<0.05) and shows significant differences following feeding with different carbohydrates at the same time (P<0.05); different letters indicate significant differences in the same group at various times (P<0.05). The same applies below
表 1 本研究实时定量PCR引物
Table 1 Primers used for real-time PCR used in this study
基因Gene 引物序列Sequence of primer (5′—3′) 片段长度Product length (bp) 退火温度Tm (℃) RPL13A CACCCTATGACAAGAGGAAGC 100 59 TGTGCCAGACGCCCAAG GK AAGGTGGAGACCAAGAAC 170 51.5 TGCCCTTGTCAATGTCC FAS ATGGAAATCACCCCTGTAATCTT 203 57 CTTATCTGACTACGGAATGAATCG ACC1 TATGCCCACTTACCCAAATGC 129 58 TGCCACCATACCAATCTCGTT PEPCK CTGAGTTTGTGAAGAGAGCGG 170 57 GTCCTTTGGGTCTGTGCGT GS TACACTGCCTGACCAAGACC 115 54 AATGTGGCTGGAGACGAAT CS GAATGCCACCTACTTCCTTGT 166 57 CCCCTCATACCTCCATAAACC -
[1] Suarez R K, Mommsen T P. Gluconeogenesis in teleost fishes [J]. Canadian Journal of Zoology, 1987, 65(8): 1869-1882. doi: 10.1139/z87-287
[2] Cowey C B, Walton M J. Intermediary metabolism [C]. Halver J E. Fish Nutrition. New York: Academic Press, 1989: 259—329
[3] Cho C Y, Kaushik S J. Nutritional energetics in fish: energy and protein utilization in rainbow trout (Salmo gairdneri) [J]. Nutrition Diet, 1990, 61(1): 132-172.
[4] Kaushik S J, Médale F. Energy requirements, utilization and dietary supply to salmonids [J]. Inpharma Weekly, 1997, 1069(1): 10.
[5] Wilson R P. Utilization of dietary carbohydrate by fish [J]. Aquaculture, 1994, 124(1-4): 67-80. doi: 10.1016/0044-8486(94)90363-8
[6] Hutchins C G, Rawles S D, Gatlin D M III. Effects of dietary carbohydrate kind and level on growth, body composition and glycemic response of juvenile sunshine bass (Morone chrysops♀×M. saxatilis♂) [J]. Aquaculture, 1998, 161(1-4): 187-199.
[7] Millikin M R. Qualitative and quantitative nutrient requirements of fishes: a review [J]. Fishery Bulletin United States National Marine Fisheries Service, 1982, 80(1): 655-696.
[8] Moon T W. Glucose intolerance in teleost fish: fact or fiction [J]? Comparative Biochemistry & Physiology Part B Biochemistry & Molecular Biology, 2001, 129(2): 243-249.
[9] Wilson R P, Poe W E. Apparent inability of channel catfish to utilize dietary mono-and disaccharides as energy sources [J]. Journal of Nutrition, 1987, 117(2): 280. doi: 10.1093/jn/117.2.280
[10] Mazur C N, Higgs D A, Plisetskaya E, et al. Utilization of dietary starch and glucose tolerance in juvenile chinook salmon (Oncorhynchus tshawytscha) of different strains in seawater [J]. Fish Physiology and Biochemistry, 1992, 10(4): 303-313. doi: 10.1007/BF00004479
[11] Deng D F, Refstie S, Hemre G I, et al. A new technique of feeding, repeated sampling of blood and continuous collection of urine in white sturgeon [J]. Fish Physiology and Biochemistry, 2000, 22(3): 191-197. doi: 10.1023/A:1007803307617
[12] Deng D F, Refstie S, Hung S S. Glycemic and glycosuric responses in white sturgeon (Acipenser transmontanus) after oral administration of simple and complex carbohydrates [J]. Aquaculture, 2001, 199(1): 107-117.
[13] Legate N J, Bonen A, Moon T W. Glucose tolerance and peripheral glucose utilization in rainbow trout (Oncorhynchus mykiss), American eel (Anguilla rostrata), and black bullhead catfish (Ameiurus melas) [J]. General and Comparative Endocrinology, 2001, 122(1): 48-59. doi: 10.1006/gcen.2001.7620
[14] Enes P, Peres H, Couto A, et al. Growth performance and metabolic utilization of diets including starch, dextrin, maltose or glucose as carbohydrate source by gilthead sea bream (Sparus aurata) juveniles [J]. Fish Physiology and Biochemistry, 2010(36): 903-910.
