VARIOUS PHOTOPERIODS ON GROWTH, ENERGY BUDGETS AND GENE EXPRESSION OF CIRCADIAN CLOCK IN KOI CARP (CYPRINUS CARPIO)
-
摘要: 研究不同光照周期(长光照18L﹕6D、短光照8L﹕16D、连续光照24L﹕0D、连续黑暗0L﹕24D和对照组12L﹕12D)条件对锦鲤(Cyprinus carpio)生长、能量收支及生物钟基因相对表达量的影响, 实验周期为90d。结果表明, 在整个试验周期, 各光周期处理组成活率无显著变化(P>0.05), 24L组和18L﹕6D组饲料系数显著低于12L﹕12D组、8L﹕16D组和24D组(P<0.05)。终末体重、特定生长率在实验前30d内受光照影响不大(P>0.05), 而实验30d后出现显著变化, 延长光周期尤其是连续光照会显著增加终末体重和特定生长率(P<0.05); 对比连续黑暗0L﹕24D组, 其他光周期处理组锦鲤摄食能分配在代谢和生长的比例显著增加(P<0.05); 4个生物钟相关Clock、Per2、Cry1和Bmal1基因相对表达水平无明显规律。综上所述, 延长光照时间, 尤其是连续光照有利于锦鲤幼鱼的生长和发育。Abstract: This study explored the effects of different photoperiods (long light 18L﹕6D, short light 8L﹕16D, continuous light 24L﹕0D, continuous darkness 0L﹕24D and control group 12L﹕12D) for 90 days on the growth, energy budget and relative expression of circadian clock genes on the juvenile koi (Cyprinus carpio). The results showed that the survival rate of each group had no significant change (P>0.05), and the feed coefficient of 24 L group and 18L﹕6D group was significantly lower than that of 12L﹕12D group, 8L﹕16D group and 24D group (P<0.05). The terminal body weight, feed coefficient and specific growth rate were not affected by light for the first 30 days of the experiment (P>0.05), but significantly changed for the last 30 days of the period. Prolonging light cycle, especially continuous light, significantly increased the terminal body weight and specific growth rate (P<0.05), while the feed coefficient decreased significantly (P<0.05). Compared with the continuous light and dark 240L﹕024D group, the ratio of koi fish feeding energy distribution in metabolism and growth increased significantly in other photoperiod treatment groups (P<0.05). The relative expression levels of Clock, Per2, Cry1 and Bmal1 biological clocks genes have no obvious chaenge. These findings indicate that prolonged illumination time, especially continuous illumination, is beneficial to the growth and development of juvenile fish in koi fish, combined with the experimental results of growth performance, energy budget and biological clock gene expression level under different photoperiods, while prolonged illumination or continuous illumination is beneficial to the growth and development of juvenile fish of koi.
