THE ROLE OF ANTIMICROBIAL PEPTIDE HBβ-C IN ICHTHYOPHTHIRIUS MULTIFILIIS RESISTANCE IN ALL-MALE AND HYBRID YELLOW CATFISH
-
摘要: 为研究全雄黄颡鱼(Pelteobagrus fulvidraco)、瓦式黄颡鱼(Pelteobagrus vachelli)和杂交黄颡鱼(黄颡鱼P. fulvidraco♀×瓦氏黄颡鱼P. vachelli♂)对多子小瓜虫(Ichthyophthirius multifiliis)的抗性差异, 通过生物信息学分析黄颡鱼皮肤黏液蛋白质组, 发现其血红蛋白源抗菌肽(HBβ-C)位于血红蛋白β链HBβ的碳端, 共33个氨基酸。利用化学合成的不同浓度的HBβ-C肽段进行体外抗虫实验, 研究发现其能有效杀死滋养体、包囊体和掠食体阶段的多子小瓜虫, 其中15 µg/mL的HBβ-C能在3min内杀死所有滋养体。基因表达量分析显示, 在杂交黄颡鱼的鳃和皮肤组织中, HBβ的mRNA表达量高于全雄黄颡鱼; 但在应对小瓜虫感染的过程中, 全雄黄颡鱼的HBβ mRNA转录水平快速提升, 其表达水平和上升倍率显著高于杂交黄颡鱼。蛋白表达量分析显示, HBβ在全雄黄颡鱼鳃组织中的蛋白表达量明显高于杂交黄颡鱼。免疫荧光定位结果显示, 抗菌肽HBβ-C特异地在红细胞中表达, 可以分泌并附着在滋养体上。综上所述, 相对于杂交黄颡鱼, 全雄黄颡鱼中HBβ具有更高的翻译效率, 可以更高效地应对多子小瓜虫的感染。Abstract: All-male yellow catfish (Pelteobagrus fulvidraco) and hybrid yellow catfish (P. fulvidraco♀×P. vachelli♂) are the main breeding varieties of yellow catfish. The “white spot disease” caused by Ichthyophthirius multifiliis (Ich) is one of the main diseases of yellow catfish in China. Ich resistance assay was performed on all-male and hybrid yellow catfish, as well as the darkarbel catfish (P. vachelli). By bioinformatics analysis, we identified an antimicrobial peptide HBβ-C from the skin mucus proteome of yellow catfish, a 33 amino acid peptide derived from the C terminal of hemoglobin β chain (HBβ). The anti-parasitic test indicated that HBβ-C effectively killed the trophont, tomont and theront, especially in trophont stage, and 15 µg/mL HBβ-C killed all trophont within 3min. Gene expression analysis showed that the expression of HBβ mRNA in gill and skin of hybrid yellow catfish was higher than that of all-male yellow catfish. Ich challenge significantly increased HBβ mRNA level in all-male yellow catfish, which was higher than that of hybrid yellow catfish. Interestingly, the HBβ protein level in gill of all-male yellow catfish was higher than that in hybrid yellow catfish. Immunofluorescence results showed that the antimicrobial peptide HBβ-C was specifically expressed in red blood cells. After Ich infection, HBβ-C was secreted and attached to the trophont in skin and gill. Thus, our results revealed that all-male yellow catfish was much more resistant to Ich than hybrid yellow catfish. The high HBβ protein in all-male yellow catfish and its ability to kill all stages of Ich might be closely associated with the resistance of all-male yellow catfish to Ich.
