海洋酸化对泥蚶精子运动的影响及作用机理初探

施巍, 韩毓, 闫茂仓, 黄贤克, 胡利华, 柴雪良, 刘广绪

施巍, 韩毓, 闫茂仓, 黄贤克, 胡利华, 柴雪良, 刘广绪. 海洋酸化对泥蚶精子运动的影响及作用机理初探[J]. 水生生物学报, 2020, 44(3): 570-576. DOI: 10.7541/2020.070
引用本文: 施巍, 韩毓, 闫茂仓, 黄贤克, 胡利华, 柴雪良, 刘广绪. 海洋酸化对泥蚶精子运动的影响及作用机理初探[J]. 水生生物学报, 2020, 44(3): 570-576. DOI: 10.7541/2020.070
SHI Wei, HAN Yu, YAN Mao-Cang, HUANG Xian-Ke, HU Li-Hua, CHAI Xue-Liang, LIU Guang-Xu. OCEAN ACIDIFICATION INHIBITS THE SPERM MOTILITY OF TEGILLARCA GRANOSA VIA DISUTRBING ATP SYNTHESIS AND INTRACELLULAR CA2+ ACTIVITY[J]. ACTA HYDROBIOLOGICA SINICA, 2020, 44(3): 570-576. DOI: 10.7541/2020.070
Citation: SHI Wei, HAN Yu, YAN Mao-Cang, HUANG Xian-Ke, HU Li-Hua, CHAI Xue-Liang, LIU Guang-Xu. OCEAN ACIDIFICATION INHIBITS THE SPERM MOTILITY OF TEGILLARCA GRANOSA VIA DISUTRBING ATP SYNTHESIS AND INTRACELLULAR CA2+ ACTIVITY[J]. ACTA HYDROBIOLOGICA SINICA, 2020, 44(3): 570-576. DOI: 10.7541/2020.070

海洋酸化对泥蚶精子运动的影响及作用机理初探

基金项目: 国家自然科学基金(31672634和31372503)资助
详细信息
    作者简介:

    施巍(1992—), 男, 博士; 研究方向为海洋生态学。E-mail: shiwei1992@zju.edu.cn

    通信作者:

    刘广绪, 教授; E-mail: guangxu_liu@zju.edu.cn

  • 中图分类号: S917.4

OCEAN ACIDIFICATION INHIBITS THE SPERM MOTILITY OF TEGILLARCA GRANOSA VIA DISUTRBING ATP SYNTHESIS AND INTRACELLULAR CA2+ ACTIVITY

Funds: Supported by the National Natural Science Foundation of China (31672634, 31372503)
    Corresponding author:
  • 摘要: 研究分析了未来海洋酸化情景(pH7.8和pH7.4)对典型滩涂贝类泥蚶(Tegillarca granosa)精子运动活力的影响, 并从精子运动供能角度探究了其作用机理。研究结果表明, 海洋酸化可以显著削弱泥蚶的精子运动速度。由于精子的三磷酸腺苷(ATP)水平与其活力呈显著的正相关, 研究检测了不同酸化条件下泥蚶精子的ATP含量及其合成关键酶酶活, 实验结果显示精子的ATP含量以及磷酸果糖激酶和丙酮酸激酶活力在酸化条件下均显著下降。此外, 精子内的Ca2+-ATP酶(Ca2+-ATPase)调节了精子的运动能力, 因此实验也探究了海洋酸化对泥蚶精子Ca2+-ATPase酶活的影响, 结果证实该酶活力在海水pH为7.4时被显著抑制。综合本研究结果可以得出, 海洋酸化很可能会通过干扰精子细胞内ATP的合成及Ca2+的调控进而削弱精子的运动速度。
    Abstract: Since the industrial revolution, massive amount of anthropogenic carbon dioxide (CO2) have been generated to elevate the atmospheric CO2 concentration. Some anthropogenic CO2 have been absorbed by the ocean to cause “ocean acidification” (OA). Although the negative impacts of OA on sperm motility are increasingly found in various marine invertebrate species, the cellular and molecular mechanisms for these effects are still poorly understood. This study investigated the effect of OA (pH7.8 and 7.4) on sperm motility and energy supplying pathway in blood clam Tegillarca granosa. The results showed that the sperm swimming speed reduced significantly in acidified seawater. Since the adenosine triphosphate (ATP) level of sperm is closely related to its motility, we analyzed the sperm ATP content and activities of key enzymes during ATP synthesis under different OA scenarios. OA treatments significantly reduced ATP content as well as activities of 6-phosphofructokinase and pyruvate kinase in the sperm of T. granosa. The sperm Ca2+-ATPase of various animals has been reported to regulate sperm motility. Therefore, we explored the Ca2+-ATPase activity of T. granosa sperm under OA treatment. The results found that Ca2+-ATPase activities in the sperm of T. granosa were significantly declined under OA scenarios. In conclusion, these results suggested that OA could constrain sperm motility through inhibiting ATP synthesis and disturbing intracellular Ca2+ regulation.
  • 图  1   海洋酸化对泥蚶精子ATP含量的影响(均值±标准误)

