江湖阻隔对长江中下游湖泊鱼类群落分类多样性的影响

尚坤钰, 姜明, 林鹏程, 刘焕章

尚坤钰, 姜明, 林鹏程, 刘焕章. 江湖阻隔对长江中下游湖泊鱼类群落分类多样性的影响[J]. 水生生物学报, 2023, 47(1): 133-146. DOI: 10.7541/2022.2021.0300
引用本文: 尚坤钰, 姜明, 林鹏程, 刘焕章. 江湖阻隔对长江中下游湖泊鱼类群落分类多样性的影响[J]. 水生生物学报, 2023, 47(1): 133-146. DOI: 10.7541/2022.2021.0300
SHANG Kun-Yu, JIANG Ming, LIN Peng-Cheng, LIU Huan-Zhang. RIVER-LAKE DISCONNECTION ON FISH TAXONOMIC DISTINCTNESS IN LAKES FROM MIDDLE AND LOWER REACHES OF THE YANGTZE RIVER[J]. ACTA HYDROBIOLOGICA SINICA, 2023, 47(1): 133-146. DOI: 10.7541/2022.2021.0300
Citation: SHANG Kun-Yu, JIANG Ming, LIN Peng-Cheng, LIU Huan-Zhang. RIVER-LAKE DISCONNECTION ON FISH TAXONOMIC DISTINCTNESS IN LAKES FROM MIDDLE AND LOWER REACHES OF THE YANGTZE RIVER[J]. ACTA HYDROBIOLOGICA SINICA, 2023, 47(1): 133-146. DOI: 10.7541/2022.2021.0300

江湖阻隔对长江中下游湖泊鱼类群落分类多样性的影响

基金项目: 国家重点研发计划项目(2018YFD0900806); 中国科学院特色研究所项目(Y85Z051); 中国长江三峡集团公司项目(201903144); 国家自然科学基金青年基金(31801982); 中国生物多样性监测与研究网络内陆水体鱼类多样性监测专项网资助
详细信息
    作者简介:

    尚坤钰(1996—), 男, 硕士研究生; 主要从事鱼类生态学研究。E-mail: 15127315124@163.com

    通信作者:

    刘焕章(1966—), 男, 博士, 研究员; 主要从事进化生物学和保护生物学研究。E-mail: hzliu@ihb.ac.cn

  • 中图分类号: S932.4

RIVER-LAKE DISCONNECTION ON FISH TAXONOMIC DISTINCTNESS IN LAKES FROM MIDDLE AND LOWER REACHES OF THE YANGTZE RIVER

Funds: Supported by the National Key R & D Program of China(2018YFD0900806); The Programme for Feature Institute of Chinese Academy of Sciences(Y85Z051); The research program of China Three Gorges Corporation(201903144); National Natural Science Foundation of China (31801982); SINO BON-Inland Water Fish Diversity Observation Network
    Corresponding author:
  • 摘要: 基于1950s以来的长江中下游湖泊鱼类调查数据, 分析通江湖泊与阻隔湖泊的鱼类分类多样性差异, 以及通江和阻隔湖泊鱼类分类多样性的时间序列变化, 探讨江湖阻隔对鱼类多样性的影响。结果显示, 阻隔湖泊鱼类物种数、平均分类差异指数(Δ+)和分类差异变异指数(Λ+)平均值分别为48.47±14.64、74.02±3.09和736.89±33.80; 通江湖泊为76.22±14.40、78.31±0.98和697.31±25.53。阻隔湖泊物种数和Δ+值显著低于通江湖泊(P<0.001), 而阻隔湖泊Λ+值显著高于通江湖泊(P=0.002), 表明阻隔湖泊物种间亲缘关系更近, 均匀度下降, 即物种分类单元减少, 且集中分布于某几个分类阶元, 稳定性变差。典型通江与阻隔湖泊鱼类群落分类多样性的时间变化分析发现, 两种类型湖泊的鱼类物种数和Δ+值均随时间推移整体呈现下降趋势, Λ+值整体呈现升高趋势; 并且阻隔湖泊的Λ+值随阻隔时间增加而大幅上升, Δ+和Λ+值随时间变化多在95%置信区间之外。这表明通江湖泊也受到各种扰动影响, 导致鱼类资源整体衰退, 分类多样性下降; 但阻隔湖泊影响更显著, 稳定性更差。基于上述结果, 建议恢复阻隔湖泊与长江的连通性; 通过水环境治理改善鱼类栖息地质量; 科学调整阻隔湖泊鱼类群落结构, 放流江湖洄游型鱼类, 增加物种多样性。
    Abstract: In the middle-lower reach of the Yangtze River, there are many lakes with intensive fish biodiversity, which are connected with the Yangtze mainstream historically. Since the 1950s, most of these lakes have experienced river-lake disconnection by anthropogenic impacts, leading to remarkable biodiversity decline of fish in these lakes. Based on the published literatures about fish assemblages in lakes, the taxonomic distinctness and temporal changes of fish communities in the connected lakes and disconnected lakes were examined by using two taxonomic diversity indices (average taxonomic distinctness, Δ+ and variation in taxonomic distinctness, Λ+), to assess the impact of river-lake disconnection. The results indicated that disconnected lakes showed significantly lower species richness and Δ+ values (average values of 48.47±14.64 and 74.02±3.093, respectively) than connected lakes (average values of 76.22±14.40 and 78.31±0.98, respectively; P<0.001), indicating the loss of fish diversity. On the contrary, the disconnected lakes showed significantly higher Λ+ values (average values 736.89±33.80) than connected lakes (average values of 697.31±25.53; P=0.002), indicating the increasing unevenness of taxonomic distinctness. Our analysis of temporal changes showed that species richness and Δ+ generally declined, and Λ+ generally increased through time within representative connected and disconnected lakes. However, the species richness, Δ+ and Λ+ values of the connected lake fluctuated over time, and the Λ+ increased significantly over time. These mean that connected lakes were also affected by various disturbances, which led to the decline of taxonomic diversity and the distribution of fish in disconnected lakes was more concentrated in some taxa resulting high unevenness and low stability in the community. Based on our results, we suggested to restore the fish diversity in the middle and lower reaches of the Yangtze River by recovering the connection between the lakes and the Yangtze mainstream, improving the quality of fish habitat through water environment management, and scientifically adjusting the fish community structure.
  • 动物肠道内生活着大量的微生物, 包括真核微生物、细菌、古菌和病毒等[1]。在肠道微生态系统中, 各种微生物与宿主经过长期的协同进化, 在调节宿主生理生化反应、促进消化吸收、介导宿主免疫应答和抵制宿主疾病发生等方面发挥着重要的作用, 以至于被认为是动物额外的器官[25]。这些与肠道联系紧密的共生菌群, 与宿主相互作用, 共同维系整个肠道生态系统平衡与稳定。然而, 肠道正常菌群不是一成不变的, 可因环境、饵料、宿主行为和基因型等的不同有所差异, 但总体上处于相对稳定状态[69]

    有研究表明, 有些肠道微生物只是随机进入肠道或暂时生活于此, 而某些病原微生物入侵肠道微环境, 可直接或间接影响肠道正常菌群的平衡与稳定[10]。Li等[11]研究发现, 患有疖病的圆口铜鱼肠道菌群多样性显著低于健康圆口铜鱼, 且肠道菌群在患病个体间的差异也远大于健康个体间差异。对患有“红鳃病”的鲫与健康鲫肠道菌群进行对比分析, 也得出相似的结论[12], 这表明病原入侵会导致肠道菌群发生紊乱。

    草鱼(Ctenopharyngodon idellus)是我国最为重要的淡水养殖鱼类, 在长江、珠江流域养殖量极大[13]。草鱼幼苗容易感染病原发病, 其中威胁最大的是草鱼出血病(Grass carp hemorrhage)。草鱼呼肠孤病毒(Grass carp reovirus, GCRV)是草鱼出血病的主要病原, 其致病类型主要有3种: “红肌肉型”、“红鳍红鳃盖型”、“肠炎型”[14]。其中, 患肠炎型(由GCRV感染草鱼引起的肠道炎症)出血病会导致草鱼肠道微生态环境发生剧烈变化[15]。目前有关草鱼肠道菌群的研究多局限于从成年草鱼消化道内分离培养与纤维素水解相关的微生物, 研究不同饵料饲喂下草鱼消化道微生物的群落结构, 以及影响草鱼消化道微生物群落结构的因素等[9, 1618], 关于GCRV感染对草鱼肠道菌群的影响研究还鲜见报道。对此, 本研究运用高通量测序技术, 对健康草鱼和人工感染GCRV草鱼肠道菌群进行了比较研究, 以期为该病的防治提供肠道微生物方面的依据和参考。

    实验草鱼(体重20—30 g/尾)来自于中国科学院水生生物研究所官桥养殖基地, 采样前1周转移至中国科学院水生生物研究所室内养殖系统, 水温控制在24—28℃, 期间投喂人工配合饲料。室内驯化1周后选规格相同的草鱼随机分成病毒感染组和对照组。病毒感染组草鱼通过浸泡在GCRV水溶液中10min, 对照组草鱼则浸泡在不含GCRV的水溶液中10min作对照处理。分别于感染GCRV后第2、第4、第6天(从处理组开始有草鱼表现出不适到因感染病毒导致死亡过程)分别随机各取3尾感染组和对照组草鱼进行后续分析。在第6天实验组增加3尾死亡草鱼样品的分析(因此对照组共9尾, 感染病毒处理组12尾)。由于草鱼个体较小, 肠道样品取整个肠道用来提取菌群DNA, 样品的具体采集和处理方法参照文献[19]进行。

