APPARENT DIGESTIBILITY COEFFICIENTS OF SEVEN PROTEIN SOURCES FOR JUVENILE HYBRID GROUPER (EPINEPHELUS FUSCOGUTTATUS♀×EPINEPHELUS LANCEOLATUS♂)
-
摘要: 研究测定了珍珠龙胆石斑鱼(Epinephelus fuscoguttatus♀×Epinephelus lanceolatu♂)对黄粉虫粉(TMM)、黑水虻虫粉(HIM)、乙醇梭菌蛋白(CAP)、荚膜甲基球菌蛋白(MCM)、小球藻粉(CVM)、棉籽浓缩蛋白(CPC)和秘鲁鱼粉(PFM)共7种蛋白源的表观消化率(ADCs)。试验配制1组含50%鱼粉的基础饲料, 而7组试验饲料按70%的基础饲料和30%的蛋白源配制而成, 8组饲料都加入0.1%氧化钇(Y2O3)作为外源标志物。将初始平均体重为(9.95±0.50) g的杂交石斑鱼幼鱼随机分配到0.3 m3的玻璃钢桶中, 每个处理组设置3个重复(桶), 每桶30尾鱼。经过5d的试验饲料饲喂驯化后, 每天两次用虹吸法收集粪便样本。结果表明, 7种蛋白源的干物质ADCs从高至低依次为: CVM>TMM=CAP=CPC>HIM=MCM=PFM。CVM的干物质、粗蛋白和大多数氨基酸(包括蛋氨酸和苏氨酸)的ADCs最高。而HIM的干物质、粗蛋白和大多数氨基酸的ADCs低于其他组。CAP的赖氨酸ADCs高于其他6种蛋白原料, 粗蛋白ADCs仅次于CVM。PFM的干物质ADCs明显低于CVM, 但与CAP没有显著差异。此外, PFM的粗蛋白ADCs低于CVM、CAP和MCM三种蛋白原料, 并且其赖氨酸ADCs低于CAP, 苏氨酸ADCs也低于CAP和CVM。研究表明, 这7种蛋白源中小球藻粉(CVM)和乙醇梭菌蛋白(CAP)在珍珠龙胆石斑鱼中显示出较高的表观消化率。Abstract: The apparent digestibility coefficients (ADCs) of Tenebrio molitor meal (TMM), Hermetia illucens meal (HIM), Clostridium autoethanogenum protein (CAP), Methylococcus capsulatus meal (MCM), Chlorella vullgaris meal (CVM), Cottonseed protein concentrate (CPC) and Peruvian fishmeal (PFM) were determined in juvenile hybrid grouper (Epinephelus fuscoguttatus♀×Epinephelus lanceolatu♂). A basal diet (including 50% fishmeal) and seven test diets (700 g/kg of the basal diet and 300 g/kg of each test ingredient) were formulated with 0.1% yttrium oxide (Y2O3) as an inert marker. The juvenile hybrid groupers, with initial average body weight of (9.95±0.50) g, were randomly distributed into 0.3 m³ fiberglass tanks, each tank with 30 fish. The faeces samples were collected twice-daily by siphoning following feeding fish after five days of domestication. The ADCs of dry matter of seven test ingredients were ranked as CVM>TMM=CAP=CPC>HIM=MCM=PFM (P<0.05). CVM showed the highest ADCs of dry matter (DM), crude protein (CP) and most amino acids (including methionine and threonine) except crude lipids (CL), whereas HIM had the relatively lower ADCs of DM, CP and most amino acids except CL. CAP had a higher lysine digestibility than the other six test ingredients, and was only lower than CVM in the ADC of CP. The ADC of DM in PFM was significantly lower than that in CVM (P<0.05), and showed no differences with that in CAP (P>0.05). Besides, PFM showed a lower ADC of CP than the ADCs of CP in CVM, CAP and MCM (P<0.05), and showed a lower ADC of lysine than that in CAP as well as a lower ADC of threonine than those in CAP and CVM (P<0.05). Overall, this study showed the advantage of CVM and CAP among the seven protein sources on the digestibility of feed available in hybrid grouper.
