MECHANISMS OF SALINITY ADAPTABILITY OF LITOPENAEUS VANNAMEI UNDER DIFFERENT SALINITY CONDITIONS
-
摘要: 为研究不同遗传背景的凡纳滨对虾(Litopenaeus vannamei)在对盐度的适应能力上具有明显的差异的机理, 比较了30个凡纳滨对虾家系在3个不同盐度水体(5‰、20‰和30‰)中饲养30d后的生长性状。研究结果证实了不同家系对虾在不同盐度条件下的生长性能和适应能力存在显著差异。研究进一步对比分析了各盐度条件下不同家系间生理代谢、ATP含量及ATP合成关键酶酶活力的差异, 并检测了不同家系凡纳滨对虾鳃Na+/K+-ATPase、Ca2+-ATPase酶活水平。结果发现盐度适应力差的对虾家系的Na+/K+-ATPase、Ca2+-ATPase酶活力较弱, 这可能是由于其机体能量供给不足所导致。此外, 研究以血浆中皮质醇浓度为指标, 对比了不同盐度下不同对虾家系的机体应激水平, 结果显示盐度适应力差的对虾家系在经30d饲养后仍处于应激状态。综合研究结果得出, 不同遗传背景的对虾对盐度的适应能力不同, 可能是由其机体代谢、离子转运及能量合成能力所决定。
-
关键词:
- 凡纳滨对虾 /
- 盐度 /
- 能量合成 /
- Na+/K+-ATP酶 /
- Ca2+-ATP酶
Abstract: Owing to their high tolerance to a wide range of salinity, white shrimp (Litopenaeus vannamei) has been generally recognized as an excellent candidate for inland culture. Recently, inland farming of L. vannamei has become a growing industry in many regions of the world. Therefore, the effects of water salinity on the survival and development of L. vannamei has attracted great research interest at present. However, according to previous studies, the salinity adaptability of different families of L. vannamei were found to vary significantly and the most optimal salinity for the culture of L. vannamei is still debatable, which pose a challenge for the selection of seed juvenile for inland culture. It has been reported that the different salinity adaptability of different families of L. vannamei may be due to different genetic backgrounds, and the underneath mechanism remains unknown. This study compared the growth traits (specific growth rate and survival rate) under different salinity conditions (5‰, 20‰ and 30‰) among 30 families of L. vannamei. Consistent with previous studies, our results demonstrated that the specific growth rates of shrimps were significant different among different families after 30 days exposure to different salinity conditions. Four L. vannamei families with two highest (family 6016 and 6022) and two poorest salinity adaptability (family 6039 and 6040) were chosen based on specific growth rates and survival rates of 30 L. vannamei families for further investigation. Plsama cortisol concentration has long been generally used as an important index for the evaluation of environmental adaptive capacity of aquatic organisms including shrimps. Therefore, in this study, the plsama cortisol concentration of shrimps from different families were measured after 30 days exposure to different salinity conditions by using commercial ELISA kit. The plsama cortisol concentrations of shrimps from family 6039 and 6040 at salinity of 5‰ were significantly (P<0.05) higher than those from family 6016 and 6022, which indicated a stress response of these shrimps at a water salinity of 5‰ even after 30 days accommodation. This result suggested that these shrimps from family 6039 and 6040 may be inadaptable to the lower water salinity conditions, which may therefore lead to the inhibited growth and survival rates of shrimps of these families as observed in the present study. According to previous studies, Na+/K+-ATPase and Ca2+-ATPase are key enzymes for the regulation of osmotic pressure involved in the active transport of ions including Na+, K+ and Ca2+ in the animal cells. Furthermore, the adaptation of aquatic animals, especially marine animals, to a low salinity environment has been reported to be mediated by these enzymes. As a result, in order to explore the physiological mechanism of the varied adaptation to an altered salinity among these L. vannamei families, the enzymatic activities of Na+/K+-ATPase and Ca2+-ATPase in the shrimp gills from different families after 30 days exposure