APPLICATIONS OF ENVIRONMENTAL DNA IN LAKE BIODIVERSITY
-
摘要: 环境DNA(Environmental DNA, eDNA)可用于监测湖泊生物多样性, 该技术对湖泊生态环境破坏性小, 对于开展湖泊生态保护具有重要意义。湖泊流速较为缓慢, 相对于河流更容易富集DNA, 更适合于应用eDNA方法开展生物多样性研究。文章对eDNA在湖泊生物多样性上的应用进行了回顾, 综述了其实验设计, 分析了该技术存在的问题和未来发展前景。eDNA方法具有研究对象广, 从细菌、真核微生物到高等动植物, 样品类型为水和沉积物, 可针对单一物种或对多个物种进行同时检测等特点。eDNA实验技术包括样品采集和保存、DNA提取和检测。eDNA应用在湖泊生物多样性研究中仍面临着最佳实验方案不确定、污染、抑制反应、误差和错误及DNA分类数据库不完善等问题, 在未来还需要通过改进相关实验技术和发展DNA数据平台去解决相应困境。Abstract: Lake is indispensable part of inland water ecosystem, and China harbors numerous lakes with rich biodiversity. In recent years, the degradation of lakes severely lead to the decreasing of level of biodiversity. Therefore, lake biodiversity has always been a research hot-spot in limnology. All efforts to research on lake biodiversity essentially depend on monitoring species composition, population size and distribution. Such studies traditionally rely on morphological identification through biological specimen surveys, until to Environmental DNA (eDNA) arose. eDNA exists in the environmental samples such as water, soil and sediments. This feature makes eDNA to be a good indicator to monitor past and current biodiversity. Using molecular biology methods to monitor lake biodiversity is conducive to understanding the dynamic changes of lake ecosystems and is of great significance to the development of lake ecological protection. Compared to traditional investigation methods, eDNA is an non-invasive, efficient and easy to be standardized research approach. It especially doesn’t rely on experts’ experience and professional level of morphological classification. With the development of high-throughput sequencing (HTS) technology and emergence of eDNA metabarcoding, eDNA can be used as a supplement or alternative to traditional investigations. It is currently the most economical and effective method for lake biodiversity research. Lakes are easier to be enriched DNA owing to static water environment, therefore more suitable for applying eDNA methods to carry out their biodiversity researches. This article reviewed the application of eDNA in studies of the lake biodiversity. We also summarized the related experimental design, and analyzed challenges and prospects of this method. The application of eDNA in the lake biodiversity indicated characters of research objects from low-level organisms to high-level organisms. The samples are mainly water and sediments. By extracting ancient DNA from lake sediments, the lake history and the evolution of biodiversity have been studied; eDNA extracted from water samples can be used to understand the current aquatic biodiversity in the lake. The experimental technology of eDNA includes sampling and preservation, DNA extraction and detection. The three main aspects to determine quality of eDNA samples include suitable amount of samples, sampling methods and storage ways. eDNA can be used to detect specific taxa or multi-taxa based on PCR/qPCR with specific primer or meta-barcoding technology. The application of eDNA in lake biodiversity faces challenges such as lack of optimal experimental protocols, contamination, errors and imperfect taxa DNA database. In the future, the application of eDNA method needs to improve relevant experimental techniques and develop DNA database to solve the corresponding dilemmas. We recommend that human contamination and cross-contamination between samples should be avoided as much as possible during sampling. For the lack of database, we suggest establishing a regional eDNA database, conducting targeted data management and strengthening data sharing among various laboratories.