-
-
图 4 抗菌肽HBβ-C的螺旋轮分布和结构模型图
A. 蓝色圆代表带正电荷氨基酸, 红色圆代表带负电荷氨基酸, 黄色圆代表非极性氨基酸, 灰色圆代表极性氨基酸; B. 红色代表疏水性氨基酸, 蓝色代表亲水性氨基酸
Figure 4. The helical wheel distribution and structure model of the antimicrobial peptide HBβ-C
A. Blue circles represent positively charged amino acids, red circles represent negatively charged amino acids, yellow circles represent nonpolar amino acids, and grey circles represent polar amino acids; B. Red color represents hydrophobic amino acids and blue color represents hydrophilic amino acids
图 5 HBβ在鳃和皮肤组织中的表达分析
A、B. HBβ在杂交黄颡鱼和全雄黄颡鱼的鳃(A)和皮肤(B)组织中的mRNA表达分析; C. HBβ在杂交黄颡鱼和全雄黄颡鱼的鳃组织中的蛋白表达分析; D. 使用Image J软件分析C图中HBβ/β-actin的相对比值
Figure 5. The relative expression of HBβ in gill and skin
A, B. The mRNA expression of HBβ in gill (A) and skin (B) of hybrid yellow catfish and all-male yellow catfish; C. The protein expression of HBβ in gill of hybrid yellow catfish and all-male yellow catfish. D. The relative ratio HBβ/β-actin was determined by band intensities that were analyzed by Image J software
图 6 抗菌肽HBβ-C对不同生活史的多子小瓜虫的影响
A. 滋养体处理前; B. 50 µg/mL的HBβ-C处理后的滋养体; C. 包囊体处理前; D—F. 500 µg/mL的HBβ-C处理后的包囊体; G. 掠食体处理前; H. 125 µg/mL的HBβ-C处理后的掠食体
Figure 6. The effect of antimicrobial peptide HBβ-C on Ichthyophthirius multifiliis different life cycles
A. Untreated trophont; B. Trophont treated with 50 µg/mL HBβ-C; C. Untreated tomont; D—F. Tomont treated with 500 µg/mL HBβ-C; G. Untreated theront; H. Theront treated with 125 µg/mL HBβ-C
图 7 HBβ免疫荧光定位及组织切片分析
A、C. 鳃组织的HBβ免疫组化分析; B、D. 鳃组织的HE染色分析; E. 皮肤的HBβ免疫组化分析; F. 皮肤的HE染色分析; 白色箭头所指为HBβ的阳性信号(红色荧光); DAPI 标记细胞核(蓝色荧光); RBC. 红细胞, BM. 基底膜
Figure 7. Detection of HBβ localization by immunohistochemistry and analysis of histological section
A, C. Immunohistochemistry analysis of HBβ in gill; B, D. HE staining analysis of gill; E. Immunohistochemistry analysis of HBβ in skin; F. HE staining analysis of skin; White arrowheads indicate the positive signal of HBβ (red fluorescence); Nucleus were stained with DAPI (blue fluorescence). RBC. red blood cell, BM. basement membrane
表 1 黄颡鱼感染多子小瓜虫每日死亡状况(尾)
Table 1 The daily dead status of yellow catfish after infected with Ichthyophthirius multifiliis
组别Group 使用鱼数量Number 每日死亡数Number of dead fish 死亡总数Total dead fish 2 3 4 5 6 7 8 9 10 11 12 13 14 全雄黄颡鱼a 60 0 0 0 0 0 1 0 0 0 0 0 0 0 1 全雄黄颡鱼b 60 0 0 0 0 0 2 0 0 0 0 0 0 0 2 全雄黄颡鱼c 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 杂交黄颡鱼a 60 0 1 1 4 12 13 5 11 5 2 3 0 3 60 杂交黄颡鱼b 60 0 0 4 8 16 10 11 4 0 4 0 3 0 60 杂交黄颡鱼c 60 0 2 1 3 11 19 8 9 1 3 0 3 0 60 瓦式黄颡鱼a 60 0 5 6 16 24 7 0 2 0 0 0 0 0 60 瓦式黄颡鱼b 60 3 4 2 13 11 20 6 1 0 0 0 0 0 60 瓦式黄颡鱼c 60 0 3 4 19 17 15 2 0 0 0 0 0 0 60 表 2 抗菌肽HBβ-C对不同生活史的多子小瓜虫体外影响
Table 2 The effect of antimicrobial peptide HBβ-C on the different life cycles of Ichthyophthirius multifiliis in vitro
多子小瓜虫生活史
Life cycle of ich最低杀虫浓度
PC100 (μg/mL)滋养体Trophont 15 包囊体Tomont >500 掠食体Theront 125 注: PC100为杀死所有寄生虫的最低浓度Note: PC100 was the lowest concentration that all parasites died -