    草鱼肠道菌群DNA采用MoBio PowerFecal试剂盒参照说明书提取, 基因组DNA保存在–20℃; 首先, 用NanoDrop检测DNA样品的浓度, 将所有DNA样品浓度稀释到2 ng/μL用于PCR扩增。16S rRNA基因PCR扩增参照Wu等[20], 步骤如下: 25 μL反应体系中包含1×Buffer II, 正、反向引物(515F、806R)各0.8 μmol/L, 0.5U的AccuPrimeTM Taq酶和10 ng模板DNA序列, 每个样品平行做3个重复, 并设阴性对照; PCR扩增程序如下: 94℃ 1min, 后接10个循环(94℃ 20s, 53℃ 25s, 68℃ 45s)之后68℃ 10min。PCR产物经Agencourt Ampure XP纯化后再次作为模板进行第二次PCR扩增, 扩增条件和第一轮PCR一致, 但是所使用的反向引物加了barcode标记, 并进行20个循环, 此两步法PCR能很好地降低barcode引物的扩增偏好性[20]。最后, PCR产物用1%琼脂糖胶进行检测。在所有样品都成功扩增后, 各样品PCR产物用PicoGreen (Molecular Probes)进行定量。300 ng样品的PCR产物等量混合, 并用琼脂糖凝胶在90 V下电泳2h, 目的片段使用DNA纯化试剂盒(Qiagen)纯化后再次进行PicoGreen定量, 建库后使用MiSeq测序平台进行测序。所得到DNA序列分析参照Wu等[20]的方法进行分析, 并通过RDP (Ribosomal Database Project)数据库进行比对和OTU分类。

    分析过程使用R语言环境和PAST 2.0软件, 其中, R语言使用了vegan、VennDiagram、ggplot 2和ggfority程序包。进行的分析主要包括: (A)每个肠道样品做OTU稀释性曲线; (B)计算每个样品的Alpha多样性, 参数包括: 香农指数(Shannon-Wienner index)、辛普森指数(Inverse Simpson index)、皮鲁均匀度指数(Pielou evenness index)、辛普森均匀度指数(Simpson evenness index); (C)计算了Beta多样性, 包括非参数检验: 基于Bray-Curits距离的MRPP (Multiple-Response Permutation Procedure)、Anosim (Analysis of Similarity)、Adonis分析。同时也进行了主成分分析(Principal component analysis, PCA); (D)通过维恩图(Venn diagram)统计两组样品共有(shared)和特有(Unique)OTU; (E)用SPSS 24.0对实验组和对照组Alpha多样性指数进行独立样本t检验(Independent samples t-test)、对肠道菌群在处理组和对照组组内两两个体间距离均值进行威尔科克森检验(Wilcoxon test)以及对两组样品肠道优势OTU (relative abundance>1%)进行t检验(t-test)。

    Alpha多样性分析结果表明, 除辛普森均匀度指数外, 感染组的香农指数、辛普森指数、皮鲁均匀度指数均显著低于对照组(t-test, P<0.05), 表明GCRV感染使草鱼肠道菌群的物种多样性和均匀度明显降低(图 1)。对每个样品进行OTU稀释性曲线的分析中, 也发现了相似的规律, 感染组样品OTU数普遍低于对照组(图 2)。

    图  2  处理组和对照组样品物种丰度的稀释曲线
    Figure  2.  Rarefaction curves between treated and control groups based on sequencing results
    图  1  处理组(右边)和对照组(左边)草鱼肠道菌群Alpha多样性指数比较
    槽口图包括四分位间距(IQR), 第一、第三和第四分位数, 内侧粗线代表中位数; *表示显著性水平P<0.05, n.s.表示差异不显著
    Figure  1.  Comparing alpha-diversity index between treated (right) and control (left) groups
    The notch boxes include the interquartile range (IQR), from the first, third and fourth quartiles, and the inside bold line represents the median. *indicate P<0.05, n.s., not significant

    图 3显示对照组草鱼肠道内总共有646个OTUs, 而病毒处理组则检测到了498个OTUs, 相比对照组减少了148个OTUs。此外, 对照组中特有的OTUs为394个, 而GCRV感染后草鱼特有OTUs为246个; 2组草鱼共有OTUs数为252个。

    图  3  处理组和对照组OTU数量对比维恩图
    Figure  3.  Venn diagram representing shared OTUs between treated and control groups

    对所有样品进行基于Bray-Curits距离的差异分析(表 1), 结果表明GCRV感染组草鱼和对照组草鱼肠道菌群差异显著(MRPP, Anosim, Adonis, P<0.01)。

    表  1  基于Bray-Curits距离的差异显著性检验
    Table  1.  Comparing the results of dissimilarity test between the treated and control groups based on Bray-Curtis dissimilarity
    指标
    Item
    实验组 vs. 对照组
    Treatment vs. Control
    MRPP. Delta 0.527
    MRPP. P-value 0.002**
    Anosim. R-value 0.192
    Anosim. P-value 0.020**
    Adonis. F-value 2.976
    Adonis. P-value 0.007**
    注: ** 表示显著性水平P<0.01Note: The double asterisk indicates a significant difference withP<0.01
    下载: 导出CSV 
    | 显示表格

    对所有草鱼样品肠道菌群进行PCA排序(图 4A), 对照组各样点聚集较为紧密, 说明肠道菌群在个体之间的差异较小。处理组草鱼各样点相距较远, 说明肠道菌群在个体之间的差异较大。此外, 第一轴(PC1)的解释变异量为63.73%, 第二轴(PC2)的解释变异量为21.67%, 2个轴解释变异量累计高达85.4%。对处理组和对照组肠道菌群在组内个体间Bray-Curtis距离进行比较, 发现肠道菌群在病毒感染组不同个体间的平均距离要显著高于对照组草鱼(Wilcoxon test, P<0.05,图 4B)。

    图  4  PCA排序图(A)及处理组和对照组(B)组内个体间距离差异比较
    * 表示显著性水平P<0.05
    Figure  4.  Comparing beta-diversity index between the GCRV-infected and healthy grass carps A. The treated and control samples were visualized by PCA. B. Comparing Bray-Curtis dissimilarities between individuals in the GCRV-infected and control groups
    * indicate P<0.05

    在门水平进行分析比较发现(图 5), 对照组样品中共检测到18个菌门, 分别为脱铁杆菌门(Deferribacteres)、芽单胞菌门(Gemmatimonadetes)、装甲菌门(Armatimonadetes)、泉古菌门(Crenarchaeota)、衣原体门(Chlamydiae)、柔膜菌门(Tenericutes)、浮霉菌门(Planctomycetes)、绿弯菌门(Chloroflexi)、蓝藻门(Cyanobacteria)、疣微菌门(Verrucomicrobia)、酸杆菌门(Acidobacteria)、放线菌门(Actinobacteria)、螺旋体门(Spirochaetes)、拟杆菌门(Bacteroidetes)、厚壁菌门(Firmicutes)、变形菌门(Proteobacteria)、梭杆菌门(Fusobacteria)和其他未被分类的细菌。而实验组样品中则总共检测到15个菌门, 与对照组相比少了脱铁杆菌门、芽单胞菌门、装甲菌门、泉古菌门, 但新增了栖热菌门(Deinococcus-Thermus)。在所有的菌门中, 处理组与对照组共有优势菌门为变形菌门、梭杆菌门、厚壁菌门、拟杆菌门, 4个优势菌门在GCRV感染组和对照组草鱼肠道菌群中所占得比例分别为98.3%和97.4%。

    图  5  实验组与对照组肠道微生物在门水平相对丰度比较
    ‘trt_’和‘ctr_’分别表示处理组、对照组, trt_和ctr_之后的数字表示样品编号
    Figure  5.  Relative abundance of the phyla in the treated and control groups
    ‘trt_’ and ‘ctr_’ represent treated and control grass carp, respectively. The numbers indicate sample ID

    将相对丰度大于1%的OTU进行比较发现, 对照组草鱼样品优势OTUs有17个, 而GCRV感染的草鱼样品优势OTUs有10个(表 2)。处理组草鱼肠道内OTU_504 (Comamonadaceae, 丛毛单胞菌科)、OTU_69 (Pasteurellaceae, 巴斯德氏菌科)、OTU_1898 (Cetobacteriu, 鲸杆菌属)和OTU_822 (Uliginosibacterium)相对丰度显著低于对照组(t-test, P<0.05)。OTU_504 (丛毛单胞菌科)在健康草鱼体内相对丰度为5.4%, 而在处理组草鱼肠道内则仅为1.5%。OTU_1898 (鲸杆菌属)和OTU_1357 (Gammaproteobacteria, γ变形菌纲)在对照组草鱼肠道样品的相对丰度分别为3.5%和10.5%, 而在处理组则下降为1.1%和8.8%。其他OTU感染GCRV后也有不同程度的下降, OTU_66 (Neisseriacea, 奈瑟氏球菌科)、OTU_98 (Shewanella, 希瓦氏菌属)、OTU_163 (Chitinophagaceae)、OTU_471 (Clostridiales, 梭菌目)和OTU_94 (Neisseriacea, 奈瑟氏球菌科)等在病毒处理组相对丰度降至1%以下。然而, 也有部分OTU相对丰度在感染GCRV后反而增加了, 其中增加幅度最为明显的是OTU_434 (Cetobacteriu, 鲸杆菌属), 该OTU的相对丰度在感染病毒的草鱼肠道内急剧上升, 由29.3%上升至46%。同样, OTU_1154 (Vibrionaceae, 弧菌科)上升幅度较大, 由1.5%增至12.3%。此外, 处理组中新增加一优势OTU, 即OTU_48 (Vibrio, 弧菌属)。OTU_893 (Aeromonas, 气单胞菌属)在两组肠道样品中相对丰度差别不大。

