AGE AND GROWTH CHARACTERISTICS OF COILIA NASUS IN THE THREE GORGES RESERVOIR REGION
-
摘要: 为调查短颌鲚(Coilia nasus) 在三峡库区的资源现状, 自2019年7—12月于三峡库区的长江一级支流澎溪河、梅溪河、草堂河、大宁河共采集短颌鲚样本459尾, 用以分析三峡库区现有短颌鲚的年龄结构及生长特征。研究结果显示, 三峡库区短颌鲚群体由1—6龄组成, 1龄即可达性成熟, 群体中1—3龄个体占比90.85%; 群体平均体长为(16.57±0.21) cm, 平均体重为(19.14±0.78) g; 群体的体重-体长关系式为W=0.0038L2.957 (R2=0.99), 属于异速生长类型; 雌性的Von Bertalanffy生长方程为Lt=38.567[1–e–0.196(t+0.985)], Wt=183.029[1–e–0.196(t+0.985)]2.938; 雄性的Von Bertalanffy生长方程为Lt=34.711[1–e–0.26(t+0.603)], Wt=143.599[1–e–0.26(t+0.603)]2.995; 雌、雄性体重生长的拐点年龄分别为4.62龄和3.62龄。研究结果表明目前三峡库区短颌鲚属个体小型化群体, 年龄结构简单, 种群数量呈上升趋势, 且群体中雌性占比较高, 繁殖潜力充足。因此, 为保护三峡库区水域生态系统的安全与稳定, 需进一步开展有关短颌鲚对三峡库区水域生态系统的影响及其风险评价的研究。Abstract: Coilia nasus is one of the anchovy species that exclusively lives in freshwater environments, which has been increasing, and its distribution range has been gradually expanding in the Three Gorges Reservoir Region since it was first identified in 2015. Up to now, there was still no research on the resource status, ecological effects, adaptation strategies, and risk assessments concerning Coilia nasus in the Three Gorges Reservoir Region. In order to investigate age and growth characteristics of Coilia nasus in the Three Gorges Reservoir Region, 459 individuals were collected from Penxi River, Meixi River, Caotang River and Daning River from July to December 2019. The results showed that the age of Coilia nasus ranged from 1 to 6, and sexual maturity was reached at the age of 1. The proportion of individuals aged from 1 to 3 years old was 90.85%. The average body length and average weight of sampled individuals were (16.57±0.21) cm (mean±SE) and (19.14±0.78) g (mean±SE), respectively. The relationship between body weight and body length could be expressed as W=0.0038L2.957(R2=0.987). The Von-Bertalanffy growth equations of female and male Coilia nasus were Lt=38.567[1–e–0.196(t+0.985)], Wt=183.029[1–e–0.196(t+0.985)]2.938 (♀) and Lt=34.711[1–e–0.26(t+0.603)], Wt=143.599[1–e–0.26(t+0.603)]2.995 (♂), respectively. The growth inflection points of body weight were 4.62 (♀) and 3.62 (♂). Moreover, these results indicated that Coilia nasus from the Three Gorges Reservoir Region belonged to a small individual population, which had simple age structure, upward trend in population number, high proportion of females, and abundant reproductive potential. Therefore, in order to protect the safety and stability of the aquatic ecosystem, further studies on the influences and risk assessments of Coilia nasus on the aquatic ecosystem of the Three Gorges Reservoir Region should be carried out.