    图中上标字母不同表示差异显著(P<0.05); 下同

    Figure  1.   Effects of ocean acidification on the ATP content in T. granosa sperm (Mean±SE)

    Values with different superscripts represent significant difference (P<0.05); the same applies below

    图  2   海洋酸化对泥蚶精子磷酸果糖激酶(PFK)酶活力的影响(均值±标准误)

    Figure  2.   Effects of ocean acidification on the on the activities of 6-phosphofructokinase (PFK) in T. granosa sperm (Mean±SE)

    图  3   海洋酸化对泥蚶精子丙酮酸激酶(PK)酶活力的影响(均值±标准误)

    Figure  3.   Effects of ocean acidification on the activities of pyruvate kinase (PK) in T. granosa sperm (Mean±SE)

    图  4   海洋酸化对泥蚶精子Ca2+-ATPase酶活影响(均值±标准误)

    Figure  4.   Effects of ocean acidification on the activities of Ca2+-ATPase in T. granosa sperm (Mean±SE)

    表  1   对照组与酸化实验组的海水理化参数值(均值±标准误)

    Table  1   Chemical parameters of seawater in the control and experiment groups (Mean±SE)

    pH温度T (℃)盐度Sal (‰)pHNBS总碱度TA (μmol/kg)CO2分压pCO2 (μatm)总无机碳浓度DIC (μmol/kg)文石饱和度Ωara方解石饱和度Ωcal
    8.126.28±0.0521.19±0.088.07± 0.072057.63±11.25596.37±3.251954.68±6.872.04±0.023.26±0.03
    7.826.19±0.1021.22±0.097.79±0.102062.97±11.281175.25±20.522004.80±8.411.16±0.021.85±0.02
    7.426.22±0.1121.18±0.127.41±0.052067.78±11.583095.58±43.72135.43±7.760.48±0.010.77±0.01
    下载: 导出CSV

    表  2   海洋酸化对泥蚶精子运动速度的影响(均值±标准误)

    Table  2   Effects of ocean acidification on the sperm motility of T. granosa (Mean±SE)

    pHVCL (μm/s)VAP (μm/s)VSL (μm/s)
    8.1123.63±2.06a136.30±3.23a105.65±5.39a
    7.8101.95±7.97b85.66±3.20b80.51±2.19b
    7.482.73±3.87b72.64±3.20c57.75±4.31c
    注: VCL为曲线运动速度, VAP为平均路径速度, VSL为直线速度; 同一行中, 不同上标字母表示差异显著(P<0.05)Note: VCL means velocity curvilinear, VAP means velocity average path, VSL means velocity straight line; Values with different superscripts letters in the same column mean significant differences (P<0.05)
    下载: 导出CSV
  • [1]

    Caldeira K, Wicket M E. Oceanography: anthropogenic carbon and ocean pH [J]. Nature, 2003, 425(6956): 365-365. doi: 10.1038/425365a

    [2]

    Climate Change 2014: Synthesis Report [C]//Pachauri R K, Meyer L A (Eds.), Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Switzerland: IPCC, 2014: 60-70

    [3]

    Orr J C, Fabry V J, Aumont O, et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms [J]. Nature, 2005, 437(7059): 681-686. doi: 10.1038/nature04095

    [4]

    Bibby R, Widdicombe S, Parry H, et al. Effects of ocean acidification on the immune response of the blue mussel Mytilus edulis [J]. Aquatic Biology, 2008, 2(1): 67-74.