[1] 刘汉勤, 崔书勤, 侯昌春, 等. 从XY雌鱼雌核发育产生YY超雄黄颡鱼 [J]. 水生生物学报, 2007, 31(5): 718-725. doi: 10.3321/j.issn:1000-3207.2007.05.018 Liu H Q, Cui S Q, Hou C C, et al. YY supermale generated gynogenetically from XY female. in Pelteobagrus fulvidraco [J]. Acta Hydrobiologica Sinica, 2007, 31(5): 718-725. doi: 10.3321/j.issn:1000-3207.2007.05.018
[2] Wang D, Mao H L, Chen H X, et al. Isolation of Y- and X-linked SCAR markers in yellow catfish and application in the production of all-male populations [J]. Animal Genetics, 2009, 40(6): 978-981. doi: 10.1111/j.1365-2052.2009.01941.x
[3] Dan C, Mei J, Wang D, et al. Genetic differentiation and efficient sex-specific marker. development of a pair of Y-and X-linked markers in yellow catfish [J]. International Journal of Biological Sciences, 2013, 9(10): 1043-1049. doi: 10.7150/ijbs.7203
[4] 桂建芳, 朱作言. 水产动物重要经济性状的分子基础及其遗传改良 [J]. 科学通报, 2012, 57(15): 1719-1729. Gui J F, Zhu Z Y. Molecular basis and genetic improvement of economically important traits in aquaculture animals [J]. Chinese Science Bulletin, 2012, 57(15): 1719-1729.
[5] 梅洁, 桂建芳. 鱼类性别异形和性别决定的遗传基础及其生物技术操控 [J]. 中国科学: 生命科学, 2014, 44(12): 1198-1212. Mei J, Gui J F. Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish [J]. Science China: Life Sciences, 2014, 44(12): 1198-1212.
[6] Mei J, Gui J F. Sexual Size Dimorphism, Sex Determination and Sex Control Breeding in Yellow Catfish [A]//Wang H P, Piferrer F, Chen S L (Eds.), Sex Control in Aquaculture [C]. USA: Wiley-Blackwell, 2019: 495-503.
[7] 熊阳, 王帅, 郭稳杰, 等. 不同动物饵料对YY超雄黄颡鱼性腺发育的影响 [J]. 水产学报, 2020, 44(2): 245-252. Xiong Y, Wang S, Guo W J, et al. Effects of different animal baits on the gonad development of YY super-male yellow catfish (Pelteobagrus fulvidruco) [J]. Journal of Fisheries of China, 2020, 44(2): 245-252.
[8] 胡伟华, 丹成, 郭稳杰, 等. 黄颡鱼和杂交黄颡鱼“黄优1号”形态及性腺发育的比较 [J]. 水生生物学报, 2019, 43(6): 1231-1238. doi: 10.7541/2019.146 Hu W H, Dan C, Guo W J, et al. The morphology and gonad development of Pelteobagrus fulvidraco and its interspecific hybrid “Huangyou No. 1” with Pelteobaggrus vachelli [J]. Acta Hydrobiologica Sinica, 2019, 43(6): 1231-1238. doi: 10.7541/2019.146
[9] 中华人民共和国渔政局. 中国渔业统计年鉴 [M]. 北京: 中国农业出版社, 2020: 53-55. China Bureau of Fisheries. China Fishery Statistical Yearbook [M]. Beijing: China Agriculture Press, 2020: 53-55.
[10] Clark T G, Dickerson H W, Gratzek J B, et al. In vitro response of Ichthyophthirius multifiliis to sera from immune channel catfish [J]. Journal of Fish Biology, 2010, 31(sA): 203-208.
[11] Xu Z, Takizawa F, Parra D, et al. Mucosal immunoglobulins at respiratory surfaces mark an ancient association that predates the emergence of tetrapods [J]. Nature Communications, 2016(7): 10728.
[12] Xu J, Yu Y, Huang Z, et al. Immunoglobulin (Ig) heavy chain gene locus and immune responses upon parasitic, bacterial and fungal infection in loach, Misgurnus anguillicaudatus [J]. Fish & Shellfish Immunology, 2018(86): 1139-1150.