-
-
表 1 湖泊样品中eDNA提取的常用方法
Table 1 Common methods for extracting eDNA from lake samples
eDNA提取方法Methods of eDNA extraction 样品量Sample Size eDNA浓度eDNA concentration 实验花费Experiment cost 抑制作用Inhibition 安全性Security 适用样品类型Applicable sample type 涉及研究案例
Relevant researchesPCI法 少 低 低 高 低 水样品沉积物 eDNA发展初期用于高盐湖泊古细菌及湖泊中微生物、真核生物多样性监测, 近年用于监测淡水湖泊鱼类动态分布[16, 30, 49] 试剂盒Reagent
kitsDNeasy
试剂盒多 中 中 高 高 水样品 用于监测脊椎动物及浮游动植物种和生物量估算, 监测入侵物种的分布[50-52] PowerWater试剂盒 多 高 高 中 高 水样品 用于监测真核生物、水生动植物多样性及分布, 及入侵物种监测[31, 53, 54] PowerSoil
试剂盒多 中 中 低 高 水样品沉积物 用于研究细菌群落结构及多样性、重建古生态系统等; 监测鱼类物种组成及其分布[27, 55] PowerMax试剂盒 多 中 中 低 高 沉积物 用于监测水生生物多样性, 重建陆生植被等[56] Biomedicals试剂盒 多 高 中 低 高 水样品沉积物 近年来用于水样品提取, 研究鱼类物种组成及其分布等[27] -
[1] 窦鸿身, 王苏民, 姜加虎, 等. 中国湖泊综合分类原则、级别划分及分类程序之初探 [J]. 湖泊科学, 1996(2): 173-178. doi: 10.18307/1996.0214 Dou H S, Wang S M, Jiang J H, et al. On the principles, scale division and procedures of comprehensive classification of Chinese lakes [J]. Journal of Lake Sciences, 1996(2): 173-178. doi: 10.18307/1996.0214
[2] Ma R H, Yang G S, Duan H T, et al. China’s lakes at present: Number, area and spatial distribution [J]. Science China Earth Sciences, 2011, 54(2): 283-289. doi: 10.1007/s11430-010-4052-6
[3] Tao S L, Fang J Y, Ma S H, et al. Changes in China’s lakes: Climate and human impacts [J]. National Science Review, 2020, 7(1): 132-140. doi: 10.1093/nsr/nwz103
[4] Fang J Y, Wang Z H, Zhao S Q, et al. Biodiversity changes in the lakes of the central Yangtze [J]. Frontiers in Ecology and The Environment, 2006, 4(7): 369-377. doi: 10.1890/1540-9295(2006)004[0369:BCITLO]2.0.CO;2
[5] 舒凤月, 王海军, 王洪铸, 等. 长江中下游湖泊软体动物的多样性及分布现状 [J]. 生态科学, 2008, 27(5): 437-438. doi: 10.3969/j.issn.1008-8873.2008.05.038 Shu F Y, Wang H J, Wang H Z, et al. Distribution and diversity of molluscs in the mid-lower Yangtze lakes [J]. Ecological Science, 2008, 27(5): 437-438. doi: 10.3969/j.issn.1008-8873.2008.05.038
[6] 王丽卿, 施荣, 季高华, 等. 淀山湖浮游植物群落特征及其演替规律 [J]. 生物多样性, 2011, 19(1): 48-56. doi: 10.3724/SP.J.1003.2011.09044 Wang L Q, Shi R, Ji G H, et al. Phytoplankton community structure and its succession in Dianshan Lake [J]. Biodiversity Science, 2011, 19(1): 48-56. doi: 10.3724/SP.J.1003.2011.09044
[7] 聂雪, 胡旭仁, 刘观华, 等. 鄱阳湖子湖泊浮游动物多样性及水质生物评价 [J]. 南昌大学学报(理科版), 2018, 42(2): 161-167. Nie X, Hu X R, Liu G H, et al. Species diversity of zooplankton and water quality biological assessment in a sub-lake of Poyang Lake [J]. Journal of Nanchang University (
Natural Science ) , 2018, 42(2): 161-167. [8] Pedersen M W, Overballe-Petersen S, Ermini L, et al. Ancient and modern environmental DNA [J]. Philosophical transactions of The Royal Society B-biological Sciences, 2015(370): 20130383.
[9] Shokralla S, Spall J L, Gibson J F, et al. Next-generation sequencing technologies for environmental DNA research [J]. Molecular Ecology, 2012, 21(8): 1794-1805. doi: 10.1111/j.1365-294X.2012.05538.x
[10] Egan S P, Barnes M A, Hwang C T, et al. Rapid invasive species detection by combining environmental DNA with light transmission spectroscopy [J]. Conservation Letters, 2013, 6(6): 402-409. doi: 10.1111/conl.12017
[11] Thomsen P F, Willerslev E. Environmental DNA-An emerging tool in conservation for monitoring past and present biodiversity [J]. Biological Conservation, 2015(183): 4-18.
[12] Adrian-Kalchhauser I, Burkhardt-Holm P. An eDNA assay to monitor a globally invasive fish species from flowing freshwater [J]. PLoS One, 2016, 11(1): 22.