    表  2  相对丰度大于1%的OTU对比分析
    Table  2.  OTU with relative abundance greater than 1% in treated and control groups
    实验组Treatment 对照组Control
    分类单元OTU 相对丰度Abundance (%) 分类Classification 分类单元OTU 相对丰度Abundance (%) 分类Classification
    OTU_434 46.0 Cetobacterium OTU_434 29.3 Cetobacterium
    OTU_1154 12.3 Vibrionaceae OTU_1357 10.5 Gammaproteobacteria
    OTU_1357 8.8 Gammaproteobacteria OTU_822* 5.4 Uliginosibacterium
    OTU_806 4.1 Leuconostoc OTU_504* 4.8 Comamonadaceae
    OTU_893 3.0 Aeromonas OTU_806 4.4 Leuconostoc
    OTU_48 2.0 Vibrio OTU_1898* 3.5 Cetobacterium
    OTU_504 1.5 Comamonadaceae OTU_893 3.1 Aeromonas
    OTU_1832 1.3 Lactococcus OTU_69* 2.8 Pasteurellaceae
    OTU_1898 1.1 Cetobacterium OTU_436 1.6 Neisseriaceae
    OTU_822 1.0 Uliginosibacterium OTU_1154 1.5 Vibrionaceae
    OTU_66 1.4 Neisseriaceae
    OTU_98 1.3 Shewanella
    OTU_163 1.2 Chitinophagaceae
    OTU_471 1.2 Clostridiales
    OTU_94 1.1 Neisseriaceae
    OTU_1832 1.0 Lactococcus
    OTU_26 1.0 Pelomonas
    注: *显著性水平为P<0.05Note: * indicateP-values significant at 0.05 level
    下载: 导出CSV 
    | 显示表格

    鱼类肠道内定植着种类丰富、数量庞大的菌群[21, 22]。在正常情况下, 肠道菌群之间、菌群与宿主之间处于动态平衡, 从而维持着鱼类肠道正常生理功能[5]。但当受到病原微生物感染时, 肠道菌群的平衡状态受到干扰后可能被打破[11, 12]。肠道菌群结构失衡可能使得宿主的免疫系统受到影响, 某些条件致病菌还有可能会转移或危及宿主其他组织器官, 导致细菌性疾病爆发[23, 24]。因此, 肠道微生态的相对稳定对于宿主的健康有着重要的意义。

    中国水产养殖占世界水产养殖总量的近70%[25], 其中草鱼是我国最重要的淡水养殖鱼类。在草鱼养殖常见的疾病中, 草鱼呼肠孤病毒导致的出血病常常给养殖业造成了严重的经济损失。感染该病毒的草鱼, 其肠腔内黏液减少, 上皮细胞大量坏死脱落[15], 肠道微生态环境的急剧恶化, 因此肠道菌群很有可能失去原有的平衡状态而变得紊乱。虽然以往的研究表明病原感染可引起水生动物肠道群菌紊乱[11, 26], 但GCRV感染对草鱼肠道菌群的影响尚不清楚。

    本研究利用MiSeq高通量测序研究了GCRV感染对草鱼肠道菌群的影响, 结果表明GCRV感染使得草鱼肠道的微生物群落结构发生了显著变化(MRPP, Anosim, Adonis, P<0.01), 李东亮等[27]用嗜水气单胞菌(Aeromonas hydrophila)感染草鱼得到类似的结果。肠道作为一个小型生态系统, 众多的微生物栖息于此并形成复杂的生态群落[28]。肠道正常菌群及肠道生态系统的稳定性与肠道功能密切相关[29]。本研究发现, GCRV感染组草鱼肠道菌群Alpha多样性显著低于对照组草鱼(Independent samples t-test, P<0.05), 说明肠道微生态系统发生了紊乱。在正常情况下, 肠道正常菌群牢固地附着于肠黏膜和肠上皮细胞表面。但感染GCRV后, 其肠腔内黏液减少、上皮细胞成片脱落[15], 正常菌群因失去附着位点而极易随排泄物排出体外。此外, 发生肠炎的草鱼摄食减弱, 导致肠道正常菌群赖以生存的资源减少, 也可能是部分肠道正常菌群数量减少的原因之一[30]

    已有基于DGGE[19]、纯培养[16]和高通量测序[31, 32]的结果表明, Proteobacteria、Firmicutes、Bacteroidetes、Fusobacteria为草鱼肠道的主要类群, 本研究结果与之相符。然而与健康草鱼相比, 感染GCRV的草鱼肠道内Proteobacteria、Firmicutes、Bacteroidetes相对丰度均有不同程度的下降, 而Fusobacteria则有较大幅度增加。其他非优势菌门如Deferribacteres、Gemmatimonadetes、Armatimonadetes、Crenarchaeota在病毒感染组中消失。这些变化, 一方面, 可能与患病草鱼摄食减少导致肠道中可利用的资源减少有关[33]。另一方面, 可能与感染病毒后肠道微生态环境恶化存在关联[15]。此外, 有研究表明免疫系统对肠道菌群有着重要的影响[34, 35]。而GCRV对草鱼免疫系统有着重要的影响[36], 因此, GCRV病毒也有可能通过干扰草鱼免疫系统间接影响肠道菌群组成, 但还有待进一步证实。

    研究表明感染GCRV的草鱼肠上皮细胞会大量脱落[15], OTU_434相对丰度在感染组明显升高, 该OTU在Cetobacteriu丰度占比极高(96%) , 可能与Cetobacteriu能合成的维生素B12 (Vitamin B12)促进肠道细胞修复有关[36, 37]。感染GCRV后OTU_98 (Shewanella)在肠道中相对丰度有所下降。有研究表明饥饿能够改变肠道菌群[38, 39]。在本实验中, Shewanella(OTU_98)相对丰度降低可能与患病草鱼摄食减少, 肠道营养贫乏有关[40]

    综上所述, GCRV感染会导致草鱼肠道正常菌群紊乱。肠道菌群发生紊乱往往伴随着致病菌过度增殖, 引起肠道微生态失衡和机体的炎症反应, 导致疾病的发生或病情的加重[41]。健康宿主肠道微生物可通过与致病菌竞争黏附位点、介导调节肠道免疫应答等方式抑制病原菌的增殖, 来缓解或防止肠道炎症[5]。因此, 如果能从草鱼肠道内分离出这些有益微生物并制成微生态制剂投喂草鱼, 或许能使已发生紊乱的肠道菌群恢复至正常状态, 从而为缓解或防止草鱼出血病提供帮助。本研究从草鱼肠道菌群入手, 能为草鱼病毒性出血病的防治和深化研究提供依据和参考。

  • 图  1   长江中下游通江湖泊与阻隔湖泊物种数、Δ+和Λ+对比及t检验

    Figure  1.   Species richness, Δ+ and Λ+ of the river -connected lakes and river -disconnected lakes in the middle and lower reaches of Yangtze River; the result of independent-samples t-test are also shown

    图  2   长江中下游湖泊Δ+和Λ+对应物种数的95%置信区间漏斗图

    Figure  2.   Funnel plots showing Δ+ and Λ+ versus the number of species observed for the fish fauna in the freshwater lake in the middle and lower reaches of Yangtze River; the lines showing mean value and 95% confidence intervals are determined via random selection from the total master species lists

    图  3   鄱阳湖、洞庭湖平均分类差异指数(Δ+)和分类差异变异指数(Λ+)随时间变化图

    Figure  3.   Temporal variations in average taxonomic distinctness index, Δ+ and variation in taxonomic distinctness index, Λ+ of fish assemblages in Poyang Lake and Dongting Lake

    图  4   鄱阳湖、洞庭湖不同时期Δ+和Λ+对应物种数的95%置信区间漏斗图

    A、B. 鄱阳湖; C、D. 洞庭湖

    Figure  4.   Funnel plots showing Δ+ and Λ+ versus the number of species observed for the fish fauna in Poyang Lake and Dongting Lake in different periods; the lines showing mean value and 95% confidence intervals were determined via random selection from the total master species lists

    A and B. Poyang Lake; C and D. Dongting Lake

    图  5   梁子湖、洪泽湖、洪湖平均分类差异指数(Δ+)和分类差异变异指数(Λ+)随时间变化图

    Figure  5.   Temporal variations in average taxonomic distinctness index, Δ+ and variation in taxonomic distinctness index, Λ+ of fish assemblages in Liangzi Lake, Hongze Lake and Honghu Lake

    图  6   梁子湖、洪泽湖、洪湖不同时期Δ+和Λ+对应物种数的95%置信区间漏斗图

    A、B. 梁子湖; C、D. 洪泽湖; E、F. 洪湖

    Figure  6.   Funnel plots showing Δ+ and Λ+ versus the number of species observed for the fish fauna in Liangzi Lake, Hongze Lake and Honghu Lake in different periods. The lines showing mean value and 95% confidence intervals are determined via random selection from the total master species lists

    A and B. Liangzi Lake; C and D. Hongze Lake; E and F. Honghu Lake

    表  1   长江中下游湖泊调查时间及江湖连通状况

    Table  1   Investigation time and connected or disconnected status of lakes in the middle and lower reaches of Yangtze River