-
-
表 1 试验饲料配方
Table 1 Formulation of diets used in this study (dry matter basis, g/kg)
原料成分
Ingredient composition基础饲料
Basal diet试验饲料
Test diet鱼粉Fish meala 500 350 试验蛋白原料Test ingredientb 0 300 鱼油Fish oil 20 14 大豆卵磷脂Soybean lecithin 15 10.50 豆油Soybean oil 20 14 豆粕Soybean meal 150 105 小麦谷朊粉Wheat gluten 80 56 面粉Wheat flour 183 127.8 维生素C Vitamin C (35%) 0.5 0.35 氯化胆碱Choline chloride (60%) 5 3.5 磷酸二氢钙Calcium monophosphate 15 10.5 维生素和矿物质预混料
Vitamin and mineral premixc10 7 乙氧基喹啉Ethoxyquin 0.5 0.35 氧化钇Y2O3 1 1 注: a鱼粉: 秘鲁鱼粉, 73.19%粗蛋白, 9.66%粗脂肪, 由秘鲁Tecnologica de Alimentos S.A.公司Callao工厂提供; b试验蛋白: 黄粉虫粉、黑水虻虫粉、乙醇梭菌蛋白、荚膜甲基球菌蛋白、小球藻粉、棉籽浓缩蛋白和秘鲁鱼粉; c 维生素和矿物质预混料(每kg饲料含): 维生素B1, 5 mg; 维生素B2, 10 mg; 维生素A, 5000 IU; 维生素D3, 1000 IU; 维生素E, 40 mg; 维生素K3, 10 mg; 维生素B6, 10 mg; 维生素B7, 0.1 mg; 维生素B12, 0.02 mg; 泛酸钙, 20 mg; 叶酸, 1 mg; 烟酸, 40 mg; 维生素C, 150 mg; 铁, 100 mg; 碘, 0.8 mg; 铜, 3 mg; 锌, 50 mg; 锰, 12 mg; 硒, 0.3 mg; 钴, 0.2 mg, 由北京英惠尔生物技术有限公司提供Note: a Fishmeal: Peruvian fishmeal, 73.19% crude protein, 9.66% crude lipids, provided by Tecnologica de Alimentos S.A., Callao, Peru; b Test ingredients: TMM, HIM, CAP, MCM, CVM, CPC and PFM; C Vitamin and Mineral Premix (diet/kg) includes following contents: thiamine, 5 mg; riboflavin, 10 mg; vitamin A, 5000 IU; vitamin D3, 1000 IU; vitamin E, 40 mg; menadione, 10 mg; pyridoxine, 10 mg; biotin, 0.1 mg; cyanocobalamin, 0.02 mg; calcium pantothenate, 20 mg; folic acid, 1 mg; niacin, 40 mg; vitamin C, 150 mg; iron, 100 mg; iodine, 0.8 mg; copper, 3 mg; zinc, 50 mg; manganese, 12 mg; selenium, 0.3 mg; cobalt, 0.2 mg, provided by Beijing Enhalor International Tech Co., Ltd., Beijing, China 表 2 七种试验蛋白原料的营养成分和氨基酸组成
Table 2 Proximate and amino acid compositions of test ingredients (dry matter basis, %)
营养成分
Proximate compositionTMMa HIMb CAPc MCMd CVMe CPCf PFMg 粗蛋白Crude protein 65.88 32.17 84.21 74.10 51.50 61.51 68.21 粗脂肪Crude lipids 4.19 30.00 0.19 0.69 5.50 2.36 9.00 总磷Total Phosphorus 0.35 0.79 0.92 1.49 1.21 1.68 2.59 天冬氨酸Aspartic acid 4.85 2.78 9.54 5.82 5.05 5.66 6.10 苏氨酸Threonine 2.46 1.48 4.02 2.87 2.57 1.90 2.87 丝氨酸Serine 5.74 1.36 3.21 2.20 2.04 2.65 2.61 谷氨酸Glutamic acid 7.74 4.49 9.78 7.28 6.78 12.37 8.75 甘氨酸Glycine 5.31 1.71 3.87 3.33 2.73 2.50 4.13 丙氨酸Alanine 3.13 2.24 4.63 4.70 3.93 2.36 4.42 胱氨酸Cystine 