[13] Dougherty M M, Larson E R, Renshaw M A, et al. Environmental DNA (eDNA) detects the invasive rusty crayfish Orconectes rusticus at low abundances [J]. Journal of Applied Ecology, 2016, 53(3): 722-732. doi: 10.1111/1365-2664.12621
[14] Furlan E M, Gleeson D, Wisniewski C, et al. eDNA surveys to detect species at very low densities: A case study of European carp eradication in Tasmania, Australia [J]. Journal of Applied Ecology, 2019, 56(11): 2505-2517. doi: 10.1111/1365-2664.13485
[15] Brinkhoff T, Muyzer G. Increased species diversity and extended habitat range of sulfur-oxidizing Thiomicrospira spp. [J]. Applied and Environmental Microbiology, 1997, 63(10): 3789-3796. doi: 10.1128/aem.63.10.3789-3796.1997
[16] Thomsen P F, Kielgast J, Iversen L L, et al. Monitoring endangered freshwater biodiversity using environmental DNA [J]. Molecular Ecology, 2012, 21(11): 2565-2573. doi: 10.1111/j.1365-294X.2011.05418.x
[17] Parducci L, Matetovici I, Fontana S L, et al. Molecular and pollen-based vegetation analysis in lake sediments from central Scandinavia [J]. Molecular Ecology, 2013, 22(13): 3511-3524. doi: 10.1111/mec.12298
[18] Bista I, Carvalho G R, Walsh K, et al. Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem biodiversity [J]. Nature Communications, 2017(8): 14087.
[19] Zhang S, Lu Q, Wang Y Y, et al. Assessment of fish communities using environmental DNA: Effect of spatial sampling design in lentic systems of different sizes [J]. Molecular Ecology Resources, 2020, 20(1): 242-255. doi: 10.1111/1755-0998.13105
[20] Matisoo-Smith E, Roberts K, Welikala N, et al. Recovery of DNA and pollen from New Zealand lake sediments [J]. Quaternary International, 2008, 184(1): 139-149. doi: 10.1016/j.quaint.2007.09.013
[21] Anderson-Carpenter L L, McLachlan J S, Jackson S T, et al. Ancient DNA from lake sediments: Bridging the gap between paleoecology and genetics [J]. BMC Evolutionary Biology, 2011(11): 30.
[22] Giguet-Covex C, Pansu J, Arnaud F, et al. Long livestock farming history and human landscape shaping revealed by lake sediment DNA [J]. Nature Communications, 2014(5): 3211.
[23] Goutte A, Molbert N, Guerin S, et al. Monitoring freshwater fish communities in large rivers using environmental DNA metabarcoding and a long-term electrofishing survey [J]. Journal of Fish Biology, 2020, 97(2): 444-452. doi: 10.1111/jfb.14383
[24] Qu C J, Stewart K A, Clemente-Carvalho R, et al. Comparing fish prey diversity for a critically endangered aquatic mammal in a reserve and the wild using eDNA metabarcoding [J]. Scientific Reports, 2020, 10(1): 16715. doi: 10.1038/s41598-020-73648-2
[25] 舒璐, 林佳艳, 徐源, 等. 基于环境DNA宏条形码的洱海鱼类多样性研究 [J]. 水生生物学报, 2020, 44(5): 1080-1086. doi: 10.7541/2020.125 Shu L, Lin J Y, Xu Y, et al. Investigating the fish diversity in Erhai Lake based on environmental DNA metabarcoding [J]. Acta Hydrobiologica Sinica, 2020, 44(5): 1080-1086. doi: 10.7541/2020.125
[26] Mahon A R, Jerde C L, Galaska M, et al. Validation of eDNA surveillance sensitivity for detection of Asian carps in controlled and field experiments [J]. PLoS One, 2013, 8(3): e58316. doi: 10.1371/journal.pone.0058316
[27] Eichmiller J J, Miller L M, Sorensen P W. Optimizing techniques to capture and extract environmental DNA for detection and quantification of fish [J]. Molecular Ecology Resources, 2015, 16(1): 56-68.