    湖泊
    Lake
    调查时间
    Year of survey
    湖泊类型
    Status of lake
    湖泊
    Lake
    调查时间
    Year of survey
    湖泊类型
    Status of lake
    通江湖泊五湖[75]1974—1975Connected
    鄱阳湖1[46]1980sConnected保安湖[67]1992—1994Disconnected
    鄱阳湖2[47]1982—1990Connected澄湖[68]2002—2003Disconnected
    鄱阳湖3[47]1997—2000Connected东湖[69]1992—1994Disconnected
    洞庭湖1[48]1973—1979Connected北青菱湖[67]1993—1996Disconnected
    洞庭湖2[49]2002—2003Connected桥墩湖[67]1993—1996Disconnected
    洞庭湖3[49]2012—2014Connected扁担塘[70]1993—1996Disconnected
    阻隔湖泊(历史通江湖泊)牛山湖[71]1996—1999Disconnected
    洪泽湖1[50]1960—1982Connected东汤逊湖[71]1996—1999Disconnected
    洪泽湖2[51]1989—1990Disconnected黄湖[71]1996—1999Disconnected
    洪泽湖3[52]2010—2011Disconnected龙感湖[71]1996—1999Disconnected
    洪泽湖4[53]2014Disconnected固城湖[58]1987—1988Disconnected
    洪泽湖5[54]2017—2018Disconnected长湖[72]2014Disconnected
    梁子湖1[55]1955—1957Connected菜子湖[73]2018Disconnected
    梁子湖2[55]1974Disconnected陈瑶湖[74]2000—2001Disconnected
    梁子湖3[55]1981—1983Disconnected天鹅洲[66]2015—2016Disconnected
    梁子湖4[55]1997—1999Disconnected武昌湖[74]2000—2001Disconnected
    洪湖1[56]1959Disconnected白荡湖[74]2000—2001Disconnected
    洪湖2[56]1964Disconnected泊湖[74]2000—2001Disconnected
    洪湖3[56]1981Disconnected淀山湖[76]2011Disconnected
    洪湖4[56]1993Disconnected骆马湖[77]2013—2015Disconnected
    洪湖5[57]2004Disconnected滆湖[78]2008Disconnected
    通江湖泊与阻隔湖泊比较傀儡湖[79]2010Disconnected
    鄱阳湖3[47]1997—2000Connected何王庙[80]2016Disconnected
    洞庭湖3[49]2012—2014Connected武湖[81]2006—2007Disconnected
    洪泽湖1[50]1960—1982Connected大通湖[82]2011—2012Disconnected
    洪泽湖5[54]2017—2018Disconnected南湖2020Disconnected
    梁子湖1[55]1955—1957Connected洋圻湖[83]1998Disconnected
    梁子湖4[55]1997—1999Disconnected军山湖[84]1993—1994Disconnected
    太湖1[58]1951—1985Connected青岚湖[84]1993—1994Disconnected
    太湖2[59, 60]2002—2003Disconnected陈家湖[84]1993—1994Disconnected
    巢湖1[61]1959—1963Connected瑶岗湖[84]1993—1994Disconnected
    巢湖2[62]2002—2004Disconnected观溪湖[84]1993—1994Disconnected
    五里湖1[63]1950—1953Connected龙窝湖[85]1979—1980Disconnected
    五里湖2[64]2007—2008Disconnected黄大湖[74]2000—2001Disconnected
    涨渡湖1[65]1950sConnected南青菱湖[67]1993—1996Disconnected
    涨渡湖2[65]2000sDisconnected黄家湖[67]1993—1996Disconnected
    洪湖5[57]2004Disconnected
    下载: 导出CSV

    附表  1   长江中下游湖泊鱼类主名录分类学组成

    Appendix  1   Fish species composition in lakes in the middle and lower reaches of the Yangtze River

     目Order 科Family 属Genus 种Species  拉丁名Latin name
    鲟形目鲟科鲟属中华鲟Acipenser sinensis
    匙吻鲟科白鲟属白鲟Psephurus gladius
    鲱形目鳀科鲚属刀鲚Coilia nasus
    短颌鲚Coilia brachygnathus
    胡瓜鱼目银鱼科银鱼属前额间银鱼Salanx prognathus
    大银鱼属大银鱼Protosalanx chinensis
    间银鱼属短吻间银鱼Hemisalanx brachyrostralis
    新银鱼属寡齿新银鱼Neosalanx oligodontis
    太湖新银鱼Neosalanx taihuensis
    陈氏新银鱼Neosalanx tangkahkeii
    乔氏新银鱼Neosalanx jordani
    鳗鲡目鳗鲡科鳗鲡属鳗鲡Anguilla japonica
    鲤形目鲤科鱲属宽鳍鱲Zacco platypus
    马口鱼属马口鱼Opsariichthys bidens
    鱥属尖头鱥Rhynchocypris oxycephalus
    赤眼鳟属赤眼鳟Squaliobarbus curriculus
    青鱼属青鱼Mylopharyngodon piceus
    草鱼属草鱼Ctenopharyngodon idella
    鳤属Ochetobius elongatus
    鳡属Elopichthys bambusa
    飘鱼属飘鱼Pseudolaubuca sinensis
    寡鳞飘鱼Pseudolaubuca engraulis
    䱗属Hemiculter leucisculus
    贝氏䱗Hemiculter bleekeri
    似鱎属似鱎Toxabramis swinhonis
    原鲌属红鳍原鲌Chanodichthys erythropterus
    鲌属拟尖头鲌Culter oxycephaloides
    翘嘴鲌Culter alburnus
    蒙古鲌Culter mongolicus
    达氏鲌Culter dabryi
    鳊属Parabramis pekinensis
    华鳊属伍氏华鳊Sinibrama wui
    鲂属Megalobrama skolkovii
    团头鲂Megalobrama amblycephala
    鲴属银鲴Xenocypris macrolepis
    黄尾鲴Xenocypris davidi
    细鳞鲴Xenocypris microlepis
    圆吻鲴属圆吻鲴Distoechodon tumirostris
    湖北圆吻鲴Distoechodon hupeinensis
    似鳊属似鳊Pseudobrama simoni
    鲢属Hypophthalmichthys molitrix
    Hypophthalmichthys nobilis
    䱻属唇䱻Hemibarbus labeo
    花䱻Hemibarbus maculatus
    似刺鳊 属似刺鳊Paracanthobrama guichenoti
    麦穗鱼属麦穗鱼Pseudorasbora parva
    长麦穗鱼Pseudorasbora elongata
    鳈属华鳈Sarcocheilichthys sinensis
    小鳈Sarcocheilichthys parvus
    江西鳈Sarcocheilichthys kiangsiensis
    黑鳍鳈Sarcocheilichthys nigripinnis
    颌须属短须颌须Gnathopogon imberbis
    银属银Squalidus argentatus
    亮银Squalidus nitens
    点纹银Squalidus wolterstorffi
    铜鱼属圆口铜鱼Coreius guichenoti
    铜鱼Coreius heterodon
    吻属吻Rhinogobio typus
    圆筒吻Rhinogobio cylindricus
    似属似Pseudogobio vaillanti
    棒花鱼属棒花鱼Abbottina rivularis
    小鳔属福建小鳔Microphysogobio fukiensis
    乐山小鳔Microphysogobio kiatingensis
    小口小鳔Microphysogobio brevirostris
    洞庭小鳔Microphysogobio tungtingensis
    蛇属长蛇Saurogobio dumerili
    蛇Saurogobio dabryi
    光唇蛇Saurogobio gymnocheilus
    细尾蛇Saurogobio gracilicaudatus
    鳅鮀属宜昌鳅鮀Gobiobotia filifer
    鱊属大鳍鱊Acheilognathus macropterus
    越南鱊Acheilognathus barbatus
    须鱊Acheilognathus barbatus
    短须鱊Acheilognathus barbatulus
    无须鱊Acheilognathus gracilis
    兴凯鱊Acheilognathus chankaensis
    大口鱊Acheilognathus tabira
    多鳞鱊Acheilognathus polylepis
    白河鱊Acheilognathus peihoensis
    彩副鱊Acheilognathus imberbis
    田中鳑鲏属革条田中鳑鲏Tanakia himantegus
    鳑鲏属高体鳑鲏Rhodeus ocellatus
    中华鳑鲏Rhodeus sinensis
    方氏鳑鲏Rhodeus fangi
    倒刺鲃属中华倒刺鲃Spinibarbus sinensis
    光倒刺鲃Spinibarbus hollandi
    华鲮属湘华鲮Bangana tungting
    光唇鱼属光唇鱼Acrossocheilus fasciatus
    白甲鱼属白甲鱼Onychostoma simum
    鲤属Cyprinus carpio
    鲫属Carassius auratus
    细鲫属中华细鲫Aphyocypris chinensis
    胭脂鱼科胭脂鱼属胭脂鱼Myxocyprinus asiaticus
    平鳍鳅科犁头鳅属犁头鳅Lepturichthys fimbriata
    后平鳅属峨嵋后平鳅Metahomaloptera omeiensis
    鳅科副沙鳅属花斑副沙鳅Parabotia fasciata
    武昌副沙鳅Parabotia banarescui
    薄鳅属长薄鳅Leptobotia elongata
    红唇薄鳅Leptobotia rubrilabris
    紫薄鳅Leptobotia taeniops
    花鳅属中华沙鳅Sinibotia superciliaris
    泥鳅属泥鳅Misgurnus anguillicaudatus
    鳅属中华花鳅Cobitis sinensis
    大斑花鳅Cobitis macrostigma
    副泥鳅属大鳞副泥鳅Paramisgurnus dabryanus
    鲇形目鲇科鲇属Silurus asotus
    南方鲇Silurus meridionalis
    胡子鲇科胡子鲇属胡子鲇Clarias fuscus
    鲿科黄颡鱼属黄颡鱼Pelteobagrus fulvidraco
    长须黄颡鱼Pelteobagrus eupogon
    瓦氏黄颡鱼Pelteobagrus vachellii
    光泽黄颡鱼Pelteobagrus nitidus
    属纵带Leiocassis argentivittatus
    长吻Leiocassis longirostris
    粗唇Leiocassis crassilabris
    拟鲿属白边拟鲿Pseudobagrus albomarginatus
    圆尾拟鲿Pseudobagrus tenuis
    细体拟鲿Pseudobagrus pratti
    切尾拟鲿Pseudobagrus truncatus
    乌苏拟鲿Pseudobagrus ussuriensis
    鳠属大鳍鳠Mystus macropterus
    钝头科䱀属黑尾䱀Liobagrus nigricauda
    白缘䱀Liobagrus marginatus
    司氏䱀Liobagrus styani
    鳗尾䱀Liobagrus anguillicauda
    拟缘䱀Liobagrus marginatoides
    科纹胸属中华纹胸Glyptothorax sinensis
    颌针鱼目青鳉科青鳉属青鳉Oryzias latipes
    鱵科下鱵属间下鱵Hyporhamphus intermedius
    合鳃目刺鳅科刺楸属刺鳅Macrognathus aculeatus
    中华刺鳅属中华刺鳅Sinobdella sinensis
    合鳃鱼科黄鳝属黄鳝Monopterus albus
    鲈形目鮨科鳜属Siniperca chuatsi
    长身鳜Siniperca roulei
    大眼鳜Siniperca knerii
    斑鳜Siniperca scherzeri
    波纹鳜Siniperca undulata
    沙塘鳢科黄䱂鱼属小黄䱂鱼Micropercops swinhonis
    沙塘鳢属河川沙塘鳢Odontobutis potamophila
    鰕虎鱼科鲻鰕虎鱼属粘皮鲻鰕虎鱼Mugilogobius myxodermus
    吻鰕虎鱼属子陵吻虾虎鱼Rhinogobius giurinus
    波氏吻鰕虎鱼Rhinogobius cliffordpopei
    褐吻鰕虎鱼Rhinogobius Brunneus
    鳗鰕虎鱼属须鳗虾虎鱼Taenioides cirratus
    狼鰕虎鱼属红狼牙鰕虎鱼Odontamblyopus rubicundus
    拉氏狼牙鰕虎鱼Odontamblyopus lacepedii
    缟鰕虎鱼属纹缟鰕虎鱼Tridentiger trigonocephalus
    丝足鲈科斗鱼属圆尾斗鱼Macropodus chinensis
    叉尾斗鱼Macropodus opercularis
    鳢科鳢属乌鳢Channa argus
    月鳢Channa asiatica
    鲽形目舌鳎科舌鳎属三线舌鳎Cynoglossus trigrammus
    窄体舌鳎Cynoglossus gracilis
    鲀形目鲀科东方鲀属弓斑多纪鲀Takifugu ocellatus
    暗纹东方鲀Takifugu obscurus
    下载: 导出CSV