4.05 0.44 0.71 0.35 0.58 0.95 0.76 缬氨酸Valine 3.92 2.02 5.44 3.89 2.95 2.66 3.37 蛋氨酸Methionine 1.29 0.65 2.29 1.73 0.90 0.85 2.03 异亮氨酸Isoleucine 2.80 1.30 5.28 2.94 1.86 1.89 2.75 亮氨酸Leucine 5.08 2.13 6.38 5.04 4.24 3.44 5.26 酪氨酸Tyrosine 2.05 1.83 3.14 1.81 2.08 1.35 2.29 苯丙氨酸Phenylalanine 2.57 1.45 3.30 2.91 2.82 3.53 3.59 赖氨酸Lysine 4.85 1.75 8.70 3.78 3.20 2.47 5.21 组氨酸Histidine 0.90 1.06 1.68 1.42 1.29 1.80 2.07 精氨酸Arginine 3.73 1.58 3.40 4.21 3.10 7.89 4.09 脯氨酸Proline 4.43 1.89 2.40 2.52 1.99 2.17 2.84 总氨基酸Total amino acids 64.90 30.16 77.77 56.80 48.11 56.45 63.15 注: aTMM: 黄粉虫粉, 由广州泽和成生物技术有限公司提供; bHIM: 黑水虻虫粉, 由广州飞禧特生物技术有限公司提供; cCAP: 乙醇梭菌蛋白, 由河北首朗新能源技术有限公司提供; dMCM: 荚膜甲基球菌蛋白, 由美国Calysta公司提供; eCVM: 小球藻粉, 由中科院水生生物研究所(武汉)提供; fCPC: 棉籽浓缩蛋白, 由新疆金兰植物蛋白有限公司提供; gPFM: 秘鲁鱼粉, 由秘鲁Tecnologica de Alimentos S.A.公司提供Note: Tenebrio molitor meal, provided by Guangzhou Zehecheng Biotechnology Co. Ltd., Guangzhou, China; Hermetia illucens meal, provided by Guangzhou Feixite Biotechnology Co. Ltd., Guangzhou, China; Clostridium autoethanogenum protein, provided by Hebei Shoulang New Energy Technology Co. Ltd., Tangshan, China; Methylococcus capsulatus meal, provided by FeedKind, Calysta, Inc., CA, USA; Chlorella vulgaris meal, provided by Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Cottonseed protein concentrate, provided by Xinjiang Jinlan Plant Protein Co. Ltd., Shihezi, China; Peruvian fishmeal, provided by Tecnologica de Alimentos S.A., Callao, Peru 表 3 试验饲料的营养成分和氨基酸组成
Table 3 Proximate and amino acid compositions of test diets (dry matter basis, %)
营养成分
Proximate composition基础饲料Basal diet TMM HIM CAP MCM CVM CPC PFM 干物质Dry matter 98.36 97.34 97.24 96.98 97.45 97.18 97.24 98.00 粗蛋白Crude protein 52.70 56.39 47.52 64.09 60.19 52.47 56.36 58.84 粗脂肪Crude lipids 10.57 8.30 17.32 7.46 7.61 9.16 8.15 10.29 粗灰分Crude ash 11.67 12.00 12.04 8.80 10.14 9.43 10.49 13.89 总磷Total Phosphorus 21.38 18.10 14.69 17.90 22.07 18.68 19.87 24.85 氧化钇Y2O3 (μg/g) 991.92 924.06 813.51 1026.79 1091.44 1081.91 1076.06 1042.82 天冬氨酸Aspartic acid 4.26 3.74 3.82 5.98 4.77 4.41 4.80 4.95 苏氨酸Threonine 1.98 1.73 1.81 2.84 2.32 2.16 2.04 2.22 丝氨酸Serine 2.12 1.82 1.98 2.62 2.17 2.19 2.40 2.08 谷氨酸Glutamic acid 9.15 7.93 7.67 9.23 8.98 8.42 10.49 9.18 甘氨酸Glycine 2.58 2.37 2.36 