[28] Agersnap S, Larsen W B, Knudsen S W, et al. Monitoring of noble, signal and narrow-clawed crayfish using environmental DNA from freshwater samples [J]. PLoS One, 2017, 12(6): e0179261. doi: 10.1371/journal.pone.0179261
[29] Fujii K, Doi H, Matsuoka S, et al. Environmental DNA metabarcoding for fish community analysis in backwater lakes: A comparison of capture methods [J]. PLoS One, 2019, 14(1): e0210357. doi: 10.1371/journal.pone.0210357
[30] Muha T P, Robinson C V, Garcia de Leaniz C, et al. An optimised eDNA protocol for detecting fish in lentic and lotic freshwaters using a small water volume [J]. PLoS One, 2019, 14(7): e0219218. doi: 10.1371/journal.pone.0219218
[31] Jerde C L, Mahon A R, Chadderton W L, et al. “Sight-unseen” detection of rare aquatic species using environmental DNA [J]. Conservation Letter, 2011, 4(2): 150-157. doi: 10.1111/j.1755-263X.2010.00158.x
[32] Olson Z H, Briggler J T, Williams R N. An eDNA approach to detect eastern hellbenders (Cryptobranchus a. alleganiensis) using samples of water [J]. Wildlife Research, 2012, 39(7): 629-636. doi: 10.1071/WR12114
[33] Pilliod D S, Goldberg C S, Arkler R S, et al. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70(8): 1123-1130. doi: 10.1139/cjfas-2013-0047
[34] Goldberg C S, Sepulveda A, Ray A, et al. Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum) [J]. Freshwater Science, 2013, 32(3): 792-800. doi: 10.1899/13-046.1
[35] Ficetola G F, Miaud C, Pompanon F, et al. Species detection using environmental DNA from water samples [J]. Biology Letters, 2008, 4(4): 423-425. doi: 10.1098/rsbl.2008.0118
[36] Klymus K E, Richter C A, Chapman D C, et al. Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix [J]. Biology Conservation, 2015(183): 77-84.
[37] Deiner K, Walser J C, Machler E, et al. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA [J]. Biological Conservation, 2015(183): 53-63.
[38] Ma H J, Stewart K, Lougheed S, et al. Characterization, optimization, and validation of environmental DNA (eDNA) markers to detect an endangered aquatic mammal [J]. Conservation Genetics Resources, 2016, 8(4): 561-568. doi: 10.1007/s12686-016-0597-9
[39] Hunter M E, Ferrante J A, Meigs-Friend G, et al. Improving eDNA yield and inhibitor reduction through increased water volumes and multi-filter isolation techniques [J]. Scientific Reports, 2019, 9(1): 52-59. doi: 10.1038/s41598-018-37275-2
[40] Civade R, Dejean T, Valentini A, et al. Spatial representativeness of environmental DNA metabarcoding signal for fish biodiversity assessment in a natural freshwater system [J]. PLoS One, 2016, 11(6): e0157366. doi: 10.1371/journal.pone.0157366
[41] Li J L, Handley L L, Read D S, et al. The effect of filtration method on the efficiency of environmental DNA capture and quantification via metabarcoding [J]. Molecular Ecology Resources, 2018, 18(5): 1102-1114. doi: 10.1111/1755-0998.12899
[42] Renshaw M A, Olds B P, Jerde C L, et al. The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol-chloroformisoamyl alcohol DNA extraction [J]. Molecular Ecology Resources, 2015, 15(1): 168-176. doi: 10.1111/1755-0998.12281
[43] Hinlo R, Gleeson D, Lintermans M, et al. Methods to maximise recovery of environmental DNA from water samples [J]. PLoS One, 2017, 12(6): e0179251. doi: 10.1371/journal.pone.0179251
[44] Majaneva M, Diserud O H, Eagle S H C, et al. Environmental DNA filtration techniques affect recovered biodiversity [J]. Scientific Reports, 2018(8): 4682.