    表  2   鄱阳湖、洞庭湖3个时期的鱼类分类阶元数目、Δ+和Λ+

    Table  2   Number of taxa at each taxonomic resolution level of fishes, Δ+ and Λ+ in Poyang Lake and Dongting Lake for the three time periods

    湖泊
    Lake
    调查时间
    Year of survey

    Order

    Family

    Genus

    Species
    Δ+Λ+
    鄱阳湖11980s11236710880.12674.00
    鄱阳湖21982—199010226410079.61676.93
    鄱阳湖31997—2000819609878.50709.44
    洞庭湖11973—197910226810477.46675.93
    洞庭湖22002—2003714538176.88719.80
    洞庭湖32012—2014716466476.79686.38
    下载: 导出CSV

    表  3   梁子湖、洪泽湖、洪湖不同时期鱼类分类阶元数目、Δ+和Λ+

    Table  3   Number of taxa at each taxonomic resolution level of fishes, Δ+ and Λ+ in Liangzi Lake, Hongze Lake and Honghu Lake in different periods

    湖泊
    Lake
    调查时间
    Year of survey

    Order

    Family

    Genus

    Species
    Δ+Λ+
    梁子湖11955—1957917475977.99728.20
    梁子湖21974918496777.14730.12
    梁子湖31981—1983714425674.06754.18
    梁子湖41997—1999816415676.63738.59
    洪泽湖11960—1982917577778.73685.37
    洪泽湖21989—1990816496574.57720.42
    洪泽湖32010—2011714436274.06766.45
    洪泽湖42014713344177.09748.61
    洪泽湖52017—2018815405076.76747.85
    洪湖11959918516277.65698.74
    洪湖21964918537177.84708.10
    洪湖31981918435278.64673.44
    洪湖41993715435674.41755.00
    洪湖52004611334272.31751.28
    下载: 导出CSV
  • [1] 秦伯强. 长江中下游浅水湖泊富营养化发生机制与控制途径初探 [J]. 湖泊科学, 2002, 14(3): 193-202. doi: 10.3321/j.issn:1003-5427.2002.03.001

    Qin B Q. Approaches to mechanisms and control of eutrophication of shallow lakes in the middle and lower reaches of the Yangze River [J]. Journal of Lake Sciences, 2002, 14(3): 193-202. doi: 10.3321/j.issn:1003-5427.2002.03.001

    [2] 林鹏程, 高欣, 刘飞, 等. 基于鱼类物种状况的长江生态环境质量评估 [J]. 水生生物学报, 2021, 45(6): 1385-1389.

    Lin P C, Gao X , Liu F, et al. Ecological assessment of the Yangtze River environment based on fish species richness [J]. Acta Hydrobiologica Sinica, 2021, 45(6): 1385-1389.

    [3]

    Wohl E, Brierley G, Cadol D, et al. Connectivity as an emergent property of geomorphic systems [J]. Earth Surface Processes and Landforms, 2019, 44(1): 4-26. doi: 10.1002/esp.4434

    [4]

    Pander J, Mueller M, Geist J. Habitat diversity and connectivity govern the conservation value of restored aquatic floodplain habitats [J]. Biological Conservation, 2018, 217: 1-10. doi: 10.1016/j.biocon.2017.10.024

    [5] 张旭, 杨婷越, 罗小红, 等. 鄱阳湖湖区及支流修水夏季鱼类系统发育群落结构分析 [J]. 水生生物学报, 2020, 44(6): 1297-1312. doi: 10.7541/2020.151

    Zhang X, Yang T Y, Luo X H, et al. Fish phylogenetic community structure in the Poyang Lake and its tributary the Xiushui River in summer [J]. Acta Hydrobiologica Sinica, 2020, 44(6): 1297-1312. doi: 10.7541/2020.151

    [6]

    Reid A J, Carlson A K, Creed I F, et al. Emerging threats and persistent conservation challenges for freshwater biodiversity [J]. Biological Reviews of the Cambridge Philosophical Society, 2019, 94(3): 849-873. doi: 10.1111/brv.12480

    [7]

    Tockner K, Pusch M, Borchardt D, et al. Multiple stressors in coupled river–floodplain ecosystems [J]. Freshwater Biology, 2010(55): 135-151. doi: 10.1111/j.1365-2427.2009.02371.x

    [8] 刘飞, 林鹏程, 黎明政, 等. 长江流域鱼类资源现状与保护对策 [J]. 水生生物学报, 2019, 43(S1): 144-156. doi: 10.7541/2019.177

    Liu F, Lin P C, Li M Z, et al. Situations and conservation strategies of fish resources in the Yangtze River Basin [J]. Acta Hydrobiologica Sinica, 2019, 43(S1): 144-156. doi: 10.7541/2019.177

    [9]

    Jiang Z, Dai B, Wang C, et al. Multifaceted biodiversity measurements reveal incongruent conservation priorities for rivers in the upper reach and lakes in the middle-lower reach of the largest river-floodplain ecosystem in China [J]. Science of the Total Environment, 2020(739): 140380. doi: 10.1016/j.scitotenv.2020.140380

    [10]

    Liu X, Wang H. Estimation of minimum area requirement of river-connected lakes for fish diversity conservation in the Yangtze River floodplain [J]. Diversity and Distributions, 2010, 16(6): 932-940. doi: 10.1111/j.1472-4642.2010.00706.x

    [11] 常剑波, 曹文宣. 通江湖泊的渔业意义及其资源管理对策 [J]. 长江流域资源与环境, 1999, 8(2): 153-157.

    Chang J B, Cao W X. Fishery significance of the river-communicating lakes and strategies for the management of fish resources [J]. Resources and Environment in the Yangtze Basin, 1999, 8(2): 153-157.

    [12] 王洪铸, 刘学勤, 王海军. 长江河流-泛滥平原生态系统面临的威胁与整体保护对策 [J]. 水生生物学报, 2019, 43(S1): 157-182. doi: 10.7541/2019.178

    Wang H Z, Liu X Q, Wang H J. The Yangtze River-floodplain ecosystem: multiple threats and holistic conservation [J]. Acta Hydrobiologica Sinica, 2019, 43(S1): 157-182. doi: 10.7541/2019.178

    [13]

    Costello M J, Bouchet P, Emblow C S, et al. European marine biodiversity inventory and taxonomic resources: state of the art and gaps in knowledge [J]. Marine Ecology Progress Series, 2006(316): 257-268. doi: 10.3354/meps316257

    [14]

    Gaston K J. Biodiversity: a biology of numbers and difference [J]. The Journal of Applied Ecology, 1996, 33(6): 1587-1588. doi: 10.2307/2404799

    [15]

    Zhang C, Fujiwara M, Pawluk M, et al. Changes in taxonomic and functional diversity of fish communities after catastrophic habitat alteration caused by construction of Three Gorges Dam [J]. Ecology and Evolution, 2020, 10(12): 5829-5839. doi: 10.1002/ece3.6320

    [16] 刘春池, 高欣, 林鹏程, 等. 葛洲坝水库鱼类群落结构特征研究 [J]. 长江流域资源与环境, 2012, 21(7): 843-849.