3.12 2.79 2.70 2.58 3.01 丙氨酸Alanine 2.67 2.65 2.64 3.41 3.33 3.12 2.60 3.18 胱氨酸Cystine 0.60 0.52 0.51 0.69 0.65 0.53 0.64 0.55 缬氨酸Valine 2.29 2.29 2.17 3.21 2.71 2.44 2.40 2.64 蛋氨酸Methionine 1.02 0.85 0.83 1.33 1.16 0.93 0.87 1.32 异亮氨酸Isoleucine 2.06 1.94 1.88 3.10 2.34 2.03 2.01 2.36 亮氨酸Leucine 3.71 3.24 3.29 4.67 4.12 3.96 3.70 4.16 酪氨酸Tyrosine 1.54 1.63 1.56 2.07 1.85 1.57 1.63 1.80 苯丙氨酸Phenylalanine 2.20 1.96 1.92 2.62 2.45 2.31 2.57 2.42 赖氨酸Lysine 3.23 2.75 2.75 4.70 3.44 3.14 3.11 3.88 组氨酸Histidine 1.44 1.20 1.28 1.43 1.40 1.34 1.59 1.63 精氨酸Arginine 2.92 2.46 2.44 3.03 3.29 2.95 4.55 3.20 脯氨酸Proline 2.67 2.36 2.46 2.77 2.61 2.54 2.51 2.68 总氨基酸Total amino acids 46.43 41.43 41.39 56.81 50.36 46.74 50.51 51.27 表 4 试验蛋白原料的干物质、粗蛋白和粗脂肪的表观消化率
Table 4 Apparent digestibility coefficients for DM, CP and CL of test ingredients (%)
TMM HIM CAP MCM CVM CPC PFM 干物质Dry matter 63.07±4.15ab 55.39±5.61b 58.65±4.90ab 53.9±3.70b 68.74±2.66a 58.22±3.64ab 53.25±1.99b 粗蛋白Crude protein 77.48±0.27e 55.49±0.50f 85.46±0.85b 82.78±0.14c 90.94±0.70a 80.09±0.43d 81.06±0.08d 粗脂肪Crude lipids 87.61±1.18a 85.92±1.59a 82.17±2.78a 67.97±1.91b 50.95±2.97c 62.55±4.17b 80.89±1.92a 注: 平均值±标准差(n=3); 相同字母上标或同一行无字母上标表示无显著差异(P>0.05), 不同字母表示存在显著差异(P<0.05), 下同Note: Mean values±SD are presented for each group (n=3). The superscript in the same line or no superscript means no significant difference (P>0.05), values with different superscripts in the same row mean significant difference (P<0.05). The same applies below 表 5 试验蛋白原料的氨基酸表观消化率
Table 5 Apparent digestibility coefficients for amino acids of test ingredients (%)
TMM HIM CAP MCM CVM CPC PFM 精氨酸Arginine 68.22±0.58e 81.18±2.92d 88.36±1.36b 86.41±0.83bc 92.44±0.80a 94.12±0.08a 83.66±0.67cd 组氨酸Histidine 70.94±1.15d 60.10±1.24e 87.37±0.06c 96.05±0.01ab 94.24±1.43b 87.50±0.96c 96.40±0.16a 异亮氨酸Isoleucine 68.71±2.30e 72.34±0.78d 88.38±0.20a 79.60±1.94c 88.10±0.31a 72.83±0.14d 83.62±0.47b 亮氨酸Leucine 62.25±0.73e 73.96±0.80d 90.06±1.10a 80.31±1.11c 88.97±0.20a 74.21±0.33d 85.92±0.59b 赖氨酸Lysine 79.00±0.61d 73.19±1.45e 93.19±0.18a 88.09±0.20c 86.58±0.85c 68.63±0.60f 90.32±0.11b 蛋氨酸Methionine 80.45±1.12cd 83.17±3.04bc 82.13±1.49bc 77.04±1.87de 90.66±2.12a 74.55±2.50e 86.01±1.77ab 苯丙氨酸Phenylalanine 65.82±0.60e 76.71±2.17c 