    [5]

    Shi W, Zhao X, Han Y, et al. Ocean acidification increases cadmium accumulation in marine bivalves: a potential threat to food safety [J]. Scientific Reports, 2016, (6): 20197.

    [6]

    Huang X, L in, D, Ning K, et al. Hemocyte responses of the thick shell mussel Mytilus coruscus exposed to nano-TiO2 and seawater acidification [J]. Aquatic Toxicology, 2016, (180): 1-10.

    [7] 赵信国, 刘广绪. 海洋酸化对海洋无脊椎动物的影响研究进展 [J]. 生态学报, 2015, 35(7): 2388-2398.

    Zhao X G, Liu G. Advances in the effects of ocean acidification on marine invertebrates [J]. Acta Ecologica Sinica, 2015, 35(7): 2388-2398.

    [8]

    Zhao X, Shi W, Han Y, et al. Ocean acidification adversely influences metabolism, extracellular pH and calcification of an economically important marine bivalve, Tegillarca granosa [J]. Marine Environmental Research, 2017, (125): 82-89.

    [9]

    Shi W, Han Y, Guo C, et al. Ocean acidification hampers sperm-egg collisions, gamete fusion, and generation of Ca2+ oscillations of a broadcast spawning bivalve, Tegillarca granosa [J]. Marine Environmental Research, 2017, (130): 106-112.

    [10] 刘广绪. 海洋无脊椎生物受精动力学模型: 研究方法与应用 [J]. 水生生物学报, 2013, 37(5): 938-944.

    Liu G X. Review of fertilization kinetics model in marine invertebrates: investigating methodology and application [J]. Acta Hydrobiologica Sinica, 2013, 37(5): 938-944.

    [11]

    Vogel H, Czihak G, Chang P, et al. Fertilization kinetics of sea-urchin eggs [J]. Mathematical Biosciences, 1982, 58(2): 189-216. doi: 10.1016/0025-5564(82)90073-6

    [12]

    Shi W, Zhao X, Han Y, et al. Effects of reduced pH and elevated pCO2 on sperm motility and fertilisation success in blood clam, Tegillarca granosa [J]. New Zealand Journal of Marine and Freshwater Research, 2017, 51(4): 543-554. doi: 10.1080/00288330.2017.1296006

    [13]

    Parker L M, Ross P M, O’Connor W A. The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata (Gould 1850) [J]. Global Change Biology, 2009, 15(9): 2123-2136. doi: 10.1111/j.1365-2486.2009.01895.x

    [14]

    Cross N L, Hanks S E. Effects of cryopreservation on human sperm acrosomes [J]. Human Reproduction, 1991, 6(9): 1279-1283. doi: 10.1093/oxfordjournals.humrep.a137526

    [15]

    Okunade G W, Miller M L, Pyne G J, et al. Targeted ablation of plasma membrane Ca2+-ATPase (PMCA) 1 and 4 indicates a major housekeeping function for PMCA1 and a critical role in hyperactivated sperm motility and male fertility for PMCA4 [J]. Journal of Biological Chemistry, 2004, 279(32): 33742-33750. doi: 10.1074/jbc.M404628200

    [16]

    Schuh K, Cartwright E J, Jankevics E, et al. Plasma membrane Ca2+-ATPase 4 is required for sperm motility and male fertility [J]. Journal of Biological Chemistry, 2004, 279(27): 28220-28226. doi: 10.1074/jbc.M312599200

    [17]

    Shao Y, Chai X, Xiao G, et al. Population genetic structure of the blood clam, Tegillarca granosa, along the pacific coast of Asia: isolation by distance in the sea [J]. Malacologia, 2016, 59(2): 303-312. doi: 10.4002/040.059.0208

    [18] 程雪艳, 蒋国萍, 柴雪良, 等. 泥蚶谷胱甘肽过氧化物酶基因的全长克隆与表达分析 [J]. 水生生物学报, 2016, 40(6): 1144-1151.

    Chen X Y, Jiang G P, Chai X L, et al. full-length cDNA cloning and expression analysis of glutathione peroxidase from blood clam Tegillarca granosa [J]. Acta Hydrobiologica Sinica, 2016, 40(6): 1144-1151.