[15] 马爱军, 陈四清, 雷霁霖, 等. 饲料中主要能量物质对大菱鲆幼鱼生长的影响 [J]. 海洋与湖沼, 2001, 32(5): 527-533. doi: 10.3321/j.issn:0029-814X.2001.05.009 Ma A J, Chen S Q, Lei J L, et al. Influences of the main energy matter in feed on the growth of young turbot, Scophthalmus maximus [J]. Oceanologia et Limnologia Sinica, 2001, 32(5): 527-533. doi: 10.3321/j.issn:0029-814X.2001.05.009
[16] 聂琴, 苗惠君, 苗淑彦, 等. 不同糖源及糖水平对大菱鲆糖代谢酶活性的影响 [J]. 水生生物学报, 2013, 37(3): 425-433. doi: 10.7541/2013.39 Nie Q, Miao H J, Miao S Y, et al. Effects of dietary carbohydrate sources and levels on the activities of carbohydrate metabolic enzymes in turbot [J]. Acta Hydrobiologica Sinica, 2013, 37(3): 425-433. doi: 10.7541/2013.39
[17] 高妍, 李静辉, 方珍珍, 等. 饲料中糊精水平对乌克兰鳞鲤生长及糖代谢的影响 [J]. 动物营养学报, 2015, 27(5): 1401-1410. doi: 10.3969/j.issn.1006-267x.2015.05.010 Gao Y, Li J H, Fang Z Z, et al. Effects of dietary dextrin level on growth and carbohydrate metabolism of ukraine scaly carp (Cyprinus carpio) [J]. Chinese Journal of Animal Nutrition, 2015, 27(5): 1401-1410. doi: 10.3969/j.issn.1006-267x.2015.05.010
[18] Enes P, Panserat S, Kaushik S, et al. Rapid metabolic adaptation in European sea bass (Dicentrarchus labrax) juveniles fed different carbohydrate sources after heat shock stress [J]. Comparative Biochemistry and Physiology, Part A, 2006(145): 73-81.
[19] Lee S M, Kim K D, Lall S P. Utilization of glucose, maltose, dextrin and cellulose by juvenile flounder (Paralichthys olivaceus) [J]. Aquaculture, 2003(221): 427-438.
[20] Tan Q, Xie S Q, Zhu X, et al. Effect of dietary carbohydrate sources on growth performance and utilization for gibel carp (Carassius auratus gibelio) and Chinese longsnout catfish (Leiocassis longirostris Günther) [J]. Aquaculture Nutrition, 2006(12): 61-70.
[21] Hung S S. Carbohydrate utilization by white sturgeon as assessed by oral administration tests [J]. Journal of Nutrition, 1991, 121(10): 1600-1605. doi: 10.1093/jn/121.10.1600
[22] Furuichi M, Yone Y. Availability of carbohydrate in nutrition of carp and red sea bream [J]. Bulletin of the Japanese Society for Scientific Fisheries, 1982, 48(7): 945-948. doi: 10.2331/suisan.48.945
[23] Lin S C, Liou C H, Shiau S Y. Renal threshold for urinary glucose excretion by tilapia in response to orally administered carbohydrates and injected glucose [J]. Fish Physiology and Biochemistry, 2000, 23(2): 127-132. doi: 10.1023/A:1007888108057
[24] Liang X F, Liu J K, Huang B Y. The role of sense organs in the feeding behaviour of Chinese perch [J]. Journal of Fish Biology, 1998, 52(5): 1058-1067. doi: 10.1111/j.1095-8649.1998.tb00603.x
[25] Liang X F, Lin X, Li S, Liu J K. Impact of environmental and innate factors on the food habit of Chinese perch Siniperca chuatsi (Basilewsky) (Percichthyidae) [J]. Aquaculture Research, 2008, 39(3): 150-157.
[26] Liang X F, Oku H, Ogata H Y, et al. Weaning Chinese perch Siniperca chuatsi (Basilewsky) onto artificial diets based upon its specific sensory modality in feeding [J]. Aquaculture Research, 2001, 32(s1): 76-82.
[27] Suárez M D, Sanz A, Bazoco J, et al. Metabolic effects of changes in the dietary protein: carbohydrate ratio in eel (Angilla anguilla) and trout (Oncorhynchus mykiss) [J]. Aquaculture International, 2002, 10(2): 143-156. doi: 10.1023/A:1021371104839
[28] 黄鹤忠, 丁磊, 宋学宏, 等. 青鱼和草鱼葡萄糖耐量的比较研究 [J]. 中国水产科学, 2005, 12(4): 496-500. doi: 10.3321/j.issn:1005-8737.2005.04.022 Huang H Z, Ding L, Song X H, et al. Comparative research on glucose tolerance between black carp Mylopharyngodon piceus and grass carp Ctenopharyngodon idellus [J]. Journal of Fishery Sciences of China, 2005, 12(4): 496-500. doi: 10.3321/j.issn:1005-8737.2005.04.022
[29] 杨伟, 叶继丹, 王琨, 等. 斜带石斑鱼经葡萄糖灌喂后的代谢反应 [J]. 水生生物学报, 2012, 36(3): 563-568. Yang W, Ye J D, Wang K, et al. Glucose tolerance in grouper (Epinphelus coioides) [J]. Acta Hydrobiologica Sinica, 2012, 36(3): 563-568.