76.74±1.23c 68.21±1.46e 87.65±0.23a 83.79±0.92b 71.29±0.20d 苏氨酸Threonine 57.06±1.04e 74.77±3.71c 90.18±0.12a 81.77±1.15b 91.12±0.69a 70.78±1.29d 82.54±1.33b 缬氨酸Valine 62.90±2.04e 67.11±1.79d 87.11±0.55a 81.83±0.40b 88.91±0.45a 76.45±0.52c 80.85±1.25b 天冬氨酸Aspartic acid 68.27±0.35d 76.44±1.23c 90.95±0.12a 83.13±0.18b 93.4±0.69a 83.54±0.59b 83.28±0.52b 谷氨酸Glutamic acid 74.03±0.53g 77.84±0.79f 89.72±0.33c 88.07±0.74d 95.91±0.58a 91.87±0.27b 85.19±0.77e 丙氨酸Alanine 72.26±1.17d 71.34±0.72de 86.94±0.73b 84.41±0.18c 92.27±0.80a 70.13±0.43e 83.50±1.14c 胱氨酸Cystine 75.92±0.65cd 72.77±1.66d 79.55±0.58bc 82.21±3.74b 87.75±0.92a 83.57±1.61ab 62.97±1.78e 甘氨酸Glycine 62.95±0.57e 52.26±2.05f 84.38±0.64b 74.06±0.28d 96.5±1.34a 80.03±0.50c 77.83±0.80c 脯氨酸Proline 51.79±1.19f 69.83±1.50e 87.99±0.47b 82.09±1.91c 94.82±0.93a 81.66±1.39c 77.28±1.78d 丝氨酸Serine 51.26±1.55e 76.81±2.97d 89.4±1.05b 79.32±2.09cd 93.68±0.51a 81.94±0.35c 78.08±2.24cd 酪氨酸Tyrosine 71.31±1.30c 70.76±2.24c 81.23±0.96b 62.81±0.30d 87.91±0.57a 81.8±0.83b 62.75±2.28d 总氨基酸Total amino acids 67.72±0.48f 72.53±1.10e 88.08±0.17b 81.84±0.24d 91.71±0.54a 83.71±0.20c 82.39±0.35d -
[1] 陆泽峰, 黄和, 黄湘湄, 等. 低氧胁迫对珍珠龙胆石斑鱼氧化应激及能量代谢的影响 [J]. 广东海洋大学学报, 2022, 42(1): 13-19. doi: 10.3969/j.issn.1673-9159.2022.01.003 Lu Z F, Huang H, Huang X M, et al. Effects of hypoxic stress on antioxidant and energy metabolism of hybrid grouper (Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂) [J]. Journal of Guangdong Ocean University, 2022, 42(1): 13-19. doi: 10.3969/j.issn.1673-9159.2022.01.003
[2] 范秀萍, 秦小明, 章超桦, 等. 珍珠龙胆石斑鱼肌肉营养成分与挥发性风味成分的分析与评价 [J]. 广东海洋大学学报, 2018, 38(1): 39-46. doi: 10.3969/j.issn.1673-9159.2018.01.006 Fan X P, Qin X M, Zhang C H, et al. Nutritional and volatile flavor components of dorsal and ventral muscle from hybrid grouper (Epinephelus fuscoguttatus♀×E. lanceolatus♂) [J]. Journal of Guangdong Ocean University, 2018, 38(1): 39-46. doi: 10.3969/j.issn.1673-9159.2018.01.006
[3] Wang J, Liang D, Yang Q, et al. The effect of partial replacement of fish meal by soy protein concentrate on growth performance, immune responses, gut morphology and intestinal inflammation for juvenile hybrid grouper (Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂) [J]. Fish & Shellfish Immunology, 2020(98): 619-631.