    [19] 滕爽爽, 方军, 邵艳卿, 等. 泥蚶G2代快速生长家系遗传结构的微卫星分析及其与生长性状的关联 [J]. 水生生物学报, 2018, 42(4): 681-689.

    Teng S S, Fang J, Shao Y Q, et al. Microsatellite analysis of genetic variation in the fast growth families of the 2nd generation of Tegillarca granosa and correlation with growth traits [J]. Acta Hydrobiologica Sinica, 2018, 42(4): 681-689.

    [20]

    Shi W, Han Y, Guo C, et al. Ocean acidification increases the accumulation of titanium dioxide nanoparticles (nTiO2) in edible bivalve mollusks and poses a potential threat to seafood safety [J]. Scientific Reports, 2019, 9(1): 3516. doi: 10.1038/s41598-019-40047-1

    [21]

    Zhao X G, Guo C, Han Y, et al. Ocean acidification decreases mussel byssal attachment strength and induces molecular byssal responses [J]. Marine Ecology Progress Series, 2017, (565): 67-77.

    [22]

    Liu S, Shi W, Guo C, et al. Ocean acidification weakens the immune response of blood clam through hampering the NF-kappa β and toll-like receptor pathways [J]. Fish & Shellfish Immunology, 2016, (54): 322-327.

    [23]

    Han Y, Shi W, Guo C, et al. Characteristics of chitin synthase (CHS) gene and its function in polyspermy blocking in the blood clam Tegillarca granosa [J]. Journal of Molluscan Studies, 2016, 82(4): 550-557. doi: 10.1093/mollus/eyw018

    [24]

    Babcock R, Keesing J. Fertilization biology of the abalone Haliotis laevigata: laboratory and field studies [J]. Canadian Journal of Fisheries & Aquatic Sciences, 1999, 56(9): 1668-1678.

    [25]

    Havenhand J N, Buttler F R, Thorndyke M C, et al. Near-future levels of ocean acidification reduce fertilization success in a sea urchin [J]. Current Biology, 2008, 18(15): R651-R652. doi: 10.1016/j.cub.2008.06.015

    [26]

    Wallach E E, Liu D Y, Baker H G. Tests of human sperm function and fertilization in vitro [J]. Fertility & Sterility, 1992, 58(3): 465-483.

    [27]

    Barros P, Sobral P, Range P, et al. Effects of sea-water acidification on fertilization and larval development of the oyster Crassostrea gigas [J]. Journal of Experimental Marine Biology & Ecology, 2013, (440): 200-206.

    [28]

    Byrne M, Soars N, Selvakumaraswamy P, et al. Sea urchin fertilization in a warm, acidified and high pCO2 ocean across a range of sperm densities [J]. Marine Environmental Research, 2010, 69(4): 234-239. doi: 10.1016/j.marenvres.2009.10.014

    [29]

    Nakamura M, Morita M. Sperm motility of the scleractinian coral Acropora digitifera under preindustrial, current, and predicted ocean acidification regimes [J]. Aquatic Biology, 2012, 15(3): 299-302. doi: 10.3354/ab00436

    [30] 李加儿, 区又君, 江世贵. 环境因子变化对平鲷精子活力的影响 [J]. 动物学杂志, 1996, 31(3): 6-9.

    Li J E, Ou Y J, Jiang S G. Effects of environment change of the vitality of spermatozoa in Rhabdorsargus sarba [J]. Chinese Journal of Zoology, 1996, 31(3): 6-9.

    [31] 汪世贵, 李加儿, 区又君, 等. 四种鲷科鱼类的精子激活条件与其生态习性的关系 [J]. 生态学报, 1999, 20(3): 468-473.

    Jiang S G, Li J E, Ou Y J, et al. Relationships between conditions for activating spermatozoa of four sparidae fishes and the fishes’ ecological habits [J]. Acta Ecologica Sinica, 1999, 20(3): 468-473.

    [32]

    Johnson C H, Epel D. Intracellular pH of sea urchin eggs measured by the dimethyloxazolidinedione (DMO) method [J]. Journal of Cell Biology, 1981, 89(2): 284-291. doi: 10.1083/jcb.89.2.284

    [33] 钟爱华. 几种理化因子对厚壳贻贝精子活力的影响 [J]. 海洋学研究, 2010, 28(4): 89-94.