-
Keywords:
- Photoperiod /
- Energy distribution /
- Day-night rhythm /
- Cyprinus carpio
-
-
图 1 不同光照条件下锦鲤增重率的线性回归分析
A-E分别表示不同光照处理条件15d、30d、45d、60d、75d和90d增重率; 所有数据用(χ ±SD, n=30)表示
Figure 1. Linear regressive analysis of koi carp body weight increase rate in different light conditions
A-E represent the weight increase rate in differerent light conditions of 15d, 30d, 45d, 60d, 75d and 90d, respectively. Data are presented as means±SD, n=30
图 2 不同光照条件对锦鲤生物钟基因相对表达量的影响
A—D分别表示不同光照处理条件下Clock、Per2、Cry1和Bmal1基因表达量变化; 图中标有不同字母表示同一基因在不同光处理条件下相对表达量差异显著(P<0.05); 所有数据用(χ±SD, n=10)表示
Figure 2. Effects of different light conditions on the relative expression of four biological clock genes in koi carp
A—D represent the gene expression changes of Clock, Per2, Cry1 and Bmal1 under different light treatment conditions, respectively. Different letters indicate the relative expression of the same gene is significantly different under different light treatment conditions (P<0.05). Data are presented as means±SD, n=10
表 1 本实验所用引物信息
Table 1 Primers used in the study
引物名称
Premer name序列
Sequence (5′—3′)产物长度Length of product
sequence (bp)β-actin-F CTCTATTGTTGTCTATCCT 217 β-actin-R TCTTTCCCACGAAGCCTTA Clock-F ATCACCACCTAGGGCCAATA 315 Clock-R CTACGCCGGTTCTCCTTTCT Cry1-F GTAGTTCCTGCTATATGGCCT 281 Cry1-R TACATGCTGCGATTTGTTTTGG Bmal1-F GTAGACCGGGCGACAGAAG 215 Bmal1-R CTGAACCAGATGAAACGACTC Per2-F ATGATCCCGAAACGAGCC 241 Per2-R CAGTTGCCTTCGATTTTGTGA 表 2 不同光照条件下锦鲤的体重、特定生长率、成活率和饲料系数
Table 2 Body weight, specific growth rate, feed conversion ratio and survival rate of koi carp in different light conditions
时间
Time (d)光周期L﹕D
Different light conditions初始体重
Initial body weight (g)终末体重
Terminal body weight (g)特定生长率SGR
Specific growth rate (%/d)饲料系数FCR
Feed conversion ratio成活率SR
Survival rate (%)15 24:0 127.52±5.62 164.47±8.04 1.70±0.05 2.13±0.15b 98.66±3.76 18:6 126.28±5.11 163.13±7.95 1.71±0.06 2.24±0.12b 100.00±0.00 12:12 127.32±5.34 163.04±7.91 1.65±0.05 2.44±0.18a 99.33±3.52 8:16 125.23±5.13 161.29±8.06 1.69±0.05 2.46±0.18a 100.00±0.00 0:24 125.39±4.69 161.11±8.11 1.67±0.06 2.43±0.17a 98.00±2.1.9 30 24:0 125.38±4.91 208.23±11.63 1.69±0.05 2.02±0.11c 100.00±0.00 18:6 125.3±5.13 206.87±11.74 1.67±0.06 2.11±0.09c 99.33±4.07 12:12 124.89±5.14 205.66±12.16 1.66±0.05 2.45±0.15b 100.00±0.00 8:16 127.32±5.34 208.92±11.64 1.65±0.04 2.54±0.16a 99.33±2.94 0:24 127.29±4.98 207.09±12.09 1.62±0.04 2.51±0.16a 99.32±3.12 45 24:0 126.38±5.36 280.19±13.16a 1.71±0.07a 2.01±0.12d 100.00±0.00 18:6 127.93±5.63 272.22±13.47a 1.74±0.07a 2.09±0.10d 99.32±4.32 12:12 127.87±5.09 273.28±13.21a 1.69±0.06a 2.34±0.17c 99.32±3.78 8:16 125.08±5.54 241.97±10.52b 1.47±0.05b 2.52±0.21b 99.32±3.40 0:24 124.62±5.61 237.08±10.37b 1.43±0.05b 3.15±0.36a 100.00±0.00 60 24:0 128.93±4.68 361.81±18.91a 1.72±0.05a 2.03±0.09c 100.00±0.00 18:6 126.83±4.87 353.33±19.13a 1.71±0.07a 2.00±0.10c 100.00±0.00 12:12 125.91±5.13 348.55±16.41b 1.70±0.08a 2.73±0.12b 100.00±0.00 8:16 126.73±5.46 312.19±15.88c 1.50±0.04b 2.68±0.14b 100.00±0.00 0:24 125.02±5.15 