[4] Ye G, Dong X, Yang Q, et al. Low-gossypol cottonseed protein concentrate used as a replacement of fish meal for juvenile hybrid grouper (Epinephelus fuscoguttatus♀×E. lanceolatus♂): Effects on growth performance, immune responses and intestinal microbiota [J]. Aquaculture, 2020(524): 735309.
[5] 徐闪浪, 黄和, 高平, 等. 喹哪啶在珍珠龙胆石斑鱼体内的残留消除规律 [J]. 广东海洋大学学报, 2021, 41(6): 18-24. doi: 10.3969/j.issn.1673-9159.2021.06.003 Xu S L, Huang H, Gao P, et al. Residue and elimination of quinalidine in pearl gentian grouper [J]. Journal of Guangdong Ocean University, 2021, 41(6): 18-24. doi: 10.3969/j.issn.1673-9159.2021.06.003
[6] Li B S, Han X J, Wang J Y, et al. Optimal dietary methionine requirement for juvenile sea cucumber Apostichopus japonicus selenka [J]. Aquaculture Research, 2021, 52(4): 1348-1358. doi: 10.1111/are.14989
[7] Michelato M, Vidal L V O, Xavier T O, et al. Dietary threonine requirement to optimize protein retention and fillet production of fast-growing Nile tilapia [J]. Aquaculture Nutrition, 2016, 22(4): 759-766. doi: 10.1111/anu.12293
[8] Helland S J, Grisdale-Helland B. Dietary threonine requirement of Atlantic salmon smolts [J]. Aquaculture, 2011, 321(3-4): 230-236. doi: 10.1016/j.aquaculture.2011.09.008
[9] Chen T, Liu C, Lin K, et al. The experiment for the development of artificial diet for salmon-like grouper Epinephelus salmonoides experiment of the nutrition requirement and rearing study by feeding with artificial diet [J]. Bulletin of Taiwan Fisheries Research Institute, 1987(43): 300-317.
[10] 王大鹏, 曹占旺, 谢达祥, 等. 石斑鱼的研究进展 [J]. 南方农业学报, 2012, 43(7): 1058-1065. doi: 10.3969/j:issn.2095-1191.2012.07.1058 Wang D P, Cao Z W, Xie D X, et al. Research progress in epinephelus industry [J]. Guangxi Agricultural Sciences, 2012, 43(7): 1058-1065. doi: 10.3969/j:issn.2095-1191.2012.07.1058
[11] Cao L, Naylor R, Henriksson P, et al. China’s aquaculture and the world’s wild fisheries [J]. Science, 2015, 347(6218): 133-135. doi: 10.1126/science.1260149
[12] Tomás-Vidal A, Monge-Ortiz R, Jover-Cerdá M, et al. Apparent digestibility and protein quality evaluation of selected feed ingredients in Seriola dumerili [J]. Journal of the World Aquaculture Society, 2019, 50(4): 842-855. doi: 10.1111/jwas.12597
[13] Yao W, Wu X, Gao Y, et al. Effects of replacing fishmeal protein by hemoglobin powder protein on growth performance, food intake, feeding-related gene expression and gut histology of hybrid grouper (Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂) juveniles [J]. Aquaculture, 2018(488): 235-243.