    Liu C C, Gao X, Lin P C, et al. Fish community structure in Gezhouba Reservior [J]. Resources and Environment in the Yangtze Basin, 2012, 21(7): 843-849.

    [17]

    Chiarucci A, Bacaro G, Scheiner S M. Old and new challenges in using species diversity for assessing biodiversity [J]. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 2011, 366(1576): 2426-2437. doi: 10.1098/rstb.2011.0065

    [18]

    Harper J L, Hawksworth D L. Biodiversity: measurement and estimation [J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1994, 345(1311): 5-12. doi: 10.1098/rstb.1994.0081

    [19]

    Rogers S I, Clarke K R, Reynolds J D. The taxonomic distinctness of coastal bottom-dwelling fish communities of the North-east Atlantic [J]. Journal of Animal Ecology, 1999, 68(4): 769-782. doi: 10.1046/j.1365-2656.1999.00327.x

    [20]

    Weiss K C B, Ray C A. Unifying functional trait approaches to understand the assemblage of ecological communities: synthesizing taxonomic divides [J]. Ecography, 2019, 42(12): 2012-2020. doi: 10.1111/ecog.04387

    [21] 马思琦. 鱼类分类和功能多样性研究-以济南地区鱼类为例 [D]. 大连: 大连海洋大学, 2020: 3-5.

    Ma S Q. Research on fish classification and functional diversity-take the fish of Jinan as an example [D]. Dalian: Dalian Ocean University, 2020: 3-5.

    [22]

    Clarke K R, Warwick R M. A further biodiversity index applicable to species lists: variation in taxonomic distinctness [J]. Marine Ecology Progress Series, 2001(216): 265-278. doi: 10.3354/meps216265

    [23]

    Tilman D, Knops J, Wedin D, et al. The influence of functional diversity and composition on ecosystem processes [J]. Science, 1997, 277(5330): 1300-1302. doi: 10.1126/science.277.5330.1300

    [24]

    Clarke K R, Warwick R M. A taxonomic distinctness index and its statistical properties [J]. Journal of Applied Ecology, 1998, 35(4): 523-531. doi: 10.1046/j.1365-2664.1998.3540523.x

    [25]

    Warwick R M, Clarke K R. New ‘biodiversity’ measures reveal a decrease in taxonomic distinctness with increasing stress [J]. Marine Ecology Progress Series, 1995(129): 301-305. doi: 10.3354/meps129301

    [26]

    Gwali S, Okullo P, Hafashimana D, et al. Taxonomic diversity, distinctness, and abundance of tree and shrub species in Kasagala forest reserve in Uganda: implications for management and conservation policy decisions [J]. Tropical Conservation Science, 2010, 3(3): 319-333. doi: 10.1177/194008291000300306

    [27]

    Stenger-Kovács C, Hajnal É, Lengyel E, et al. A test of traditional diversity measures and taxonomic distinctness indices on benthic diatoms of soda pans in the Carpathian basin [J]. Ecological Indicators, 2016(64): 1-8. doi: 10.1016/j.ecolind.2015.12.018

    [28]

    Clarke K R, Warwick R M. The taxonomic distinctness measure of biodiversity: weighting of step lengths between hierarchical levels [J]. Marine Ecology Progress Series, 1999(184): 21-29. doi: 10.3354/meps184021

    [29] 徐宾铎, 金显仕, 梁振林. 对黄、渤海鱼类等级多样性的推算 [J]. 中国海洋大学学报(自然科学版), 2005, 35(1): 25-28.

    Xu B D, Jin X S, Liang Z L. Calculation of hierarchical diversity of fish in the Huanghai and Bohai Seas [J]. Periodical of Ocean University of China, 2005, 35(1): 25-28.

    [30]

    Azevedo M C C, Gomes-Gonçalves R D S, Mattos T M, et al. Taxonomic and functional distinctness of the fish assemblages in three coastal environments (bays, coastal lagoons and oceanic beaches) in Southeastern Brazil [J]. Marine Environmental Research, 2017(129): 180-188. doi: 10.1016/j.marenvres.2017.05.007

    [31] 孙鹏, 王咏雪, 田阔, 等. 浙江5个海湾鱼类分类多样性研究 [J]. 海洋与湖沼, 2018, 49(6): 1325-1333. doi: 10.11693/hyhz20180100019

    Sun P, Wang Y X, Tian K, et al. Taxonomic diversity of fish species in five bays in Zhejiang Province [J]. Oceanologia et Limnologia Sinica, 2018, 49(6): 1325-1333. doi: 10.11693/hyhz20180100019

    [32]

    Leonard D R P, Robert Clarke K, Somerfield P J, et al. The application of an indicator based on taxonomic distinctness for UK marine biodiversity assessments [J]. Journal of Environmental Management, 2006, 78(1): 52-62. doi: 10.1016/j.jenvman.2005.04.008

    [33]

    Zhou H, Zhang Z, Liu X, et al. Decadal change in sublittoral macrofaunal biodiversity in the Bohai Sea, China [J]. Marine Pollution Bulletin, 2012, 64(11): 2364-2373. doi: 10.1016/j.marpolbul.2012.08.014

    [34] 朱晓芬, 陈彬, 俞炜炜, 等. 厦门湾大型底栖动物分类学多样性指数及分类充分性 [J]. 生态学报, 2018, 38(15): 5554-5565.

    Zhu X F, Chen B, Yu W W, et al. Discussion on taxonomic diversity indices and taxonomic sufficiency for macrobenthos in Xiamen Bay [J]. Acta Ecologica Sinica, 2018, 38(15): 5554-5565.

    [35] 葛美玲, 李一璇, 张学雷, 等. 中国海底栖多毛类分类多样性 [J]. 海洋科学进展, 2020, 38(2): 287-303. doi: 10.3969/j.issn.1671-6647.2020.02.009

    Ge M L, Li Y X, Zhang X L, et al. Taxonomic diversity of the benthic polychaetes in China Seas [J]. Advances in Marine Science, 2020, 38(2): 287-303. doi: 10.3969/j.issn.1671-6647.2020.02.009

    [36] 吴强, 李忠义, 戴芳群, 等. 黄渤海甲壳类的分类多样性 [J]. 生物多样性, 2016, 24(11): 1306-1314. doi: 10.17520/biods.2016250

    Wu Q, Li Z Y, Dai F Q, et al. Taxonomic diversity of crustaceans in Yellow Sea and Bohai Sea [J]. Biodiversity Science, 2016, 24(11): 1306-1314. doi: 10.17520/biods.2016250

    [37] 刘惠, 郭朋军, 俞存根, 等. 舟山沿岸渔场甲壳类群落结构特征研究 [J]. 海洋科学, 2020, 44(2): 90-98. doi: 10.11759/hykx20191122002

    Liu H, Guo P J, Yu C G, et al. Community structure of crustaceans in the Zhoushan coastal fishery [J]. Marine Sciences, 2020, 44(2): 90-98. doi: 10.11759/hykx20191122002

    [38]

    Prato S, Morgana J G, La Valle P, et al. Application of biotic and taxonomic distinctness indices in assessing the Ecological Quality Status of two coastal lakes: Caprolace and Fogliano lakes (Central Italy) [J]. Ecological Indicators, 2009, 9(3): 568-583. doi: 10.1016/j.ecolind.2008.06.004

    [39]

    Ceschia C, Falace A, Warwick R. Biodiversity evaluation of the macroalgal flora of the Gulf of Trieste (Northern Adriatic Sea) using taxonomic distinctness indices [J]. Hydrobiologia, 2007, 580(1): 43-56. doi: 10.1007/s10750-006-0466-8

    [40]

    Bevilacqua S, Fraschetti S, Terlizzi A, et al. The use of taxonomic distinctness indices in assessing patterns of biodiversity in modular organisms [J]. Marine Ecology, 2009, 30(2): 151-163. doi: 10.1111/j.1439-0485.2008.00270.x

    [41] 纪磊, 何平, 叶佳, 等. 近50年来洪湖鱼类群落分类学多样性变动 [J]. 湖泊科学, 2017, 29(4): 932-941. doi: 10.18307/2017.0417

    Ji L, He P, Ye J, et al. The taxonomic distinctness diversity of fish community in Lake Honghu during the past 50 years [J]. Journal of Lake Sciences, 2017, 29(4): 932-941. doi: 10.18307/2017.0417

    [42]

    Jiang X, Pan B, Sun Z, et al. Application of taxonomic distinctness indices of fish assemblages for assessing effects of river-lake disconnection and eutrophication in floodplain lakes [J]. Ecological Indicators, 2020(110): 105955. doi: 10.1016/j.ecolind.2019.105955

    [43] 李静, 吴华武, 周永强, 等. 长江中下游地区丰水期河、湖水氢氧同位素组成特征 [J]. 环境科学, 2020, 41(3): 1176-1183.

    Li J, Wu H W, Zhou Y Q, et al. Variations of stable oxygen and deuterium isotopes in river and lake waters during flooding season along the middle and lower reaches of the Yangtze River regions [J]. Environmental Science, 2020, 41(3): 1176-1183.