[13] Santiago F G, Kurt B, Michael E N. Complement expression in common carp (Cyprinus carpio L.) during infection with Ichthyophthirius multifiliis [J]. Developmental and Comparative Immunology, 2007, 31(6): 576-586. doi: 10.1016/j.dci.2006.08.010
[14] Xu D H, Klesius P H, Shoemaker C A. Protective immunity of Nile tilapia against Ichthyophthirius multifiliis post-immunization with live theronts and sonicated trophonts [J]. Fish & Shellfish Immunology, 2008, 25(1-2): 124-127.
[15] Yao J Y, Zhou Z M, Li X L, et al. Antiparasitic efficacy of dihydrosanguinarine and dihydrochelerythrine from Macleaya microcarpa against Ichthyophthirius multifiliis in richadsin (Squaliobarbus curriculus) [J]. Veterinary Parasitology, 2011, 183(1-2): 8-13. doi: 10.1016/j.vetpar.2011.07.021
[16] Ahmad N, Amin A, Hemn M, et al. External parasite infection of common carp (Cyprinus carpio) and big head (Hypophthalmichthys nobilis) in fish farms of Mashhad, northeast of Iran [J]. Journal of Parasitic Diseases, 2013, 37(1): 131-133.
[17] 杜贾贾, 江飚, 唐嘉嘉, 等. 斜带石斑鱼L-氨基酸氧化酶基因克隆及表达分析 [J]. 水生生物学报, 2020, 44(2): 303-309. doi: 10.7541/2020.037 Du J J, Jiang B, Tang J J, et al. Molecular cloning and expression analysis of L-amino acid oxidase in grouper (Epinephelus coioides) [J]. Acta Hydrobiologica Sinica, 2020, 44(2): 303-309. doi: 10.7541/2020.037
[18] 但学明, 李安兴, 林小涛, 等. 卵形鲳鯵对刺激隐核虫的免疫应答和免疫保护研究 [J]. 水生生物学报, 2008, 32(1): 13-18. doi: 10.3321/j.issn:1000-3207.2008.01.003 Dan X M, Li A X, Lin X T, et al. Immune response and immunoprotection of pompanos (Trachinotus ovatus) against Cryptocaryon irritans [J]. Acta Hydrobiologica Sinica, 2008, 32(1): 13-18. doi: 10.3321/j.issn:1000-3207.2008.01.003
[19] 江飚, 王晶, 罗恒利, 等. 福尔马林防治大黄鱼刺激隐核虫病的研究 [J]. 水产科学, 2018, 37(3): 336-341. Jiang B, Wang J, Luo H L, et al. Prevention of parasite Crytocaryon iritans in infected large yelow croaker Pseudosciaena crocea by formalin [J]. Fisheries Science, 2018, 37(3): 336-341.
[20] Jiang B, Li Y W, Li A X. The development of Cryptocaryon irritans in a less susceptible host rabbitfish, Siganus oramin [J]. Parasitology Research, 2018, 117(12): 3835-3842. doi: 10.1007/s00436-018-6088-z
[21] 黎睿君, 刘芳, 王芳华, 等. 黄斑蓝子鱼皮肤黏液对刺激隐核虫及一些病原菌的抑杀作用 [J]. 水生生物学报, 2013, 37(2): 243-251. Li R J, Liu F, Wang F H, et al. Skin mucus of rabbitfish (Siganus oramin) is lethal to Cryptocaryon irritans and some other pathogenic organisms [J]. Acta Hydrobiologica Sinica, 2013, 37(2): 243-251.
[22] Brinchmann M F. Immune relevant molecules identified in the skin mucus of fish using-omics technologies [J]. Molecular BioSystems, 2016, 12(7): 2056-2063. doi: 10.1039/C5MB00890E
[23] Ullal A J, Litaker R W, Noga E J. Antimicrobial peptides derived from hemoglobin are expressed in epithelium of channel catfish (Ictalurus punctatus) [J]. Developmental and Compatative Immunology, 2008, 32(11): 1301-1312. doi: 10.1016/j.dci.2008.04.005
[24] Xiong Y, Dan C, Ren F, et al. Proteomic profiling of yellow catfish (Pelteobagrus fulvidraco) skin mucus identifies differentially-expressed proteins in response to Edwardsiella ictaluri infection [J]. Fish & Shellfish Immunology, 2020(100): 98-108.