under different salinity conditions were examined by using ATPase activity assay kit in the present study. Results obtained found that both Na+/K+-ATPase and Ca2+-ATPase were significant lower in L. vannamei family 6039 and 6040 compared to that of family 6016 and 6022, suggested the hampered ability for osmotic pressure maintenance of shrimps from family 6039 and 6040. Since the driving of active transport of osmoregulatory related ions by Na+/K+-ATPase and Ca2+-ATPase is a process requiring energy source from ATP, the metabolism as well as the ATP contents and ATP synthase activities in the muscle of shrimps raised under different salinity conditions after 30 days exposure were also analyzed among different families. In the present study, the respiration rates and ammonium excretion rates of shrimps from all families were significantly (P<0.05) altered with the declined water salinity. However, compared to these shrimps from family 6016 and 6022, the families with poor salinity adaptability (family 6039 and 6040) showed a significantly (P<0.05) lower metabolic rates at all water salinity conditions. Similarly, the ATP contents and ATP synthase (pyruvate kinase) activities were also significantly (P<0.05) lower in the muscle of shrimps from these families (family 6039 and 6040) after 30 days exposure, indicated a constrained energy supply under low water salinity conditions. Based on the data obtained in this study, the suppressed Na+/K+-ATPase and Ca2+-ATPase in the gills of shrimps with poor salinity adaptability can be resulted from their energy shortage for osmoregulatory under low water salinity levels. In conclusion, our study demonstrated that the different salinity adaptability among different shrimp families may be due to their differences in metabolism rate, ion transportation, and energy synthesis. In addition, this study will contribute to the efficient production of seed juvenile for inland culture of L. vannamei.-
Keywords:
- Litopenaeus vannamei /
- Salinity /
- Energy synthesis /
- Na+/K+-ATPase /
- Ca2+-ATPase
-
-
图 1 不同盐度条件下四个家系凡纳滨对虾的(A)耗氧率和(B)排氨率(均值±标准误)
各盐度组中上标字母不同表示组内差异显著, *表示盐度组间差异显著(P<0.05); 下同
Figure 1. Respiration rates (A) and ammonium excretion rates (B) of Litopenaeus vannamei from 4 families possessing the highest and the lowest salinity adaptive ability at salinity of 5‰, 20‰, and 30‰ (Mean±SE)
Means with different superscripts in the same salinity group are significantly different; * means significant difference compared with the 30‰ group (P<0.05). The same applies below
表 1 对照组与实验组的海水理化参数值(均值±标准误)
Table 1 Seawater chemistry parameters of the control and experiment groups (Mean±SE)
目标盐度 测定盐度 温度 pH 5 5±0.3 29.1±0.3 8.1±0.3 20 20±0.2 29.1±0.2 8.2±0.2 30 30±0.2 29.1±0.2 8.2±0.2 表 2 不同盐度条件下30个凡纳滨对虾家系的生长率和存活率(均值±标准误)突出显示部分加注英文
Table 2 The growth and survival rates of 30 families of Litopenaeus vannamei under different salinity conditions (Mean±SE)
家系号Family No. 盐度 30‰salinities 盐度 20‰salinities 盐度 5‰salinities 总评分Total score 特定生长率Specific growth rate (%/d) 存活率Survival rate (%) 评分Score 特定生长率Specific growth rate (%/d) 存活率Survival rate (%) 评分Score 特定生长率Specific growth rate (%/d) 存活率Survival rate (%) 评分Score 6002 3.90±0.25 83.33 3.25 3.15±0.16 100.00 3.15 3.17±0.53 11.11 0.35 6.76 6003 3.10±0.26 100.00 3.10 3.41±0.42 88.89 3.03 2.86±0.26 27.78 0.79 6.92 6005 3.55±0.26 94.44 3.35 3.65±0.25 97.22 3.55 3.30±0.68 16.67 0.55 7.45 6006 3.03±0.22 100.00 3.03 3.25±0.20 83.33 2.71 3.05±0.37 25.00 0.76 6.50 6009 3.45±0.30 77.78 2.68 3.37±0.27 77.78 2.62 2.72±0.72 22.22 0.61 5.91 6010 3.47±0.27 91.67 3.18 3.86±0.36 69.44 2.68 3.64±0.33 22.22 0.81 6.67 6016 4.21±0.20 100.00 