307.07±16.02c 1.50±0.05b 3.42±0.22a 100.00±0.00 75 24:0 127.78±5.32 458.22±21.34a 1.70±0.05a 2.01±0.12c 100.00±0.00 18:6 128.17±5.26 447.19±22.16a 1.67±0.06a 2.08±0.10c 99.32±3.21 12:12 128.38±5.19 438.24±20.38b 1.64±0.03a 2.89±0.16b 99.32±2.93 8:16 126.17±5.37 378.11±19.13c 1.46±0.05b 2.95±0.18b 98.65±3.95 0:24 125.09±5.51 368.87±19.34c 1.44±0.02b 3.28±0.23a 97.95±3.84 90 24:0 128.93±4.91 587.98±25.46a 1.69±0.06a 2.19±0.12d 100.00±0.00 18:6 127.88±4.96 573.12±25.69a 1.67±0.06a 2.21±0.13d 100.00±0.00 12:12 128.93±5.40 554.65±21.18b 1.62±0.05a 2.99±0.18c 100.00±0.00 8:16 128.02±5.11 483.33±21.47c 1.48±0.07b 3.02±0.32b 100.00±0.00 0:24 126.94±5.31 429.61±19.64c 1.35±0.05c 3.36±0.35a 100.00±0.00 注: 表中标有不同字母表示同一时间段不同光处理条件间差异显著(P<0.05); 所有数据用(χ±SD, n=30)表示; 下同Note: Different letters on top of the column denote significant differences between treatments at given time points (P<0.05). Data are presented as means±SD, n=30. The same applies below 表 3 不同光照条件下锦鲤的能量总收支
Table 3 Total energy budget of koi under different light conditions (%)
L﹕D C P/C R/C F/C U/C 24﹕0 100 31.16±4.01a 56.46±4.63a 4.11±0.83b 8.27±0.74b 18﹕6 100 30.81±3.64a 55.12±4.78a 5.68±0.81b 8.39±0.93b 12﹕12 100 31.45±3.58a 54.27±4.32a 5.47±0.75b 8.81±0.82b 8﹕16 100 29.73±3.87a 55.45±5.11a 5.83±0.76b 8.99±0.94b 0﹕24 100 24.27±3.67b 46.27±4.79b 10.44±1.21a 19.02±0.67a 注: C. 摄食能; P/C. 总生长能/摄食能; R/C. 代谢能/摄食能; F/C. 粪便能/摄食能; U/C. 排泄能/摄食能Note: C. Feeding energy; P/C. Total growth energy/Feeding energy; R/C. Metabolic energy/Feeding energy; F/C. Fecal energy/Feeding energy; U/C. Excretory energy/Feeding energy -
[1] Matthew K L, Vahid Z, Ian A E. Growth and survival of winter flounder (Pseudopleuronectes americanus) larvae reared on different photoperiod regimes from hatch to metamorphosis [J]. Aquaculture Research, 2020, 51(6): 2314-2321. doi: 10.1111/are.14575
[2] Edurne B, Patricia R, Aurelio O, et al. The effects of light, darkness and intermittent feeding on the growth and survival of reared Atlantic bonito and Atlantic bluefin tuna larvae [J]. Aquaculture, 2017(479): 233-239.
[3] Kim B H, Hur S P, Hur S W, et al. Relevance of light spectra to growth of the rearing tiger puffer Takifugu rubripes [J]. Development & Reproduction, 2016, 20(1): 23-29.
[4] Helvik J V, Walther B T. Photo-regulation of the hatching process of halibut (Hippoglossus hippoglossus) eggs [J]. Journal of Experimental Zoology, 1992, 263(2): 204-209. doi: 10.1002/jez.1402630210
[5] Huber M, Bengtson D A. Effects of photoperiod and temperature on the regulation of the onset of maturation in the estuarine fish Menidia beryllina (Cope) (Atherinidae) [J]. Journal of Experimental Marine Biology & Ecology, 1999, 240(2): 285-302.
[6] 魏平平, 李鑫, 刘鹰, 等. 光周期对红鳍东方鲀脑组织中GH和SS基因表达水平和昼夜表达模式的影响 [J]. 大连海洋大学学报, 2020, 35(1): 108-113. Wei P P, Li X, Liu Y, et al. Effects of photoperiod on expression level and daily expression pattern of GH and SS genes in brain of tiger puffer Takifugu rubripes [J]. Journal of Dalian Ocean University, 2020, 35(1): 108-113.