-
Keywords:
- Coilia nasus /
- Three Gorges Reservoir Region /
- Age /
- Growth /
- Population development trend
-
-
图 2 三峡库区短颌鲚鳞片(A)和脊椎骨(B)两种年龄鉴定材料年轮特征示意图
A鳞片: a. 辐射沟; b. 第1年轮; c. 第2年轮; d. 鳞焦; B. 脊椎骨: 1—5. 年轮
Figure 2. Annuli characteristics of scale (A) and vertebrae (B) of Coilia nasus from the Three Gorges Reservoir Region
A scale: a. scale groove; b. the 1st annual ring; c. the 2nd annual ring; d. scale focus; B bertebrae: 1 to 5. annual ring
表 1 三峡库区短颌鲚的采集信息
Table 1 Basic data of Coilia nasus from different sampling sites in the Three Gorges Reservoir Region
采样点
Sampling site采样江段
Sampling section不同采样时间的采集样本数
Number of samples collected in different months样本总数
Total number of samples体长 Body
length (cm)
(mean±SE)体重 Body
weight (g)
(mean±SE)7月
July8月
August9月
September10月
October11月
November12月
December大宁河
Daning River重庆巫山段 11 20 14 51 33 4 133 16.57±0.48 20.65±1.93 草堂河
Caotang River重庆奉节段 16 16 18 47 31 3 131 18.54±0.39 25.99±1.44 梅溪河
Meixi River重庆奉节段 11 15 8 44 30 0 108 13.77±0.29 9.96±0.73 澎溪河
Pengxi River重庆云阳段 14 10 9 28 26 0 87 17.09±0.28 17.94±0.76 表 2 拟合三峡库区短颌鲚生长方程的数学模型
Table 2 Mathematical models describing the growth of Coilia nasus in the Three Gorges Reservoir Region
模型名称
Model name体长生长模型
Body length growth function体重生长模型
Body weight growth functionVon Bertalanffy ${ {L} }_{ {t} }\text{=}{ {L} }_{\text{∞} }{[1\text{–}}{\text{e} }^{ \text{–}{k}\text{(}{t}\text{–}{ {t} }_{\text{0} }\text{)} }\text{]}$ ${ {W} }_{ {t} }\text{=}{ {W} }_{\text{∞} }{[1\text{–}}{\text{e} }^{ \text{–}{k}\text{(}{t}\text{–}{ {t} }_{\text{0} }\text{)} }{\text{]} }^{ {b} }$ Gompertz ${ {L} }_{ {t} }\text{=}{ {L} }_{\text{∞} }{\text{e} }^{ \text{–}{k}{\text{e} }^{ \text{–}\text{a}{t} } }$ ${ {W} }_{ {t} }\text{=}{ {W} }_{\text{∞} }{\text{e} }^{ \text{–}{b}k{\text{e} }^{ \text{–}\text{a}{t} } }$ Logistic ${ {L} }_{ {t} }\text{=}{ {L} }_{\text{∞} }{\text{/(1+e} }^{\mathrm{a}{\text{–}kt} })$ ${ {W} }_{ {t} }\text{=}{ {W} }_{\text{∞} }\text{/(1+}{\text{e} }^{ { {\rm{a} }\text{–}}{kt} }{\text{)} }^{ {b} }$ 表 3 三峡库区不同采样点短颌鲚样本的年龄组成
Table 3 Age composition of Coilia nasus from different sampling sites in the Three Gorges Reservoir Region
采样点
Sampling site1龄 2龄 3龄 4龄 5龄 6龄 样本数Individual 大宁河Daning River 60 36 18 5 9 5 草堂河Caotang River 39 17 55 18 1 1 梅溪河Meixi River 82 16 7 3 0 0 澎溪河Pengxi River 18 49 20 0 0 0 表 4 三峡库区短颌鲚的相对生长率和生长指标
Table 4 Relative growth rate and growth index of Coilia nasus population in the Three Gorges Reservoir Region
年龄
Age样本数
Individual体长Body length (cm) 体重Body weight (g) 均值Mean 相对生长率RL (%) 生长指标C1t 均值Mean 相对生长率RW (%) 1 199 12.15 6.35 2 118 17.35 42.78 4.33 17.54 176.18 3 100 20.96 20.80 3.28 31.54 79.86 4 26 22.97 9.58 1.92 41.29 30.91 5 10 26.78 16.61 3.53 64.15 55.36 6 6 30.35 13.33 3.35 97.28 51.65 合计Total 459 表 5 三峡库区短颌鲚生长方程
Table 5 The growth functions of Coilia nasus in the Three Gorges Reservoir Region
模型名称
Model name体长生长方程