[25] 张其中, 张占会, 陈达丽, 等. 水温对多子小瓜虫孵化及幼虫活力的影响 [J]. 生态科学, 2010, 29(2): 116-120. doi: 10.3969/j.issn.1008-8873.2010.02.004 Zhang Q Z, Zhang Z H, Chen D L, et al. Influence of water temperature on hatchability and activity power of theront of Ichthyophthirius multifiliis [J]. Ecological Science, 2010, 29(2): 116-120. doi: 10.3969/j.issn.1008-8873.2010.02.004
[26] Clark T G, Dickerson L H W. Surface antigen cross-linking triggers forced exit of a protozoan parasite from its host [J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(13): 6825-6829. doi: 10.1073/pnas.93.13.6825
[27] 邓永强, 汪开毓, 黄小丽. 鱼类小瓜虫病的研究进展 [J]. 大连海洋大学学报, 2005, 20(2): 149-153. doi: 10.3969/j.issn.1000-9957.2005.02.014 Deng Y Q, Wang K Y, Huang X L. The advanced research of Ichthyophthiriasis in fish [J]. Journal of Dalian Fisheries University, 2005, 20(2): 149-153. doi: 10.3969/j.issn.1000-9957.2005.02.014
[28] Hobson D. The antibacterial activity of hemoglobin [J]. Journal of Experimental Medicine, 1958, 107(2): 167-183. doi: 10.1084/jem.107.2.167
[29] Takagi H, Shiomi H, Ueda H, et al. A novel analgesic dipeptide from bovine brain is a. possible Met-enkephalin releaser [J]. Nature, 1979, 282(5737): 410-412. doi: 10.1038/282410a0
[30] Schally A V, Huang W Y, Redding T W, et al. Isolation, structural elucidation and synthesis. of a tetradecapeptide with in vitro ACTH-releasing activity corresponding to residues 33-46 of the alpha-chain of porcine hemoglobin [J]. Biochemical and Biophysical Research Communication, 1978, 82(2): 582-588. doi: 10.1016/0006-291X(78)90914-2
[31] Brantl V, Gramsch C, Lottspeich F, et al. Novel opioid peptides derived from hemoglobin: hemorphins [J]. European Journal of Pharmacology, 1986, 125(2): 309-310. doi: 10.1016/0014-2999(86)90044-0
[32] Karelin A A, Philippova M M, Ivanov V T. Proteolytic degradation of hemoglobin in erythrocytes leads to biologically active peptides [J]. Peptides, 1995, 16(4): 693-697. doi: 10.1016/0196-9781(95)00029-J
[33] Ivanov V T, Karelin A A, Philippova M M, et al. Hemoglobin as a source of endogenous. bioactive peptides: The concept of tissue-specific peptide pool [J]. Biopolymers, 1997, 43(2): 171-188. doi: 10.1002/(SICI)1097-0282(1997)43:2<171::AID-BIP10>3.0.CO;2-O
[34] Sheshadri P, Abraham J. Antimicrobial properties of hemoglobin [J]. Immunopharmacology and Immunotoxicology, 2012, 34(6): 896-900. doi: 10.3109/08923973.2012.692380
[35] 张东玲, 关瑞章, 黄文树, 等. 血红蛋白源抗菌片段的研究进展 [J]. 水生生物学报, 2013, 37(5): 945-956. doi: 10.7541/2013.122 Zhang D L, Guan R Z, Huang W S, et al. A review on the antimicrobial fragments derived from hemoglobin [J]. Acta Hydrobiologica Sinica, 2013, 37(5): 945-956. doi: 10.7541/2013.122
[36] Parish C A, Jiang H, Tokiwa Y, et al. Broad-spectrum antimicrobial activity of hemoglobin [J]. Bioorganic & Medicinal Chemistry, 2001, 9(2): 377-382.