    [44]

    Jiang Z G, Brosse S, Jiang X M, et al. Measuring ecosystem degradation through half a century of fish species introductions and extirpations in a large isolated lake [J]. Ecological Indicators, 2015(58): 104-112. doi: 10.1016/j.ecolind.2015.05.040

    [45]

    Le C, Zha Y, Li Y, et al. Eutrophication of lake waters in China: cost, causes, and control [J]. Environmental Management, 2010, 45(4): 662-668. doi: 10.1007/s00267-010-9440-3

    [46] 郭治之, 鄒多祿, 刘瑞蘭, 等. 鄱阳湖鱼类调查报告(江西野生动物资源调查报告之一) [J]. 南昌大学学报(理科版), 1964: 121-130.

    Guo Z Z, Zou D L, Liu R L, et al. Investigation report on fish in Poyang Lake (one of the investigation reports on wildlife resources in Jiangxi) [J]. Journal of Nanchang University (Natural Science), 1964: 121-130.

    [47] 张堂林, 李钟杰. 鄱阳湖鱼类资源及渔业利用 [J]. 湖泊科学, 2007, 19(4): 434-444. doi: 10.3321/j.issn:1003-5427.2007.04.012

    Zhang T L, Li Z J. Fish resources and fishery utilization of Lake Poyang [J]. Journal of Lake Sciences, 2007, 19(4): 434-444. doi: 10.3321/j.issn:1003-5427.2007.04.012

    [48] 唐家汉, 钱名全. 洞庭湖的鱼类区系 [J]. 淡水渔业, 1979, 9(S1): 26-34.

    Tang J H, Qian M Q. Fish fauna of Dongting Lake [J]. Freshwater Fisheries, 1979, 9(S1): 26-34.

    [49] 朱轶, 吕偲, 胡慧建, 等. 三峡大坝运行前后西洞庭湖鱼类群落结构特征变化 [J]. 湖泊科学, 2014, 26(6): 844-852. doi: 10.18307/2014.0605

    Zhu Y, Lv C, Hu H J, et al. Changes in fish community structure in West Dongting Lake after the operation of the Three Gorges Dam [J]. Journal of Lake Sciences, 2014, 26(6): 844-852. doi: 10.18307/2014.0605

    [50] 《洪泽湖渔业史》编写组. 洪泽湖渔业史 [M]. 南京: 江苏科学技术出版社, 1990: 9-47.

    Compile Group of the Fisheries History of the Hongze Lake ed. The Fisheries History of the Hongze Lake [M]. Nanjing: Phoenix Science Press, 1990: 9-47.

    [51] 朱松泉, 窦鸿身. 洪泽湖——水资源和水生生物资源 [M]. 合肥: 中国科学技术出版社, 1993: 174-181.

    Zhu S Q, Dou H S. The Hongze Lake-Water Resources and Hydrobiology [M]. Hefei: University of Science and Technology of China. 1993: 174-181.

    [52] 林明利, 张堂林, 叶少文, 等. 洪泽湖鱼类资源现状、历史变动和渔业管理策略 [J]. 水生生物学报, 2013, 37(6): 1118-1127.

    Lin M L, Zhang T L, Ye S W, et al. Status of fish resources, historical variation and fisheries management strategies in Hongze Lake [J]. Acta Hydrobiologica Sinica, 2013, 37(6): 1118-1127.

    [53] 刘孝珍. 洪泽湖渔业资源现状、问题及对策 [D]. 南京: 南京农业大学, 2015: 21-26.

    Liu X Z. Current situation, problems and countermeasures of fishery resources in Hongze Lake [D]. Nanjing: Nanjing Agricultural University, 2015: 21-26.

    [54] 毛志刚, 谷孝鸿, 龚志军, 等. 洪泽湖鱼类群落结构及其资源变化 [J]. 湖泊科学, 2019, 31(4): 1109-1119. doi: 10.18307/2019.0401

    Mao Z G, Gu X H, Gong Z J, et al. The structure of fish community and changes of fishery resources in Lake Hongze [J]. Journal of Lake Sciences, 2019, 31(4): 1109-1119. doi: 10.18307/2019.0401

    [55] 叶少文. 长江中游浅水湖泊鱼类群落和系统营养网络模型的研究 [D]. 武汉: 中国科学院水生生物研究所, 2007: 35-38.

    Ye S W. Studies on fish communities and trophic network model of shallow lakes along the middle reach of the Yangtze River [D]. Wuhan: Institute of Hydrobiology, Chinese Academy of Sciences, 2007: 35-38.

    [56] 宋天祥, 张国华, 常剑波, 等. 洪湖鱼类多样性研究 [J]. 应用生态学报, 1999, 10(1): 86-90. doi: 10.3321/j.issn:1001-9332.1999.01.023

    Song T X, Zhang G H, Chang J B, et al. Fish diversity in Honghu Lake [J]. Chinese Journal of Applied Ecology, 1999, 10(1): 86-90. doi: 10.3321/j.issn:1001-9332.1999.01.023

    [57] 卢山, 胡军华, 肖成云, 等. 洪湖鱼类物种组成及影响因素评价 [J]. 野生动物, 2006, 27(6): 14-17.

    Lu S, Hu J H, Xiao C Y, et al. Fish species composition in Honghu Lake and estimation of influencing factors [J]. Chinese Journal of Wildlife, 2006, 27(6): 14-17.

    [58] 倪勇, 朱成德. 太湖鱼类志 [M]. 上海: 上海科学技术出版社, 2005: 61-277.

    Ni Y, Zhu C D. Fishes of the Taihu Lake [M]. Shanghai: Shanghai Scientific & Technical Publishers, 2005: 61-277.

    [59] 毛志刚, 谷孝鸿, 曾庆飞, 等. 太湖鱼类群落结构及多样性 [J]. 生态学杂志, 2011, 30(12): 2836-2842.

    Mao Z G, Gu X H, Zeng Q F, et al. Community structure and diversity of fish in Lake Taihu [J]. Chinese Journal of Ecology, 2011, 30(12): 2836-2842.

    [60] 朱松泉, 刘正文, 谷孝鸿. 太湖鱼类区系变化和渔获物分析 [J]. 湖泊科学, 2007, 19(6): 664-669. doi: 10.3321/j.issn:1003-5427.2007.06.007

    Zhu S Q, Liu Z W, Gu X H. Changes of the fish fauna and fish yield analysis in Lake Taihu [J]. Journal of Lake Sciences, 2007, 19(6): 664-669. doi: 10.3321/j.issn:1003-5427.2007.06.007

    [61] 王岐山. 巢湖鱼类区系研究 [J]. 安徽大学学报(自然科学版), 1987, 11(2): 70-78.

    Wang Q S. Study on ichthyologlcal fauna of Chao Lake [J]. Journal of Anhui University (Natural Sciences), 1987, 11(2): 70-78.

    [62] 过龙根, 谢平, 倪乐意, 等. 巢湖渔业资源现状及其对水体富营养化的响应研究 [J]. 水生生物学报, 2007, 31(5): 700-705. doi: 10.3321/j.issn:1000-3207.2007.05.015

    Guo L G, Xie P, Ni L Y et al. The status of fishery resources of Lake Chaohu and its response to eutrophication [J]. Acta Hydrobiologica Sinica, 2007, 31(5): 700-705. doi: 10.3321/j.issn:1000-3207.2007.05.015

    [63] 伍献文. 五里湖1951年湖泊学调查五、鱼类区系及其分析 [J]. 水生生物学报, 1962(1): 109-112.

    Wu X W. Limnological survey of Lake Wulihu in year 1951-Part 5, fish fauna analysis [J]. Acta Hydrobiologica Sinica, 1962(1): 109-112.

    [64] 张红燕, 袁永明, 贺艳辉, 等. 蠡湖鱼类群落结构及物种多样性的空间特征 [J]. 云南农业大学学报, 2010, 25(1): 22-28.

    Zhang H Y, Yuan Y M, He Y H, et al. Composition of fishes and spatial analysis of biodiversity in Lihu Lake [J]. Journal of Yunnan Agricultural University (Natural Science), 2010, 25(1): 22-28.

    [65] 王利民, 胡慧建, 王丁. 江湖阻隔对涨渡湖区鱼类资源的生态影响 [J]. 长江流域资源与环境, 2005, 14(3): 287-292. doi: 10.3969/j.issn.1004-8227.2005.03.005

    Wang L M, Hu H J, Wang D. Ecological impacts of disconnection from the Yangtze on fish resources in Zhangdu Lake [J]. Resources and Environment in the Yangtze Basin, 2005, 14(3): 287-292. doi: 10.3969/j.issn.1004-8227.2005.03.005

    [66] 龚江, 王腾, 李霄, 等. 长江天鹅洲故道鱼类群落结构特征及其年际变化 [J]. 水生态学杂志, 2018, 39(4): 46-53.

    Gong J, Wang T, Li X, et al. Interannual variation of the fish community structure in the Tian-e-Zhou oxbow of Yangtze River [J]. Journal of Hydroecology, 2018, 39(4): 46-53.

    [67] 张堂林, 方榕乐, 崔亦波. 渔业发展阶段不同的五个水体鱼类多样性的比较 [J]. 水生生物学报, 1996, 20(Supplement): 191-199.

    Zhang T L, Fang R L, Cui Y B. Comparisons of fish community diversity in five lake areas under different levels of fishery development [J]. Acta Hydrobiologica Sinica, 1996, 20(Supplement): 191-199.

    [68] 陈祖培, 许爱国, 王志林, 等. 苏州澄湖鱼类区系与资源增殖 [J]. 内陆水产, 2004, 29(8): 33-35.