Body length growth function体重生长方程
Body weight growth functionR2值 VBGF 群体: ${ {L} }_{ {t} }=\text{36.997[1}-{\text{e} }^{ {-0.217(}{t}\text{+0.855)} }\text{]}$ ${ {W} }_{ {t} }=\text{164.998[1}-{\text{e} }^{ {-0.217(}{t}\text{+0.855)} }{\text{]} }^{\text{2.957} }$ 0.94 ♀: ${ {L} }_{ {t} }=\text{38.567[1}-{\text{e} }^{ {-0.196(}{t}\text{+0.985)} }\text{]}$ ${ {W} }_{ {t} }=\text{183.029[1}-{\text{e} }^{ {-0.0.196(}{t}\text{+0.985)} }{\text{]} }^{\text{2.938} }$ 0.94 ♂: ${ {L} }_{ {t} }=\text{34.711[1}-{\text{e} }^{ {-0.26(}{t}\text{+0.603)} }\text{]}$ ${ {W} }_{ {t} }=\text{143.599[1}-{\text{e} }^{ {-0.26(}{t}\text{+0.603)} }{\text{]} }^{\text{2.995} }$ 0.94 GGF 群体: ${ {L} }_{ {t} }=\text{31.906}{\text{e} }^{ {-}\text{1.44}{\text{e} }^{ {-}\text{0.412}{t} } }$ ${ {W} }_{ {t} }=\text{106.349}{\text{e} }^{ {-}\text{4.258}{\text{e} }^{ {-0.412}{t} } }$ 0.94 ♀: ${ {L} }_{ {t} }=\text{32.511}{\text{e} }^{ {-1.414}{\text{e} }^{ {-0.390}{t} } }$ ${ {W} }_{ {t} }=\text{110.766}{\text{e} }^{ {-4.154}{\text{e} }^{ {-0.390}{t} } }$ 0.94 ♂: ${ {L} }_{ {t} }=\text{30.891}{\text{e} }^{ {-1.522}{\text{e} }^{ {-0.465}{t} } }$ ${{W} }_{{t} }\text{=}\text{101.418}{\text{e} }^{{-4.558}{\text{e} }^{{-0.465}{t} } }$ 0.95 LGF 群体: ${ {L} }_{ {t} }=\text{29.737/(1+}{\text{e} }^{ {0.965-0.613}{t} }\text{)}$ ${ {W} }_{ {t} }\text{=}\text{86.362/(1+}{\text{e} }^{ {0.965-0.613}{t} }{\text{)} }^{\text{2.957} }$ 0.94 ♀: ${ {L} }_{ {t} }=\text{30.018/(1+}{\text{e} }^{ {0.923-0.588}{t} }\text{)}$ ${ {W} }_{ {t} }\text{=}\text{87.621/(1+}{\text{e} }^{ {0.923-0.588}{t} }{\text{)} }^{\text{2.938} }$ 0.94 ♂: ${ {L} }_{ {t} }=\text{29.188/(1+}{\text{e} }^{ {1.045-0.677}{t} }\text{)}$ ${ {W} }_{ {t} }\text{=}\text{85.577/(1+}{\text{e} }^{ {1.045-0.677}{t} }{\text{)} }^{\text{2.995} }$ 0.94 表 6 三峡库区雌、雄性短颌鲚理论体长与实测体长
Table 6 Theoretical and measured body length of Coilia nasus in the Three Gorges Reservoir Region
年龄
Age雌性
Female雄性
Male理论体长 实测体长 样本数 理论体长 实测体长 样本数 Theoretical BL (cm) Measured BL (cm) Indivi-dual Theoretical BL (cm) Measured BL (cm) Indi-vidual 1 12.43 12.36 137 11.83 11.74 58 2 17.08 17.37 69 17.07 17.31 49 3 20.91 21.00 76 21.11 20.80 24 4 24.05 22.91 21 24.22 23.20 5 5 26.63 26.56 5 26.62 27.00 5 6 28.76 31.63 3 28.48 29.07 3 -
[1] 邱顺林, 陈大庆, 黄木桂, 等. 三峡工程截流前长江渔业资源状况初析 [J]. 淡水渔业, 1998, 28(2): 3-6. doi: 10.3969/j.issn.1000-6907.1998.02.001 Qiu S L, Chen D Q, Huang M G, et al. The fisheries resources condition of Yangtze River before the Three Gorges Project complete damming [J]. Freshwater Fisheries, 1998, 28(2): 3-6. doi: 10.3969/j.issn.1000-6907.1998.02.001
[2] Wu J G, Huang J H, Han X G, et al. The Three Gorges Dam: an ecological perspective [J]. Frontiers in Ecology and the Environment, 2004, 2(5): 241-248. doi: 10.1890/1540-9295(2004)002[0241:TTGDAE]2.0.CO;2
[3] Stone R. Three Gorges Dam: into the unknown [J]. Science, 2008, 321(5889): 628-632. doi: 10.1126/science.321.5889.628