[37] Mak P, Wójcik K, Wicherek L, et al. Antibacterial hemoglobin peptides in human menstrual blood [J]. Peptides, 2004, 25(11): 1839-1847. doi: 10.1016/j.peptides.2004.06.015
[38] Deng L, Pan X, Wang Y, et al. Hemoglobin and its derived peptides may play a role in the antibacterial mechanism of the vagina [J]. Human Reproduction, 2008, 24(1): 211-218. doi: 10.1093/humrep/den318
[39] Liepke C, Baxmann S, Heine C, et al. Human hemoglobin-derived peptides exhibit antimicrobial activity: a class of host defense peptides [J]. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2003, 791(1-2): 345-356. doi: 10.1016/S1570-0232(03)00245-9
[40] Seo J K, Lee M J, Jung H G, et al. Antimicrobial function of SHβAP, a novel hemoglobin β chain-related antimicrobial peptide, isolated from the liver of skipjack tuna, Katsuwonus pelamis [J]. Fish and Shellfish Immunology, 2014, 37(1): 173-183. doi: 10.1016/j.fsi.2014.01.021
[41] Catiau L, Traisnel J, Chihib N E, et al. RYH: a minimal peptidic sequence obtained from beta-chain hemoglobin exhibiting an antimicrobial activity [J]. Peptides, 2011, 32(7): 1463-1468. doi: 10.1016/j.peptides.2011.05.021
[42] Dickerson H W, Dawe D L. Ichthyophthirius multifiliis and Cryptocaryon irritans (Phylum Ciliophora). Fish Diseases and Disorders [M]. Wallingford, UK: Oxford University Press, 2006: 116-153.
[43] Silphaduang U, Noga E J. Peptide antibiotics in mast cells of fish [J]. Nature, 2001(414): 268-269.
[44] Yosef R, Naama L S. Effect of the hydrophobicity to net positive charge ratio on Antibacterial. and anti-endotoxin activities of structurally similar antimicrobial peptides [J]. Biochemistry, 2010, 49(5): 853-861. doi: 10.1021/bi900724x
[45] Jean K D S, Henderson K D, Chrom C L, et al. Effects of hydrophobic amino acid substitutions on antimicrobial peptide behavior [J]. Probiotics & Antimicrobial Protns, 2017(7): 1-12.
[46] Gong H, Zhang J, Hu X, et al. Hydrophobic control of the bioactivity and cytotoxicity of de novo designed antimicrobial peptides [J]. ACS Applied Materials & Interfaces, 2019, 11(38): 34609-34620.
[47] Shi H T, Zhou T, Wang X Z, et al. Genome-wide association analysis of intra-specific QTL associated with the resistance for enteric septicemia of catfish [J]. Molecular Genetics & Genomics, 2018, 293(10): 1-14.
[48] Tamir T, Asaf C, Kalin V, et al. An evolutionarily conserved mechanism for controlling the efficiency of protein translation [J]. Cell, 2010, 141(2): 344-354. doi: 10.1016/j.cell.2010.03.031
[49] Cross M L, Matthews R A. Ichthyophthiriasis in carp, Cyprinus carpio L.: fate of parasites in immunized fish [J]. Journal of Fish Diseases, 1992, 15(6): 497-505. doi: 10.1111/j.1365-2761.1992.tb00681.x
[50] Clark T G, Lin T L, Dickerson H W. Surface immobilization antigens of Ichthyophthirius multifiliis: Their role in protective immunity [J]. Annual Review of Fish Diseases, 1995(5): 113-131.
[51] Xu Z, Parra D, Gomez D, et al. Teleost skin, an ancient mucosal surface that elicits gut-like immune responses [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(32): 13097-13102. doi: 10.1073/pnas.1304319110
[52] McGwire B S, Olson C L, Tack B F, et al. Killing of African trypanosomes by antimicrobial peptides [J]. Journal of Infectious Diseases, 2003(188): 146-152.
[53] Torrent M, Pulido D, Rivas L, et al. Antimicrobial peptide action on parasites [J]. Current Drug Targets, 2012, 13(9): 1138-1147. doi: 10.2174/138945012802002393