[45] Wilson I G. Inhibition and facilitation of nucleic acid amplification [J]. Applied and Environmental Microbiology, 1997, 63(10): 3741-3751. doi: 10.1128/aem.63.10.3741-3751.1997
[46] Ochsenreiter T, Pfeifer F, Schleper C. Diversity of Archaea in hypersaline environments characterized by molecular-phylogenetic and cultivation studies [J]. Extremophiles, 2002, 6(4): 267-274. doi: 10.1007/s00792-001-0253-4
[47] Tsuji S, Takahara T, Doi H, et al. The detection of aquatic macroorganisms using environmental DNA analysis-A review of methods for collection, extraction, and detection [J]. Environmental DNA, 2019, 1(2): 99-108. doi: 10.1002/edn3.21
[48] Haile J, Holdaway R, Oliver K, et al. Ancient DNA chronology within sediment deposits: Are paleobiological reconstructions possible and is DNA leaching a factor [J]? Molecular Biology and Evolution, 2007, 24(4): 982-989. doi: 10.1093/molbev/msm016
[49] Balasingham K D, Walter R P, Heath D D. Residual eDNA detection sensitivity assessed by quantitative real-time PCR in a river ecosystem [J]. Molecular Ecology Resources, 2017, 17(3): 523-532. doi: 10.1111/1755-0998.12598
[50] Brown E A, Chain F J J, Zhan A B, et al. Early detection of aquatic invaders using metabarcoding reveals a high number of non-indigenous species in Canadian ports [J]. Diversity and Distributions, 2016, 22(10): 1045-1059. doi: 10.1111/ddi.12465
[51] Capo E, Spong G, Norman S, et al. Droplet digital PCR assays for the quantification of brown trout (Salmo trutta) and Arctic char (Salvelinus alpinus) from environmental DNA collected in the water of mountain lakes [J]. PLoS One, 2019, 14(12): e0226638. doi: 10.1371/journal.pone.0226638
[52] Guan X, Monroe E M, Bockrath K D, et al. Environmental DNA (eDNA) assays for invasive populations of black carp in North America [J]. Transactions of the American Fisheries Society, 2019, 148(6): 1043-1055. doi: 10.1002/tafs.10195
[53] Tucker A J, Chadderton W L, Jerde C L, et al. A sensitive environmental DNA (eDNA) assay leads to new insights on Ruffe (Gymnocephalus cernua) spread in North America [J]. Biological Invasions, 2016, 18(11): 3205-3222. doi: 10.1007/s10530-016-1209-z
[54] Valdez-Moreno M, Ivanova N V, Elias-Gutierrez M, et al. Using eDNA to biomonitor the fish community in a tropical oligotrophic lake [J]. PLoS One, 2019, 14(4): e0215505. doi: 10.1371/journal.pone.0215505
[55] Hollibaugh J T, Budinoff C, Hollibaugh R A, et al. Sulfide oxidation coupled to arsenate reduction by a diverse microbial community in a soda lake [J]. Applied and Environmental Microbiology, 2006, 72(3): 2043-2049. doi: 10.1128/AEM.72.3.2043-2049.2006
[56] Alsos I G, Lammers Y, Yoccoz N G, et al. Plant DNA metabarcoding of lake sediments: How does it represent the contemporary vegetation [J]. PLoS One, 2018, 13(4): e0195403. doi: 10.1371/journal.pone.0195403
[57] Dejean T, Valentini A, Miquel C, et al. Improved detection of an alien invasive species through environmental DNA barcoding: The example of the American bullfrog Lithobates catesbeianus [J]. Journal of Applied Ecology, 2012, 49(4): 953-959. doi: 10.1111/j.1365-2664.2012.02171.x
[58] Takahara T, Minamoto T, Doi H, et al. Using environmental DNA to estimate the distribution of an invasive fish species in ponds [J]. PLoS One, 2013, 8(2): e56584. doi: 10.1371/journal.pone.0056584
[59] Doi H, Takahara T, Minamoto T, et al. Droplet digital polymerase chain reaction (PCR) outperforms real-time PCR in the detection of environmental DNA from an invasive fish species [J]. Environmental Science & Technology, 2015, 49(9): 5601-5608.