[7] 刘春晓, 吕为群, 杨志刚, 等. TGF-β/Smad信号通路响应光周期变化参与调控斑马鱼卵巢发育 [J]. 南方水产科学, 2019, 15(3): 68-75. doi: 10.12131/20180286 Liu C X, Lu W Q, Yang Z G, et al. TGF-β/Smad signaling pathway responding to photoperiod for participation in regulation of zebrafish ovarian development [J]. South China Fisheries Science, 2019, 15(3): 68-75. doi: 10.12131/20180286
[8] 袁满, 王鹏飞, 闫路路, 等. 花鲈垂体和下丘脑中生物钟基因在3种光周期下的表达节律分析 [J]. 南方水产科学, 2020, 16(6): 39-46. Yuan M, Wang P F, Yan L L, et al. Circadian rhythmicity of clock genes in pituitary and hypothalamus of spotted sea perch (Lateolabrax maculates) under three photoperiod conditions [J]. South China Fisheries Science, 2020, 16(6): 39-46.
[9] Brown E E, Baumann H, Conover D O. Temperature and photoperiod effects on sex determination in a fish [J]. Journal of Experimental Marine Biology & Ecology, 2014, 461: 39-43.
[10] Shin H S, Song J A, Choi J Y, et al. Effects of various photoperiods on Kisspeptin and reproductive hormones in the goldfish [J]. Animal Cells & Systems, 2014, 18(2): 109-118.
[11] 陈孝红, 仇雪梅, 郝薇薇, 等. 斑马鱼CYP11a1基因在不同性腺发育时期的表达 [J]. 大连海洋大学学报, 2015, 30(1): 13-17. doi: 10.3969/J.ISSN.2095-1388.2015.01.003 Chen X H, Qiu X M, Hao W W, et al. Expression of CYP11a1 in different developmental phases of gonad in zebrafish Danio rerio [J]. Journal of Dalian Ocean University, 2015, 30(1): 13-17. doi: 10.3969/J.ISSN.2095-1388.2015.01.003
[12] Teng X L, Zhang Z, He G L, et al. Validation of reference genes for quantitative expression analysis by real-time RT - PCR in four lepidopteran insects [J]. Journal of Insect Science, 2012, 12(60): 1-17. doi: 10.1673/031.012.6001
[13] 张俊功, 戴习林, 丁福江. 水温和雌雄配比对罗氏沼虾能量代谢的影响 [J]. 南方农业学报, 2020, 51(7): 1721-1728. doi: 10.3969/j.issn.2095-1191.2020.07.027 Zhang J G, Dai X L, Ding F J. Effects of temperature and female-male mating ratios on energy metabolism of Macrobrachium rosenbergii [J]. Journal of Southern Agriculture, 2020, 51(7): 1721-1728. doi: 10.3969/j.issn.2095-1191.2020.07.027
[14] 刘晓娟, 郭勋, 王春芳, 等. 基于生物能量学原理构建异育银鲫生长、饲料需求和污染排放模型 [J]. 水生生物学报, 2018, 42(2): 221-231. doi: 10.7541/2018.028 Liu X J, Guo X, Wang C F, et al. Bioenergetics-based model to determine growth, feed requirement and waste output of gibel carp (Carassius auratus gibelio) [J]. Acta Hydrobiologica Sinica, 2018, 42(2): 221-231. doi: 10.7541/2018.028
[15] Abdollahpour H, Falahatkar B, Lawrence C. The effect of photoperiod on growth and spawning performance of zebrafish, Danio rerio [J]. Aquaculture Reports, 2020, 17: 100295. doi: 10.1016/j.aqrep.2020.100295
[16] Wei H, Cai W J, Liu H K, et al. Effects of photoperiod on growth, lipid metabolism and oxidative stress of juvenile gibel carp (Carassius auratus) [J]. Journal of Photochemistry & Photobiology B: Biology, 2019, 198: 111552.