    Chen Z P, Xu A G, Wang Z L, et al. Fish fauna and resource proliferation of Lake Chenghu in Suzhou [J]. Inland Fisheries, 2004, 29(8): 33-35.

    [69] 谢平, 黄根田. 武汉东湖鱼类群落结构的变化及其原因的分析 [J]. 水生生物学报, 1996, 20(Supplement): 38-46.

    Huang G T, Xie P. Changes in the structure of fish community with the analysis on the possible reasons in lake Donghu, Wuhan [J]. Acta Hydrobiologica Sinica, 1996, 20(Supplement): 38-46.

    [70] 张堂林. 扁担塘鱼类生活史策略、营养特征及群落结构研究 [D]. 武汉: 中国科学院水生生物研究所, 2005: 158-159.

    Zhang T L. Life-history strategies, trophic patterns and community structure in the fishes of Lake Biandantang [D]. Wuhan: Institute of Hydrobiology, Chinese Academy of Sciences, 2005: 158-159.

    [71] 张堂林, 李钟杰, 郭青松. 长江中下游四个湖泊鱼类与渔业研究 [J]. 水生生物学报, 2008, 32(2): 167-177. doi: 10.3321/j.issn:1000-3207.2008.02.005

    Zhang T L, Li Z J, Guo Q S. Investigations on fishes and fishery of four lakes along the middle and lower basins of the Changjiang River [J]. Acta Hydrobiologica Sinica, 2008, 32(2): 167-177. doi: 10.3321/j.issn:1000-3207.2008.02.005

    [72] 何勇凤, 李昊成, 王旭歌, 等. 长湖鱼类群落结构的时空变化 [J]. 长江流域资源与环境, 2016, 25(2): 265-273.

    He Y F, Li H C, Wang X G, et al. Spatial-temporal variation of fish community structure in Lake Changhu [J]. Resources and Environment in the Yangtze Basin, 2016, 25(2): 265-273.

    [73] 古辰, 姜美彤, 蒋忠冠. 生境过滤作用对长江下游菜子湖鱼类物种和功能组成的影响 [J]. 湖泊科学, 2020, 32(1): 124-133. doi: 10.18307/2020.0112

    Gu C, Jiang M T, Jiang Z G. Impacts of habitat filtering on taxonomic and functional composition of fish communities in Lake Caizi, lower reaches of the Yangtze River [J]. Journal of Lake Sciences, 2020, 32(1): 124-133. doi: 10.18307/2020.0112

    [74] 傅萃长. 长江流域鱼类多样性空间格局与资源分析 [D]. 上海: 复旦大学, 2003: 42-44.

    Fu C C. Biodiversity pattern and resources of fish in the Yangtze River basin with discussion on biodiversity and phylogeny of silver fish [D]. Shanghai: Fudan University, 2003: 42-44.

    [75] 梁秩燊, 周春生, 黄鹤年. 长江中游通江湖泊——五湖的鱼类组成及其季节变化 [J]. 海洋与湖沼, 1981, 12(5): 468-478.

    Liang Z S, Zhou C S, Huang H N. Composition and seasonal changes of fishes in Lake Wuhu connected with Changjiang River [J]. Oceanologia et Limnologia Sinica, 1981, 12(5): 468-478.

    [76] 刘仕鑫. 淀山湖鱼类群落结构及主要鱼种生物学和资源量估算研究 [D]. 上海: 上海海洋大学, 2016: 14-16.

    Liu S X. Study on fish community structures and the biology and biomass estimation of the main fish species in Dianshan Lake [D]. Shanghai: Shanghai Ocean University, 2016: 14-16.

    [77] 唐晟凯, 张彤晴, 李大命, 等. 骆马湖夏季鱼类群落结构及其空间分布 [J]. 江苏农业科学, 2018, 46(1): 107-111.

    Tang S K, Zhang T Q, Li D M, et al. The structure and spatial distribution of fish community in Luoma Lake in summer [J]. Jiangsu Agricultural Sciences, 2018, 46(1): 107-111.

    [78] 唐晟凯, 张彤晴, 孔优佳, 等. 滆湖鱼类学调查及渔获物分析 [J]. 水生态学杂志, 2009, 30(6): 20-24.

    Tang S K, Zhang T Q, Kong Y J, et al. Ichthyological survey and fish yield analysis of Lake Gehu [J]. Journal of Hydroecology, 2009, 30(6): 20-24.

    [79] 张晶晶. 傀儡湖鱼类群落及生态系统结构分析 [D]. 合肥: 安徽农业大学, 2012: 22-23.

    Zhang J J. Analysis on fish community and ecosystem structure in Lake Kuilei [D]. Hefei: Anhui Agricultural University, 2012: 22-23.

    [80] 龚江. 长江何王庙故道和天鹅洲故道鱼类群落结构比较研究 [D]. 武汉: 华中农业大学, 2017: 13-15.

    Gong J. The comparative study on fish community structure in He-Wang-Miao Oxbow and Tian-e-Zhou Oxbow, Yangtze River [D]. Wuhan: Huazhong Agricultural University, 2017: 13-15.

    [81] 夏文凯. 武湖渔业资源及鱼类放养模式的研究 [D]. 南昌: 南昌大学, 2007: 17-19.

    Xia W K. Studies on the fisheries resources and fish stocking model of Wuhu Lake [D]. Nanchang: Nanchang University, 2007: 17-19.

    [82] 杨品红, 陈红文, 于杨, 等. 大通湖自然资源调查及综合开发利用战略思考 [J]. 湖南文理学院学报(自然科学版), 2013, 25(1): 21-27.

    Yang P H, Chen H W, Yu Y, et al. An investigate of the natural resources and the strategic thinking of comprehensive development and utilization in Datonghu Lake [J]. Journal of Hunan University of Arts and Science (Natural Science Edition), 2013, 25(1): 21-27.

    [83] 杨代勤, 方长琰, 邹社校, 等. 洋圻湖的鱼类资源及白鲢生长的研究 [J]. 湖北农学院学报, 1998(4): 326-329.

    Yang D Q, Fang C Y, Zou S X, et al. Studies on the fish resources and silver carp (Hypophthalmichthys molitrix) growth in Yangqi Lake [J]. Journal of Hubei Agricultural College, 1998(4): 326-329.

    [84] 徐金星, 方春林, 廖华明. 进贤湖泊鱼类区系组成 [J]. 江西水产科技, 1999(2): 15-19. doi: 10.3969/j.issn.1006-3188.1999.02.005

    Xu J X, Fang C L, Liao H M. Fauna composition of lake fishes in Jinxian County [J]. Jiangxi Fishery Science and Technology, 1999(2): 15-19. doi: 10.3969/j.issn.1006-3188.1999.02.005

    [85] 胡菊英, 姚闻卿, 李志云. 龙窝湖鱼类种群组成及渔业调查报告 [J]. 安徽大学学报(自然科学版), 1981(1): 93-99.

    Hu J Y, Yao W Q, Li Z Y. Fish population composition and fishery survey report in Longwo Lake [J]. Journal of Anhui University (Natural Science Edition), 1981(1): 93-99.

    [86]

    Nelson J S, Grande T C, Wilson M V H. Fishes of the World [M]. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2016.

    [87]

    Gibson R, Barnes M, Atkinson R. Practical measures of marine biodiversity based on relatedness of species [J]. Oceanography and Marine Biology, 2001(39): 207-231.

    [88]

    Graham N A J, McClanahan T R, Letourneur Y, et al. Anthropogenic stressors, inter-specific competition and ENSO effects on a Mauritian coral reef [J]. Environmental Biology of Fishes, 2007, 78(1): 57-69.

    [89]

    Warwick R M, Clarke K R. Taxonomic distinctness and environmental assessment [J]. Journal of Applied Ecology, 1998, 35(4): 532-543. doi: 10.1046/j.1365-2664.1998.3540532.x

    [90] 李凡, 周兴, 张岚, 等. 山东近海鱼类群落分类多样性 [J]. 生态学报, 2015, 35(7): 2322-2330.

    Li F, Zhou X, Zhang L, et al. Taxonomic diversity of fish assemblages in coastal waters off Shandong [J]. Acta Ecologica Sinica, 2015, 35(7): 2322-2330.

    [91]

    Clarke K R, Gorley R N. PRIMER: Getting started with v6 [J]. PRIMER-E Ltd: Plymouth, UK, 2005, 931: 932.

    [92]

    Bhat A, Magurran A E. Taxonomic distinctness in a linear system: a test using a tropical freshwater fish assemblage [J]. Ecography, 2006, 29(1): 104-110. doi: 10.1111/j.2006.0906-7590.04418.x

    [93]

    Campbell N, Neat F, Burns F, et al. Species richness, taxonomic diversity, and taxonomic distinctness of the deep-water demersal fish community on the Northeast Atlantic continental slope (ICES Subdivision VIa) [J]. ICES Journal of Marine Science, 2010, 68(2): 365-376.

    [94]

    Hall S J, Greenstreet S P. Taxonomic distinctness and diversity measures: responses in marine fish communities [J]. Marine Ecology Progress Series, 1998, 166: 227-229. doi: 10.3354/meps166227

    [95]

    Abellan P, Bilton D T, Millan A, et al. Can taxonomic distinctness assess anthropogenic impacts in inland waters? A case study from a Mediterranean River Basin [J]. Freshwater Biology, 2006, 51(9): 1744-1756. doi: 10.1111/j.1365-2427.2006.01613.x

图(6)  /  表(4)
计量
  • 文章访问数:  4948
  • HTML全文浏览量:  711
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-29
  • 修回日期:  2022-07-17
  • 网络出版日期:  2022-09-05
  • 发布日期:  2023-01-14

目录

/

返回文章
返回