[4] 邓飞. 打击三峡库区非法电鱼的现状及对策初探 [C]. 中国南方渔业学术论坛第二十六次水产学术交流大会论文集. 重庆. 2010: 400-402. Deng F. Preliminary Exploration of Current Situation and Countermeasures about Fight Against Illegal Electric Fish in the Three Gorges Reservoir [C]. Proceedings of the 26th Fisheries Academic Exchange Conference of the South China Fisheries Academic Forum. Chongqing, 2010: 400-402
[5] 巴家文, 陈大庆. 三峡库区的入侵鱼类及库区蓄水对外来鱼类入侵的影响初探 [J]. 湖泊科学, 2012, 24(2): 185-189. doi: 10.3969/j.issn.1003-5427.2012.02.003 Ba J W, Chen D Q. Invasive fishes in Three Gorges Reservoir area and preliminary study on effects of fish invasion owing to impoundment [J]. Journal of Lake Sciences, 2012, 24(2): 185-189. doi: 10.3969/j.issn.1003-5427.2012.02.003
[6] 吴强, 段辛斌, 徐树英, 等. 长江三峡库区蓄水后鱼类资源现状 [J]. 淡水渔业, 2007, 37(2): 70-75. doi: 10.3969/j.issn.1000-6907.2007.02.018 Wu Q, Duan X B, Xu S Y, et al. Studies on fishery resources in the Three Gorges Reservoir of the Yangtze River [J]. Freshwater Fisheries, 2007, 37(2): 70-75. doi: 10.3969/j.issn.1000-6907.2007.02.018
[7] 李振宇, 谢焱. 中国外来入侵种 [M]. 北京: 中国林业出版社, 2002: 5-27. Li Z Y, Xie Y. Invasive Alien Species in China [M]. Beijing: China Forestry Publishing House, 2002: 5-27.
[8] 张世义. 中国动物志硬骨鱼纲: 鲟形目 海鲢目 鲱形目 鼠目 [M]. 北京: 科学出版社, 2011: 155-156. Zhang S Y. Fauna Sinica Osteichthyes: Acipenseriformes; Elopiformes; Clupeiforme; Gonorhynchiformes [M]. Beijing: Science Press, 2001: 155-156.
[9] Kreyenberg W, Pappenheim P. Ein Beitrag zur Kenntnis der Fische der Jangtze und seiner Zuflisse [J]. Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin, 1908(4):95-109.
[10] 袁传宓, 秦安黔, 刘仁华, 等. 关于长江中下游及东南沿海各省的鲚属鱼类种下分类的讨论 [J]. 南京大学学报(自然科学版), 1980(3): 67-76. Yuan C M, Qing A Q, Liu R H, et al. On the classification of the anchovies, Coilia, from the lower yangtze river and the southeast coast of China [J]. Journal of Nanjing University (
Natural Sciences ) , 1980(3): 67-76. [11] 成庆泰, 郑葆珊. 中国鱼类系统检索(上册) [M]. 北京: 科学出版社, 1987: 61. Cheng Q T, Zheng B S. Systematic Synopsis of Chinese fishes (Vol. 1) [M]. Beijing: Science Press, 1987: 61.
[12] 中国水产科学研究院东海水产研究所, 上海市水产研究所. 上海鱼类志 [M]. 上海: 上海科学技术出版社, 1990: 114. Edited by East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Science and Shanghai Fisheries Research Institute. The Fishes of Shanghai Area [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1990: 114.
[13] 许志强, 葛家春, 黄成, 等. 基于颌骨长度和线粒体Cytb序列变异探讨短颌鲚的分类地位 [J]. 大连水产学院学报, 2009, 24(3): 242-246. Xu Z Q, Ge J C, Huang C, et al. Taxonomy of shortjaw tapertail anchovy Coilia brachygnathus by jaw length and mitochondrial Cytochrome b gene analysis [J]. Journal of Dalian Fisheries University, 2009, 24(3): 242-246.
[14] 周晓犊, 杨金权, 唐文乔, 等. 基于线粒体COⅠ基因DNA条形码的中国鲚属物种有效性分析 [J]. 动物分类学报, 2010, 35(4): 819-826. Zhou X D, Yang J Q, Tang W Q, et al. Species validities analyses of Chinese Coilia fishes based on mtDNA COI barcoding [J]. Acta Zootaxonomica Sinica, 2010, 35(4): 819-826.