[30] He S, Liang X F, Sun J, et al. Insights into food preference in hybrid F1 of Siniperca chuatsi (♀) × Siniperca scherzeri (♂) mandarin fish through transcriptome analysis [J]. BMC Genomics, 2013, 14(1): 601. doi: 10.1186/1471-2164-14-601
[31] Hemre G I, Torrissen O, Krogdahl Å, et al. Glucose tolerance in Atlantic salmon, Salmo salar L. dependence on adaption to dietary starch and water temperature [J]. Aquaculture Nutrition, 2010, 1(2): 69-75.
[32] Hemre G, Mommsen T P, Krogdahl Å. Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes [J]. Aquaculture Nutrition, 2015, 8(3): 175-194.
[33] Hemre G I, Hansen T. Utilisation of different dietary starch sources and tolerance to glucose loading in Atlantic salmon (Salmo salar), during parrsmolt transformation [J]. Aquaculture, 1998, 161(1): 145-157.
[34] Sundby A, Eliassen K, Refstie T, et al. Plasma levels of insulin, glucagon and glucagon-like peptide in salmonids of different weights [J]. Fish Physiology & Biochemistry, 1991, 9(3): 223-230.
[35] Enes P, Peres H, Sanchezgurmaches J, et al. Insulin and IGF-I response to a glucose load in European sea bass (Dicentrarchus labrax) juveniles [J]. Aquaculture, 2011, 315(3): 321-326.
[36] Enes P, Panserat S, Kaushik S, et al. Effect of normal and waxy maize starch on growth, food utilization and hepatic glucose metabolism in European sea bass (Dicentrarchus labrax) juveniles [J]. Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology, 2006, 143(1): 89-96.
[37] Kaslow H R, Lesikar D D, Antwi D, et al. L-type glycogen synthase. Tissue distribution and electrophoretic mobility [J]. Journal of Biological Chemistry, 1985, 260(18): 9953-9956.
[38] de la Iglesia N, Mukhtar M, Seoane J, et al. The role of the regulatory protein of glucokinase in the glucose sensory mechanism of the hepatocyte [J]. Journal of Biological Chemistry, 2000, 275(14): 10597-10603. doi: 10.1074/jbc.275.14.10597
[39] Peres H, Goncalves P, Oliva-Teles A. Glucose tolerance in gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax) [J]. Aquaculture, 1999, 179(1-4): 415-423.
[40] 蔡春芳, 刘影, 陈立侨, 等. 异育银鲫口服不同剂量葡萄糖后的代谢反应 [J]. 水生生物学报, 2003, 27(6): 602-606. doi: 10.3321/j.issn:1000-3207.2003.06.008 Cai C F, Liu Y, Chen L Q, et al. Metabolic responses of allogynogeneticgbel carp after oral administration of different doses of glucose [J]. Acta Hydrobiologica Sinica, 2003, 27(6): 602-606. doi: 10.3321/j.issn:1000-3207.2003.06.008
-
期刊类型引用(7)
1. 周建强,司思,祁增源,韩银仓,刘秀,孙永刚. 牦牛SMAD1基因第1外显子SNPs检测及与生长性状的关联分析. 西北农业学报. 2023(02): 179-186 . 百度学术
2. 米热妮萨·图尔荪托合提,张继虎,郑浪漫,王晨光,刘春洁,刘书东. SMAD1基因在策勒黑羊卵巢不同生理期差异表达及生物信息学分析. 中国畜牧杂志. 2023(10): 185-189 . 百度学术
3. 张雨,陈爱华,吴杨平,许艳顺,曹奕,陈素华,张志东. 红壳色文蛤选育群体的经济性状分析. 水产养殖. 2022(05): 1-5 . 百度学术
4. 余钧剑,迟美丽,贾永义,刘士力,竺俊全,顾志敏. 雌核发育一代翘嘴鲌抑制素β_B基因SNP筛选及其与生长性状的关联性分析. 江西农业大学学报. 2020(02): 321-330 . 百度学术
5. 田志龙,汤继顺,孙庆,王玉琴,张效生,张金龙,储明星. 绵羊SMAD1基因组织表达及其多态性与产羔数关联分析. 中国农业科学. 2019(04): 755-766 . 百度学术
6. 田志龙,潘林香,王金文,马琳,储明星. 鲁中肉羊SMAD1和ESR2基因多态性与产羔数关联分析. 中国草食动物科学. 2019(02): 13-16 . 百度学术
7. 陈琛,蔺蓓蓓,徐尤美,李鑫鑫,刘祥. 文蛤生物活性多肽/蛋白研究进展. 海洋渔业. 2019(03): 374-384 . 百度学术
其他类型引用(4)