[14] Irm M, Taj S, Jin M, et al. Effects of replacement of fish meal by poultry by-product meal on growth performance and gene expression involved in protein metabolism for juvenile black sea bream (Acanthoparus schlegelii) [J]. Aquaculture, 2020(528): 735544. doi: 10.1016/j.aquaculture.2020.735544
[15] Bu X, Chen A, Lian X, et al. An evaluation of replacing fish meal with cottonseed meal in the diet of juvenile Ussuri catfish Pseudobagrus ussuriensis: growth, antioxidant capacity, nonspecific immunity and resistance to Aeromonas hydrophila [J]. Aquaculture, 2017(479): 829-837.
[16] Novriadi R. A Meta-analysis approach toward fish meal replacement with fermented soybean meal: effects on fish growth performance and feed conversion ratio [J]. Asian Fisheries Science, 2017, 30(4): 227-244.
[17] Nhi N H Y, Da C T, Lundh T, et al. Comparative evaluation of brewer’s yeast as a replacement for fishmeal in diets for tilapia (Oreochromis niloticus), reared in clear water or biofloc environments [J]. Aquaculture, 2018(495): 654-660. doi: 10.1016/j.aquaculture.2018.06.035
[18] Song S G, Chi S Y, Tan B P, et al. Effects of fishmeal replacement by Tenebrio molitor meal on growth performance, antioxidant enzyme activities and disease resistance of the juvenile pearl gentian grouper (Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂) [J]. Aquaculture Research, 2018, 49(6): 2210-2217. doi: 10.1111/are.13677
[19] Belghit I, Liland N S, Gjesdal P, et al. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar) [J]. Aquaculture, 2019(503): 609-619.
[20] Raji A A, Alaba P A, Yusuf H, et al. Fishmeal replacement with Spirulina platensis and Chlorella vulgaris in African catfish (Clarias gariepinus) diet: effect on antioxidant enzyme activities and haematological parameters [J]. Research in Veterinary Science, 2018(119): 67-75. doi: 10.1016/j.rvsc.2018.05.013
[21] Chen Y, Sagada G, Xu B, et al. Partial replacement of fishmeal with Clostridium autoethanogenum single-cell protein in the diet for juvenile black sea bream (Acanthopagrus schlegelii) [J]. Aquaculture Research, 2020, 51(3): 1000-1011. doi: 10.1111/are.14446
[22] Chen Y K, Chi S Y, Zhang S, et al. Replacement of fish meal with Methanotroph (Methylococcus capsulatus, Bath) bacteria meal in the diets of Pacific white shrimp (Litopenaeus vannamei) [J]. Aquaculture, 2021(541): 736801.
[23] T. Veldkamp, G Van Duinkerken, A Van Huis, et al. Insects as a sustainable feed ingredient in pig and poultry diets: a feasibility study insecten als duurzame diervoedergrondstof in varkens-en pluimveevoeders: een haalbaarheidsstudie [R]. Wageningen UR Livestock Research, 2012.
[24] Henry M, Gasco L, Piccolo G, et al. Review on the use of insects in the diet of farmed fish: past and future [J]. Animal Feed Science and Technology, 2015(203): 1-22.
[25] Ng W K, Liew F L, Ang L P, et al. Potential of mealworm (Tenebrio molitor) as an alternative protein source in practical diets for African catfish, Clarias gariepinus [J]. Aquaculture Research, 2001(32): 273-280.
[26] Diener S, Zurbrügg C, Tockner K. Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates [J]. Waste Management & Research, 2009, 27(6): 603-610.
[27] Zheng L, Li Q, Zhang J, et al. Double the biodiesel yield: rearing black soldier fly larvae, Hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production [J]. Renewable Energy, 2012(41): 75-79.
[28] Newton G, Sheppard D, Watson D, et al. The Black Soldier Fly, Hermetia illucens, as a Manure Management/Resource Recovery Tool [C]. Symposium on the State of the Science of Animal Manure and Waste Management, 2005: 5-7.