[15] 唐文乔, 胡雪莲, 杨金权. 从线粒体控制区全序列变异看短颌鲚和湖鲚的物种有效性 [J]. 生物多样性, 2007, 15(3): 224-231. doi: 10.3321/j.issn:1005-0094.2007.03.002 Tang W Q, Hu X L, Yang J Q. Species validities of Coilia brachygnathus and C. nasus taihuensis based on sequence variations of complete mtDNA control region [J]. Biodiversity Science, 2007, 15(3): 224-231. doi: 10.3321/j.issn:1005-0094.2007.03.002
[16] 袁传宓, 秦安舲. 我国近海鲚鱼生态习性及其产量变动状况 [J]. 海洋科学, 1984(5): 35-37. Yuan C M, Qin A L. Ecological habits and distribution of Coilia along the Chinese coast and its changes of output [J]. Marine Sciences, 1984(5): 35-37.
[17] 湖北省水生生物研究所鱼类研究室编. 长江鱼类 [M]. 北京: 科学出版社, 1976: 21-30. Fish Research Laboratory of Institute of Hydrobiology. Hubei Province. Fish of Yangtze [M]. Beijing: Science Press, 1976: 21-30.
[18] Yang F, Tao Y, Duan B, et al. Complete mitochondrial genome of the Yangtze grenadier anchovy, Coilia brachygnathus (Clupeiformes: Engraulidae) from the upper Yangtze River [J]. Mitochondria DNA Part B, 2019, 4(1): 1140-1141. doi: 10.1080/23802359.2019.1591181
[19] 王旭歌, 何勇凤, 李昊成, 等. 长湖短颌鲚的年龄与生长特性 [J]. 淡水渔业, 2016, 46(3): 29-33. doi: 10.3969/j.issn.1000-6907.2016.03.005 Wang X G, He Y F, Li H C, et al. Study on the age and growth characteristics of Coilia brachygnathus in lake Changhu [J]. Freshwater Fisheries, 2016, 46(3): 29-33. doi: 10.3969/j.issn.1000-6907.2016.03.005
[20] 刘引兰, 吴志强, 胡茂林. 我国刀鲚研究进展 [J]. 水产科学, 2008, 27(4): 205-209. doi: 10.3969/j.issn.1003-1111.2008.04.012 Liu Y L, Wu Z Q, Hu M L. Advances on tapertail anchovy Coilia ectenes in China [J]. Fisheries Science, 2008, 27(4): 205-209. doi: 10.3969/j.issn.1003-1111.2008.04.012
[21] 罗红波. 长江天鹅洲故道短颌鲚年龄生长及性腺发育 [D]. 重庆: 西南大学, 2006, 13-14. Luo H B. Age, Growth and gonadal development of Coilia brachynathus in swan oxbow of the Yangtse River [D]. Chongqing: Southwest University, 2006, 13-14.sity, 2006, 13-14
[22] 谢从新. 鱼类学 [M]. 北京: 中国农业出版社, 2009: 297-308. Xie C X. Ichthyology [M]. Beijing: China Agriculture Press, 2009: 297-308.
[23] 詹秉义. 渔业资源评估 [M]. 北京: 中国农业出版社, 1995: 20-25, 42-43. Zhan B Y. Fish Stock Assessment [M]. Beijing: China Agriculture Press, 1995: 20-25, 42-43.
[24] 吴斌, 方春林, 傅培峰, 等. 鄱阳湖通江水道短颌鲚生长特性初探 [J]. 水生态学杂志, 2015, 36(3): 51-55. Wu B, Fang C L, Fu P F, et al. Growth characteristics of Coilia brachygnathus in the Poyang Lake-Yangtze River Waterway [J]. Journal of Hydroecology, 2015, 36(3): 51-55.
[25] 胡茂林, 吴志强, 刘引兰. 鄱阳湖湖口水域鲚鱼的物种属性及资源现状 [J]. 水产科技情报, 2011, 38(5): 223-226. doi: 10.3969/j.issn.1001-1994.2011.05.002 Hu M L, Wu Z Q, Liu Y L. Species characteristics and resource status of Coilia in junction of Poyang Lake [J]. Fisheries Science & Technology Information, 2011, 38(5): 223-226. doi: 10.3969/j.issn.1001-1994.2011.05.002
[26] 刘引兰. 鄱阳湖短颌鲚的鉴定及其生物学特性 [D]. 南昌: 南昌大学, 2008, 20-30. Liu Y L. Species identification and biological characteristics of Coilia brachynathus in the Poyang Lake [D]. Nanchang: Nanchang University, 2008, 20-30.