4.21 4.20±0.32 100.00 4.20 3.63±0.24 47.22 1.71 10.11 6017 4.90±0.17 75.00 3.68 4.36±0.36 80.56 3.51 3.71±0.20 11.11 0.41 7.60 6018 5.11±0.24 77.78 3.98 4.67±0.48 52.78 2.46 4.38±0.47 11.11 0.49 6.93 6019 4.39±0.23 75.00 3.30 3.74±0.32 50.00 1.87 3.77±0.23 33.33 1.26 6.42 6020 5.11±0.25 72.22 3.69 4.93±0.35 44.44 2.19 4.66±0.33 22.22 1.03 6.92 6022 4.94±0.23 88.89 4.39 5.38±0.26 72.22 3.89 3.92±0.16 41.67 1.63 9.91 6023 5.06±0.17 100.00 5.06 5.17±0.17 77.78 4.02 4.51±0.22 16.67 0.75 9.83 6024 4.87±0.17 91.67 4.47 4.41±0.15 52.78 2.33 3.48±0.30 11.11 0.39 7.18 6026 4.41±0.21 91.67 4.04 4.52±0.40 94.44 4.26 3.32±0.29 33.33 1.11 9.41 6027 4.75±0.24 100.00 4.75 4.38±0.26 80.56 3.53 3.80±0.60 25.00 0.95 9.23 6028 4.82±0.30 91.6 4.42 4.21±0.18 83.33 3.51 3.71±0.22 27.78 1.03 8.96 6029 3.37±0.18 100.00 3.37 3.44±0.19 83.33 2.86 2.81±0.28 36.11 1.02 7.25 6030 4.63±0.18 75.00 3.47 4.36±0.11 63.89 2.78 3.21±0.20 22.22 0.71 6.97 6031 3.91±0.26 100.00 3.91 4.15±0.41 75.00 3.11 3.25±0.27 55.56 1.81 8.83 6032 3.61±0.30 97.22 3.51 4.05±0.16 100.00 4.05 4.06±0.21 33.33 1.35 8.91 6034 4.91±0.31 83.33 4.09 4.55±0.21 30.56 1.39 3.47±0.27 36.11 1.25 6.73 6035 3.83±0.18 97.22 3.72 4.23±0.26 69.44 2.93 3.14±0.13 11.11 0.35 7.01 6036 4.40±0.20 80.56 3.54 3.84±0.23 36.11 1.39 2.85±0.30 33.33 0.95 5.88 6037 3.78±0.32 88.89 3.35 4.04±0.26 83.33 3.37 3.30±0.34 41.67 1.37 8.10 6039 4.12±0.36 44.44 1.83 1.56±0.37 25.00 0.39 2.51±0.18 13.89 0.35 2.57 6040 5.03±0.20 77.78 3.91 4.71±0.33 30.56 1.44 2.91±0.25 8.33 0.24 5.59 6045 5.07±0.36 69.44 3.52 4.76±0.20 80.56 3.83 3.72±0.21 30.56 1.14 8.49 6047 4.89±0.51 83.33 4.08 4.33±0.17 63.89 2.77 3.46±0.63 22.22 0.77 7.61 6050 4.84±0.27 86.11 4.17 4.67±0.83 69.44 3.25 3.96±0.16 16.67 0.66 8.07 平均值Mean 4.31±0.12a 86.48±2.31A 4.11±0.13a 70.56±3.95B 3.48±0.10b 25.56±2.19C 注: 同一行中上标不同表示差异显著(P<0.05)Note: Data in the same row without the same superscripts mean significant difference (P<0.05) -
[1] Alfaro-Montoya J. The reproductive conditions of male shrimps, genus Penaeus, sub-genus Litopenaeus (open thelyca penaeoid shrimps): A review [J]. Aquaculture, 2010, 300(1-4): 1-9. doi: 10.1016/j.aquaculture.2009.12.008
[2] 卓晓菲, 何苹萍, 韦嫔媛, 等. 凡纳滨对虾低温差异表达miRNA的分析鉴定及靶基因的验证 [J]. 水生生物学报, 2019, 43(6): 1203-1209. doi: 10.7541/2019.142 Zhou X F, He P P, Wei P Y, et al. Identification and analysis of differentially expressed miRNA under low temperature and validation of target genes in Litopenaeus vannamei [J]. Acta Hydrobiologica Sinica, 2019, 43(6): 1203-1209. [ doi: 10.7541/2019.142
[3] FAO. FAO yearbook: Fishery and Aquaculture Statistics 2017 [R]. 2019: 18-30.
[4] 马行厚, 齐绍武, 刘臻, 等. 南美白对虾大水面淡水养殖技术及效益分析 [J]. 水产养殖, 2015, 36(6): 43-45. doi: 10.3969/j.issn.1004-2091.2015.06.017 Ma X H, Qi S W, Liu Z, et al. Analysis of techniques and benefits of freshwater culture of Litopenaeus vannamei on large water surface [J]. Aquaculture, 2015, 36(6): 43-45. [ doi: 10.3969/j.issn.1004-2091.2015.06.017
[5] 胡利华, 查珊洁, 刘广绪, 等. 天然海水与人工海水对凡纳滨对虾生长及代谢基因表达的影响 [J]. 渔业研究, 2017, 39(6): 437-443. Hu L H, Zha S J, Liu G X, et al. Impacts of natural seawater and artificial seawater on the growth performance and expression of metabolic genes of Pacific white shrimp [J]. Journal of Fisheries Research, 2017, 39(6): 437-443. [
[6] Laramore S, Laramore C R, Scarpa J. Effect of low salinity on growth and survival of postlarvae and juvenile Litopenaeus vannamei [J]. Journal of the World Aquaculture Society, 2001, 32(4): 385-392. doi: 10.1111/j.1749-7345.2001.tb00464.x
[7] Ogle J T, Beaugez K, L’otz J M. Influence of salinity on survival and growth of postlarval Penaeus vannamei [J]. Gulf Research Reports, 1992, 8(4): 415-422.