[60] Erickson R A, Rees C B, Coulter A A, et al. Detecting the movement and spawning activity of bigheaded carps with environmental DNA [J]. Molecular Ecology Resources, 2016, 16(4): 957-965. doi: 10.1111/1755-0998.12533
[61] Minamoto T, Uchii K, Takahara T, et al. Nuclear internal transcribed spacer-1 as a sensitive genetic marker for environmental DNA studies in common carp Cyprinus carpio [J]. Molecular Ecology Resources, 2017, 17(2): 324-333. doi: 10.1111/1755-0998.12586
[62] Jerde C L, Chadderton W L, Mahon A R, et al. Detection of Asian carp DNA as part of a Great Lakes basin-wide surveillance program [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70(4): 522-526. doi: 10.1139/cjfas-2012-0478
[63] Edwards M E, Alsos I G, Yoccoz N, et al. Metabarcoding of modern soil DNA gives a highly local vegetation signal in Svalbard tundra [J]. Holocene, 2018, 28(12): 2006-2016. doi: 10.1177/0959683618798095
[64] Karr E A, Sattley W M, Rice M R, et al. Diversity and distribution of sulfate-reducing bacteria in permanently frozen lake fryxell, McMurdo Dry Valleys, Antarctica [J]. Applied and Environmental Microbiology, 2005, 71(10): 6353-6359. doi: 10.1128/AEM.71.10.6353-6359.2005
[65] Epp L S, Stoof-Leichsenring K R, Trauth M H, et al. Molecular profiling of diatom assemblages in tropical lake sediments using taxon-specific PCR and Denaturing High-Performance Liquid Chromatography (PCR-DHPLC) [J]. Molecular Ecology Resources, 2011, 11(5): 842-853. doi: 10.1111/j.1755-0998.2011.03022.x
[66] Takahara T, Minamoto T, Yamanaka H, et al. Estimation of fish biomass using environmental DNA [J]. PLoS One, 2012, 7(4): e35868. doi: 10.1371/journal.pone.0035868
[67] Wilson C, Wright E, Bronnenhuber J, et al. Tracking ghosts: Combined electrofishing and environmental DNA surveillance efforts for Asian carps in ontario waters of lake Erie [J]. Management of Biological Invasions, 2014, 5(3): 225-231. doi: 10.3391/mbi.2014.5.3.05
[68] Bedwell M E, Goldberg C S. Spatial and temporal patterns of environmental DNA detection to inform sampling protocols in lentic and lotic systems [J]. Ecology and Evolution, 2020, 10(3): 1602-1612. doi: 10.1002/ece3.6014
[69] Hebert P D N, Gregory T R. The promise of DNA barcoding for taxonomy [J]. Systematic Biology, 2005, 54(5): 852-859. doi: 10.1080/10635150500354886
[70] Lim N K M, Tay Y C, Srivathsan A, et al. Next-generation freshwater bioassessment: eDNA metabarcoding with a conserved metazoan primer reveals species-rich and reservoir-specific communities [J]. Royal Society Open Science, 2016, 3(11): 160635. doi: 10.1098/rsos.160635
[71] 佟广香, 唐国盘, 徐伟, 等. 哲罗鲑性别特异性标记筛选 [J]. 水生生物学报, 2021, 45(4): 728-733. doi: 10.1038/nbt.1488 Tong G X, Tang G P, Xu W, et al. Characterization of sex-specific marker in Hucho taimen (Pallas) [J]. Acta Hydrobiologica Sinica, 2021, 45(4): 728-733. doi: 10.1038/nbt.1488
[72] 卞光明, 王娜泠, 胡则辉, 等. 基于线粒体COⅠ和16S rRNA基因序列比较分析东海带鱼群体遗传多样性 [J]. 水生生物学报, 2019, 43(2): 282-290. doi: 10.1007/s10750-018-3593-0 Bian G M, Wang N L, Hu Z H, et al. A comparative analysis on the genetic diversity of Trichiurus lepturus [J]. Acta Hydrobiologica Sinica, 2019, 43(2): 282-290. doi: 10.1007/s10750-018-3593-0
[73] 孙晶莹, 杨江华, 张效伟. 环境DNA(eDNA)宏条形码技术对枝角类浮游动物物种鉴定及其生物量监测研究 [J]. 生态毒理学报, 2018, 13(5): 76-86. doi: 10.7524/AJE.1673-5897.20180108001 Sun J Y, Yang J H, Zhang X W. Identification and biomass monitoring of zooplankton cladocera species with eDNA metabarcoding technology [J]. Asian Journal of Ecotoxicology, 2018, 13(5): 76-86. doi: 10.7524/AJE.1673-5897.20180108001
[74] 张丽娟, 徐杉, 赵峥, 等. 环境DNA宏条形码监测湖泊真核浮游植物的精准性 [J]. 环境科学, 2020, 42(2): 796-807. doi: 10.13227/j.hjkx.202007236 Zhang L J, Xu S, Zhao Z, et al. Precision of eDNA metabarcoding technology for biodiversity monitoring of eukaryotic phytoplankton in lakes [J]. Environmental Science, 2020, 42(2): 796-807. doi: 10.13227/j.hjkx.202007236
[75] Zhang S, Zhao J D, Yao M. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish [J]. Methods in Ecology and Evolution, 2020, hppts://doi.org/10.1111/2041-210X.13485.