[27] Grossman G D, Dowd J F, Crawford M. Assemblage Stability in stream fishes: A review [J]. Environmental Management, 1990, 14(5): 661-671. doi: 10.1007/BF02394716
[28] Matthews W J. Patterns in Freshwater Fish Ecology [M]. New York: Chapman and Hall, 1998: 130-146.
[29] 严云志, 占姚军, 储玲, 等. 溪流大小及其空间位置对鱼类群落结构的影响 [J]. 水生生物学报, 2010, 34(5): 1022-1030. Yan Y Z, Zhan Y J, Chu L, et al. Effects of stream size and spatial position on stream-dwelling fish assemblages [J]. Acta Hydrobiologica Sinica, 2010, 34(5): 1022-1030.
[30] 黄亮. 水工程建设对长江流域鱼类生物多样性的影响及其对策 [J]. 湖泊科学, 2006, 18(5): 553-556. doi: 10.3321/j.issn:1003-5427.2006.05.020 Huang L. Impacts of hydraulic works on fish biodiversity in the Yangtze River Valley and counter-measures [J]. Jornal of Lake Sciences, 2006, 18(5): 553-556. doi: 10.3321/j.issn:1003-5427.2006.05.020
[31] 杨志, 陶江平, 唐会元, 等. 三峡水库运行后库区鱼类资源变化及保护研究 [J]. 人民长江, 2012, 43(10): 62-67. doi: 10.3969/j.issn.1001-4179.2012.10.017 Yang Z, Tao J P, Tang H Y, et al. Research on fish resources variation and protection in reservoir area of TGP after its operation [J]. Yangtze River, 2012, 43(10): 62-67. doi: 10.3969/j.issn.1001-4179.2012.10.017
[32] 杨浩, 曾波, 孙晓燕, 等. 蓄水对三峡库区重庆段长江干流浮游植物群落结构的影响 [J]. 水生生物学报, 2012, 36(4): 715-723. Yang H, Zeng B, Sun X Y, et al. Effect of impoundment on community structure of the phytoplankton in the main stream of the Three Gorges Reservoir of Chongqing [J]. Acta Hydrobiologica Sinica, 2012, 36(4): 715-723.
[33] 武正军, 李义明. 生境破碎化对动物种群存活的影响 [J]. 生态学报, 2003, 23(11): 2424-2435. doi: 10.3321/j.issn:1000-0933.2003.11.027 Wu Z J, Li Y M. Effects of habitat fragmentation on survival of animal populations [J]. Acta Ecologica Sinica, 2003, 23(11): 2424-2435. doi: 10.3321/j.issn:1000-0933.2003.11.027
[34] 俞文灏, 吴保锋, 刘勇波. 生境破碎化对动植物遗传多样性的影响研究进展 [J]. 应用与环境生物学报, 2019, 25(3): 743-749. Yu W H, Wu B F, Liu Y B. Effects of habitat fragmentation on genetic diversity of plants and animals [J]. Chinese Journal of Applied & Environmental Biology, 2019, 25(3): 743-749.
[35] 刘馨, 郝玉江, 刘增力, 等. 长江江豚自然保护区建设管理存在的问题及调整建议 [J]. 水生生物学报, 2020, 44(6): 1360-1368. doi: 10.7541/2020.156 Liu X, Hao Y J, Liu Z L, et al. Predicaments and adjustment suggestions for construction and management of Yangtze Finless Porpoise Nature Reserves [J]. Acta Hydrobiologica Sinica, 2020, 44(6): 1360-1368. doi: 10.7541/2020.156
[36] 刘飞, 林鹏程, 黎明政, 等. 长江流域鱼类资源现状与保护对策 [J]. 水生生物学报, 2019, 43(S1): 144-156. doi: 10.7541/2019.177 Liu F, Lin P C, Li M Z, et al. Situations and conservation strategies of fish resources in the Yangtze River Basin [J]. Acta Hydrobiologica Sinica, 2019, 43(S1): 144-156. doi: 10.7541/2019.177
[37] 陈新军, 刘必林, 颜云榕, 等. 渔业资源生物学 [M]. 北京: 科学出版社, 2017: 16-18, 110, 150. Chen X J, Liu B L, Yan Y R, et al. Fishery Resources Biology [M]. Beijing: Science Press, 2017: 16-18, 110, 150.