[8] 吴立峰, 张吕平, 胡超群, 等. 2个凡纳滨对虾全同胞家系在不同盐度下的生长比较 [J]. 热带海洋学报, 2011, 30(1): 154-160. Wu L F, Zhang L P, Hu C Q, et al. Comparison on growth rates of two full-sib families of Litopenaeus vannamei in different salinities [J]. Journal of Tropical Oceanography, 2011, 30(1): 154-160. [
[9] Allan E L, Froneman P W, Hodgson A N. Effects of temperature and salinity on the standard metabolic rate (SMR) of the caridean shrimp Palaemon peringueyi [J]. Journal of Experimental Marine Biology and Ecology, 2006, 337(1): 103-108. doi: 10.1016/j.jembe.2006.06.006
[10] Dalla Via G J. Salinity responses of the juvenile penaeid shrimp Penaeus japonicus: I. Oxygen consumption and estimations of productivity [J]. Aquaculture, 1986, 55(4): 297-306. doi: 10.1016/0044-8486(86)90170-5
[11] Li T, Roer R, Vana M, et al. Gill area, permeability and Na+, K+-ATPase activity as a function of size and salinity in the blue crab, Callinectes sapidus [J]. Journal of Experimental Zoology Part A, 2010, 305A(3): 233-245.
[12] Brownlee C, Goddard H, Hetherington A M, et al. Specificity and integration of responses: Ca2+ as a signal in polarity and osmotic regulation [J]. Journal of Experimental Botany, 1999, 50(335): 1001-1011.
[13] Nanba T, Takahashi H, Abe T, et al. Hemolymph osmotic, ionic status, and branchial Na+/K+-ATPase activity under varying environmental conditions in the intertidal grapsid crab, Gaetice depressusd [J]. International Aquatic Research, 2012, 4(1): 18. doi: 10.1186/2008-6970-4-18
[14] 施兆鸿, 廖雅丽, 王孝杉, 等. 盐度胁迫对云纹石斑鱼鳃离子调节酶及渗透压的影响 [J]. 安全与环境学报, 2017, 17(3): 1210-1214. Shi Z H, Liao Y L, Wang X S, et al. Impact of the abrupt salinity decrease on ion-regulation enzyme activity in the gill and serum osmolality from Epinehelus moara [J]. Journal of Safety and Environment, 2017, 17(3): 1210-1214. [
[15] Roberts D A, Birchenough S N, Lewis C, et al. Ocean acidification increases the toxicity of contaminated sediments [J]. Global Change Biology, 2013, 19(2): 340-351. doi: 10.1111/gcb.12048
[16] Shi W, Zhao X, Han Y, et al. Ocean acidification increases cadmium accumulation in marine bivalves: a potential threat to seafood safety [J]. Scientific Reports, 2016(6): 20197. doi: 10.1038/srep20197
[17] Ottaviani E, Franchini A, Franceschi C. Presence of immunoreactive corticotropin-releasing hormone and cortisol molecules in invertebrate haemocytes and lower and higher vertebrate thymus [J]. The Histochemical Journal, 1998, 30(2): 61-67. doi: 10.1023/A:1003270614163
[18] Shi W, Han Y, Guan X, et al. Fluoxetine suppresses the immune responses of blood clams by reducing haemocyte viability, disturbing signal transduction and imposing physiological stress [J]. Science of The Total Environment, 2019(683): 681-689. doi: 10.1016/j.scitotenv.2019.05.308
[19] 栾生, 罗坤, 阮晓红, 等. 凡纳滨对虾体重、存活性状的遗传参数和基因型与环境互作效应 [J]. 海洋与湖沼, 2013, 44(2): 445-452. doi: 10.11693/hyhz201302029029 Luan S, Luo K, Ruan X H, et al. Genetic parameters and genotype by environment interaction for body weight and survival of pacific white shrimp Litopenaeus vannamei [J]. Oceanologia et Limnologia Sinica, 2013, 44(2): 445-452. [ doi: 10.11693/hyhz201302029029
[20] Shi W, Han Y, Guan X, et al. Anthropogenic noise aggravates the toxicity of cadmium on some physiological characteristics of the blood clam Tegillarca granosa [J]. Frontiers in Physiology, 2019(10): 377. doi: 10.3389/fphys.2019.00377
[21] 黄凯, 王武, 卢洁, 等. 盐度对南美白对虾的生长及生化成分的影响 [J]. 海洋科学, 2004, 28(9): 20-25. doi: 10.3969/j.issn.1000-3096.2004.09.005 Huang K, Wang W, Lu J, et al. Salinity effects on growth and biochemical composition of Penaeus vannamei [J]. Marine Science, 2004, 28(9): 20-25. [ doi: 10.3969/j.issn.1000-3096.2004.09.005
[22] Mcgraw W J, Scarpa J. Mortality of freshwater-acclimated Litopenaeus vannamei associated with acclimation rate, habituation period, and ionic challenge [J]. Aquaculture, 2004, 236(1): 285-296.