[76] Hanfling B, Handley L L, Read D S, et al. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods [J]. Molecular Ecology, 2016, 25(13): 3101-3119. doi: 10.1111/mec.13660
[77] Deiner K, Bik H M, Machler E, et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities [J]. Molecular Ecology, 2017, 26(21): 5872-5895. doi: 10.1111/mec.14350
[78] Kalyuzhnaya M G, Lapidus A, Ivanova N, et al. High-resolution metagenomics targets specific functional types in complex microbial communities [J]. Nature Biotechnology, 2008, 26(9): 1029-1034. doi: 10.1038/nbt.1488x
[79] Schloss P D, Westcott S L, Ryabin T, et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities [J]. Applied and Environmental Microbiology, 2009, 75(23): 7537-7541. doi: 10.1128/AEM.01541-09
[80] Banerji A, Bagley M, Elk M, et al. Spatial and temporal dynamics of a freshwater eukaryotic plankton community revealed via 18S rRNA gene metabarcoding [J]. Hydrobiologia, 2018, 818(1): 71-86. doi: 10.1007/s10750-018-3593-0x
[81] Edgar R C. Search and clustering orders of magnitude faster than BLAST [J]. Bioinformatics, 2010, 26(19): 2460-2461. doi: 10.1093/bioinformatics/btq461
[82] Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data [J]. Nature Methods, 2010, 7(5): 335-336. doi: 10.1038/nmeth.f.303
[83] Diaz-Ferguson E E, Moyer G R. History, applications, methodological issues and perspectives for the use of environmental DNA (eDNA) in marine and freshwater environments [J]. Revista De Biologia Tropical, 2014, 62(4): 1273-1284. doi: 10.15517/rbt.v62i4.13231
[84] Strickler K M, Fremier A K, Goldberg C S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms [J]. Biological Conservation, 2015(183): 85-92.
[85] Lacoursiere-Roussel A, Rosabal M, Bernatchez L. Estimating fish abundance and biomass from eDNA concentrations: variability among capture methods and environmental conditions [J]. Molecular Ecology Resources, 2016, 16(6): 1401-1414. doi: 10.1111/1755-0998.12522
[86] Lacoursiere-Roussel A, Cote G, Leclerc V, et al. Quantifying relative fish abundance with eDNA: a promising tool for fisheries management [J]. Journal of Applied Ecology, 2016, 53(4): 1148-1157. doi: 10.1111/1365-2664.12598
[87] Tsuji S, Yamanaka H, Minamoto T. Effects of water pH and proteinase K treatment on the yield of environmental DNA from water samples [J]. Limnology, 2017, 18(1): 1-7. doi: 10.1007/s10201-016-0483-x
[88] Jo T, Murakami H, Yamamoto S, et al. Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution [J]. Ecology and Evolution, 2019, 9(3): 1135-1146. doi: 10.1002/ece3.4802
[89] Bylemans J, Furlan E M, Gleeson D M, et al. Does size matter? An experimental evaluation of the relative abundance and decay rates of aquatic environmental DNA [J]. Environmental Science & Technology, 2018, 52(11): 6408-6416.
[90] Jo T, Murakami H, Masuda R, et al. Selective collection of long fragments of environmental DNA using larger pore size filter [J]. Science of The Total Environment, 2020(735): 139462.
[91] Doi H, Akamatsu Y, Watanabe Y, et al. Water sampling for environmental DNA surveys by using an unmanned aerial vehicle [J]. Limnology and Oceanography-Methods, 2017, 15(11): 939-944. doi: 10.1002/lom3.10214
[92] Williams M R, Stedtfeld R D, Engle C, et al. Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp. [J]. PLoS One, 2017, 12(10): e0186462. doi: 10.1371/journal.pone.0186462
[93] King C E, Debruyne R, Kuch M, et al. A quantitative approach to detect and overcome PCR inhibition in ancient DNA extracts [J]. Biotechniques, 2009, 47(5): 941-949. doi: 10.2144/000113244
[94] Sidstedt M, Romsos E L, Hedell R, et al. Accurate digital polymerase chain reaction quantification of challenging samples applying inhibitor-tolerant DNA polymerases [J]. Analytical Chemistry, 2017, 89(3): 1642-1649. doi: 10.1021/acs.analchem.6b03746
[95] Acinas S G, Sarma-Rupavtarm R, Klepac-Ceraj V, et al. PCR-induced sequence artifacts and bias: Insights from comparison of two 16S rRNA clone libraries constructed from the same sample [J]. Applied and Environmental Microbiology, 2005, 71(12): 8966-8969. doi: 10.1128/AEM.71.12.8966-8969.2005