[17] Striberny A, Lauritzen D E, Fuentes J, et al. More than one way to smoltify a salmon? Effects of dietary and light treatment on smolt development and seawater growth performance in Atlantic salmon [J]. Aquaculture, 2021, 532(15): 736044.
[18] Lundova K, Matousek J, Stejskal V. The effect of non-circadian photoperiod on growth and puberty onset of brook trout Salvelinus fontinalis mitchill [J]. Animals, 2021, 11(3): 692. doi: 10.3390/ani11030692
[19] Wilkinson R J, Longland R, Woolcott H, et al. Effect of elevated winter-spring water temperature on sexual maturation in photoperiod manipulated stocks of rainbow trout (Oncorhynchus mykiss) [J]. Aquaculture, 2010, 309(1-4): 236-244. doi: 10.1016/j.aquaculture.2010.08.023
[20] Falahatkar B, Poursaeid S, Efatpanah I, et al. Growth, development and behaviour of Persian sturgeon Acipenser persicus larvae in different light regimes [J]. Aquaculture Research, 2017, 48(12): 5812-5820. doi: 10.1111/are.13404
[21] Edgar A. Aragón F, Leonardo M C, Crisantema H G, et al. Effect of light intensity and photoperiod on growth and survival of the Mexican cichlid, Cichlasoma beani in culture conditions [J]. Latin American Journal of Aquatic Research, 2017, 45(2): 293-301. doi: 10.3856/vol45-issue2-fulltext-5
[22] Windarti W, Amin B, Simarmata A H. Growth and health status of Pangasionodon hypophthalmus reared under manipulated photoperiod conditions [J]. F1000 Research, 2021, 26(10): 154.
[23] Vondracek B, Wurtsbaugh W A, Cech J J. Growth and reproduction of the mosquitofish Gambusia affinis, in relation to temperature and ration level: consequences for life history [J]. Environmental Biology of Fishes, 1988(21): 45-57. doi: 10.1007/BF02984442
[24] 黄建盛, 王安利, 陈刚, 等. 低盐水体下摄食水平对斜带石斑鱼幼鱼生长及能量收支的影响 [J]. 海洋科学, 2016, 40(11): 113-120. Huang J S, Wang A L, Chen G, et al. Effect of feeding level on the growth and energy budgets of Epinephelus coioides juveniles cultured in low-salt water [J]. Marine Sciences, 2016, 40(11): 113-120.
[25] 林小涛, 杞桑, 曹双俊, 等. 光周期对罗氏沼虾幼体生长及能量收支的影响 [J]. 海洋与湖沼, 1998, 29(2): 119-127. doi: 10.3321/j.issn:0029-814X.1998.02.003 Lin X T, Qi S, Cao S J, et al. Influence of photoperiods on growth and energy budget of Macrobrachium rosenbergii larvae [J]. Oceanologia et Limnologia Sinica, 1998, 29(2): 119-127. doi: 10.3321/j.issn:0029-814X.1998.02.003
[26] Choi J Y, Choi Y U, Kho J, et al. Effects of various photoperiods and specific wavelengths on circadian rhythm in ornamental cleaner shrimp Lysmata amboinensis [J]. Biological Rhythm Research, 2019, 50(6): 897-907. doi: 10.1080/09291016.2018.1502237
[27] Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks [J]. Neuron, 2012, 74(2): 246-260. doi: 10.1016/j.neuron.2012.04.006
[28] Tamai T K, Young L C, Whitmore D. Light signaling to the zebrafish circadian clock by Cryptochrome 1a [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(37): 14712-14717. doi: 10.1073/pnas.0704588104
[29] Gavriouchkina D, Fischer S, Ivacevic T, et al. Thyrotroph embryonic factor regulates light-induced transcription of repair genes in zebrafish embryonic cells [J]. PLoS One, 2010, 5(9): e12542. doi: 10.1371/journal.pone.0012542