[23] Lin Y, Chen J. Acute toxicity of ammonia on Litopenaeus vannamei Boone juveniles at different salinity levels [J]. Journal of Experimental Marine Biology & Ecology, 2001, 259(1): 109-119.
[24] Laiz-carrión R, Martín Del Río M P, Miguez J M, et al. Influence of cortisol on osmoregulation and energy metabolism in gilthead seabream Sparus aurata [J]. Journal of Experimental Zoology Part A, 2003, 298(2): 105-118.
[25] Pottinger T G, Rand-Weaver M, Sumpter J P. Overwinter fasting and re-feeding in rainbow trout: plasma growth hormone and cortisol levels in relation to energy mobilisation [J]. Comparative Biochemistry and Physiology Part B, 2003, 136(3): 403-417. doi: 10.1016/S1096-4959(03)00212-4
[26] Robertson J D. Ionic regulation in some marine invertebrates [J]. Journal of Experimental Biology, 1949, 26(2): 182-200.
[27] Gao X, Li Y, Li X, et al. The response and osmotic pressure regulation mechanism of Haliotis discus hannai (Mollusca, Gastropoda) to sudden salinity changes [J]. Hydrobiologia, 2017, 795(1): 181-198. doi: 10.1007/s10750-017-3129-z
[28] 房文红, 王慧, 来琦芳, 等. 斑节对虾鳃Na+/K+-ATPase的活性 [J]. 上海水产大学学报, 2001, 10(2): 140-144. Fang W H, Wang H, Lai Q F, et al. Activity of Na+/K+-ATPase from the gill of the giant tiger shrimp (Penaeus monodon) [J]. Journal of Shanghai Fisheries University, 2001, 10(2): 140-144. [
[29] Sun D, Lv J, Gao B, et al. Crustacean hyperglycemic hormone of Portunus trituberculatus: evidence of alternative splicing and potential roles in osmoregulation [J]. Cell Stress and Chaperones, 2019, 24(3): 517-525. doi: 10.1007/s12192-019-00980-6
[30] 丁森. 盐度变化对中国明对虾生理生态学影响的基础研究 [D]. 青岛: 中国海洋大学, 2007: 38-45. Ding S. The basic research of effects of salinity fluctuation on the ecophysiology of Fenneropenaeus chinensis [D]. Qingdao: Ocean University of China, 2007: 38-45.
[31] Huong D T T, Jasmani S, Jayasankar V, et al. Na/K-ATPase activity and osmo-ionic regulation in adult whiteleg shrimp Litopenaeus vannamei exposed to low salinities [J]. Aquaculture, 2010, 304(1): 88-94.
[32] Robertson L, Lawrence A L, Castille F. Interaction of salinity and feed protein level on growth of Penaeus vannamel [J]. Journal of Applied Aquaculture, 1993, 2(1): 43-54. doi: 10.1300/J028v02n01_03
[33] Li E, Wang X, Chen K, et al. Physiological change and nutritional requirement of Pacific white shrimp Litopenaeus vannamei at low salinity [J]. Reviews in Aquaculture, 2017, 9(1): 57-75. doi: 10.1111/raq.12104
[34] 赵磊, 龙晓文, 吴旭干, 等. 水体盐度对中华绒螯蟹成体雄蟹渗透压调节和生理代谢的影响 [J]. 水生生物学报, 2016, 40(1): 27-34. doi: 10.7541/2016.4 Zhao L, Long X W, Wu X G, et al. Effects of water salinity on osmoregulation and physiological metabolism of adult male Chinese mitten crab Eriocheir sinensis [J]. Acta Hydrobiologica Sinica, 2016, 40(1): 27-34. [ doi: 10.7541/2016.4