    Zhong A H. The influence of physical-chemical factors upon Mytilus coruscus sperm motility [J]. The Journal of Marine Sciences, 2010, 28(4): 89-94.

    [34] 竺俊全, 丁理法, 焦海峰, 等. 环境因子变化对泥蚶精子活力的影响 [J]. 海洋科学, 2006, 30(2): 65-68.

    Zhu J Q, Ding L F, Jiao H F, et al. Effects of environmental factors on spermatozoa motility of Tegillarca granosa [J]. Marine Sciences, 2006, 30(2): 65-68.

    [35]

    Schlegel P, Binet M T, Havenhand J N, et al. Ocean acidification impacts on sperm mitochondrial membrane potential bring sperm swimming behaviour near its tipping point [J]. Journal of Experimental Biology, 2015, 218(7): 1084-1090. doi: 10.1242/jeb.114900

    [36]

    Peng C, Zhao X, Liu S, et al. Effects of anthropogenic sound on digging behavior, metabolism, Ca2+/Mg2+-ATPase activity, and metabolism-related gene expression of the bivalve Sinonovacula constricta [J]. Scientific Reports, 2016, (6): 24266.

    [37] 王丽艳, 张敏, 赵晓丽, 等. 不同运动方式对大鼠异柠檬酸脱氢酶和磷酸果糖激酶-1的影响 [J]. 天津医科大学学报, 2011, 17(2): 170-172.

    Wang L Y, Zhang M, Zhao X L, et al. Effects of different training methods on the activity of isocitrate dehydrogenase and phosphofructokinase-1 in rats skeletal muscle [J]. Journal of Tianjin Medical University, 2011, 17(2): 170-172.

    [38] 张红国, 段晓刚, 刘睿智. 钙离子与精子功能 [J]. 中华男科学杂志, 2006, 12(10): 933-935.

    Zhang H G, Duan X G, Liu R Z. Ca2+ and sperm function [J]. National Journal of Andrology, 2006, 12(10): 933-935.

    [39]

    Sampson M J, Decker W K, Beaudet A L, et al. Immotile sperm and infertility in mice lacking mitochondrial voltage-dependent anion channel type 3 [J]. Journal of Biological Chemistry, 2001(276): 39206-39212.

    [40]

    Ren D, Navarro B, Perez G, et al. A sperm ion channel required for sperm motility and male fertility [J]. Nature, 2001(413): 603-609.

    [41]

    Saadoun S, Lluch M, Rodríguez-Álvarez J, et al. Extracellular acidification modifies Ca2+ fluxes in rat brain synaptosomes [J]. Biochemical & Biophysical Research Communications, 1998, 242(1): 123-128.

    [42]

    Gunaratne H J, Neill A T, Vacquier V D. Plasma membrane calcium ATPase is concentrated in the head of sea urchin spermatozoa [J]. Journal of Cellular Physiology, 2010(207): 413-419.

  • 期刊类型引用(4)

    1. 李卓,彭祖想,任同军,韩雨哲. 无鱼粉饲料中补充限制性氨基酸对鲤抗氧化及部分免疫酶活性的影响. 河北渔业. 2024(03): 5-10+25 . 百度学术
    2. 冯勇轶,马娇娇,张震,陈成勋,王庆奎,张修成,于学权,陈书奇. 日粮添加不同水平赖氨酸与蛋氨酸对珍珠龙胆石斑鱼生长性能及肌肉氨基酸水平的影响. 饲料研究. 2020(06): 45-47 . 百度学术
    3. 段晶,吴莉芳,王婧瑶,张东鸣,祖岫杰,刘艳辉,金昌洙. 蛋氨酸水平对洛氏鱥生长及消化酶和蛋白质代谢酶活力的影响. 西北农林科技大学学报(自然科学版). 2019(07): 23-31 . 百度学术
    4. 迟淑艳,韩凤禄,谭北平,董晓慧,杨奇慧,刘泓宇,章双. 饲料精氨酸水平对斜带石斑鱼幼鱼生长和肠道形态的影响. 水生生物学报. 2016(02): 388-394 . 本站查看

    其他类型引用(11)

图(4)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 15
出版历程
  • 收稿日期:  2019-05-23
  • 修回日期:  2020-01-14
  • 网络出版日期:  2020-05-18
  • 发布日期:  2020-04-30

目录

    /

    返回文章
    返回