[38] Ricker W E. Computation and interpretation of biological statistics of fish populations [J]. Bulletin of the Fisheries Research Board of Canada, 1975(191): 382-385.
[39] 段中华, 孙建贻. 瓦氏黄颡鱼年龄与生长的研究 [J]. 水生生物学报, 1999, 23(6): 617-623. Duan Z H, Sun J Y. Studies on the age and growth of Pelteobagrus vachelli (Richardson) [J]. Acta Hydrobiologica Sinica, 1999, 23(6): 617-623.
[40] 刘雄军, 吴小平, 欧阳珊. 不同水域刀鲚的若干生物生态学特性比较研究 [J]. 生命科学研究, 2016, 20(2): 135-139. Liu X J, Wu X P, Ou Yang S. A Comparative study of some biological and ecological characteristics of Coilia nasus in different geographical populations [J]. Life Science Research, 2016, 20(2): 135-139.
[41] 贾海燕, 朱惇, 卢路. 鄱阳湖健康综合评价研究 [J]. 三峡生态环境检测, 2018, 3(3): 74-81. Jia H Y, Zhu D, Lu L. A Comprehensive health evaluation of Poyang Lake [J]. Ecology and Environmental Monitoring of Three Gorges, 2018, 3(3): 74-81.
[42] 陈明华, 刘恋, 葛刚. 鄱阳湖现有水环境监测点时空分布特征分析 [J]. 水文, 2019, 39(4): 29-33. doi: 10.3969/j.issn.1000-0852.2019.04.006 Chen M H, Liu L, Ge G. Analysis of temporal-spatial distribution characteristics of water quality monitoring stations in Poyang Lake [J]. Journal of China Hydrology, 2019, 39(4): 29-33. doi: 10.3969/j.issn.1000-0852.2019.04.006
[43] Branstetter S. Age and growth estimates for Blacktip, Carcharhinus limbatus, and spinner, C. brevipinna, sharks, form the Northwestern Gulf of Mexico [J]. Copeia, 1987(4): 964-974.
[44] 殷名称. 鱼类生态学 [M]. 北京: 中国农业出版社, 1995: 29-33, 61, 122. Yin M C. Fishery Ecology [M]. Beijing: China Agriculture Press, 1995: 29-33, 61, 122.
[45] Alonzo S H, Mangel M. The effects of size-selective fisheries on the stock dynamics of and sperm limitation in sex-changing fish [J]. Fishery Bulletin, 2004, 102(1): 1-13.
[46] Smith G H, Murie D J, Parkyn D C. Effects of sex-specific fishing mortality on sex ratio and population dynamics of gulf of Mexico greater amberjack [J]. Fisheries Research, 2018(208): 219-228.
[47] 杨帆. 短颌鲚、太湖新银鱼三峡库区与洞庭湖群体间遗传多样性比较 [D]. 重庆: 西南大学, 2019: 29-35. Yang F. Genetic diversity comparison of Coilia brachygnathus and Neosalanx taihuensis between populations in the Three Gorges Reservoir and Dongting Lake [D]. Chongqing: Southwest University, 2019: 29-35.
[48] Liu C, Comte L, Xian W, et al. Current and projected future risks of freshwater fish invasions in China [J]. Ecography, 2019, 42(12): 2074-2083. doi: 10.1111/ecog.04665
[49] 徐钢春, 顾若波, 刘洪波, 等. 长江短颌鲚耳石Sr/Ca值变化特征及其江海洄游履历 [J]. 水产学报, 2014, 38(7): 939-945. Xu G C, Gu R B, Liu H B, et al. Fluctuation of Sr/Ca in otoliths of Coilia nasus in the Yangtze Rive and the validation for the anadromous migratory history [J]. Journal of Fisheries of China, 2014, 38(7): 939-945.
[50] 陈婷婷, 姜涛, 李孟孟, 等. 长江南京江段长颌鲚生境履历的反演 [J]. 水产学报, 2016, 40(6): 882-892. Chen T T, Jiang T, Li M M, et al. Inversion of habitat history for the long-jaw ecotype Coilia nasus collected from Nanjing section of the Yangtze River [J]. Journal of Fisheries of China, 2016, 40(6): 882-892.
[51] Li X P, Liu X, Kraus F, et al. Risk of biological invasions is concentrated in biodiversity hotspots [J]. Frontiers in Ecology and the Environment, 2016, 14(8): 411-417. doi: 10.1002/fee.1321