[29] Zhou F, Tomberlin J K, Zheng L, et al. Developmental and waste reduction plasticity of three black soldier fly strains (Diptera: Stratiomyidae) raised on different livestock manures [J]. Journal of Medical Entomology, 2013, 50(6): 1224-1230. doi: 10.1603/ME13021
[30] Cerezuela R, Guardiola F A, González P, et al. Effects of dietary Bacillus subtilis, Tetraselmis chuii, and Phaeodactylum tricornutum, singularly or in combination, on the immune response and disease resistance of sea bream (Sparus aurata L.) [J]. Fish & Shellfish Immunology, 2012, 33(2): 342-349.
[31] Güroy D, Güroy B, Merrifield D L, et al. Effect of dietary Ulva and Spirulina on weight loss and body composition of rainbow trout, Oncorhynchus mykiss (Walbaum), during a starvation period [J]. Journal of Animal Physiology and Animal Nutrition, 2011, 95(3): 320-327. doi: 10.1111/j.1439-0396.2010.01057.x
[32] Greenwell H C, Laurens L M, Shields R J, et al. Placing microalgae on the biofuels priority list: a review of the technological challenges [J]. Journal of the Royal Society Interface, 2010, 7(46): 703-726. doi: 10.1098/rsif.2009.0322
[33] Xu W, Gao Z, Qi Z, et al. Effect of dietary Chlorella on the growth performance and physiological parameters of gibel carp, Carassius auratus gibelio [J]. Turkish Journal of Fisheries and Aquatic Sciences, 2014, 14(1): 53-57.
[34] Henry E C. The use of algae in fish feeds as alternatives to fishmeal [J]. Int Aquafeed, 2012, 2012: 8p.
[35] Walker A B, Berlinsky D L. Effects of partial replacement of fish meal protein by microalgae on growth, feed intake, and body composition of Atlantic cod [J]. North American Journal of Aquaculture, 2011, 73(1): 76-83.
[36] Nandeesha M C, Gangadhara B, Manissery J K, et al. Growth performance of two Indian major carps, catla (Catla catla) and rohu (Labeo rohita) fed diets containing different levels of Spirulina platensis [J]. Bioresource Technology, 2001, 80(2): 117-120. doi: 10.1016/S0960-8524(01)00085-2
[37] Xu D, He G, Mai K, et al. Postprandial nutrient-sensing and metabolic responses after partial dietary fishmeal replacement by soyabean meal in turbot (Scophthalmus maximus L.) [J]. British Journal of Nutrition, 2016, 115(3): 379-388. doi: 10.1017/S0007114515004535
[38] Zhou Q L, Habte-Tsion H M, Ge X, et al. Graded replacing fishmeal with canola meal in diets affects growth and target of rapamycin pathway gene expression of juvenile blunt snout bream, Megalobrama amblycephala [J]. Aquaculture Nutrition, 2018, 24(1): 300-309. doi: 10.1111/anu.12560
[39] Gerasimidis K, Fillou D T, Babatzimcpoulou M, et al. Preparation of an edible cottonseed protein concentrate and evaluation of its functional properties [J]. International Journal of Food Sciences and Nutrition, 2007, 58(6): 486-490. doi: 10.1080/09637480701288488
[40] Robinson E H, Li M H. Use of plant proteins in catfish feeds: replacement of soybean meal with cottonseed meal and replacement of fish meal with soybean meal and cottonseed meal [J]. Journal of the World Aquaculture Society, 1994, 25(2): 271-276. doi: 10.1111/j.1749-7345.1994.tb00190.x
[41] Yin B, Liu H Y, Tan B P, et al. Cottonseed protein concentrate (CPC) suppresses immune function in different intestinal segments of hybrid grouper (Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂) via TLR-2/MyD88 signaling pathways [J]. Fish & Shellfish Immunology, 2018(81): 318-328.
[42] Anderson A D, Alam M S, Watanabe W O, et al. Full replacement of menhaden fish meal protein by low-gossypol cottonseed flour protein in the diet of juvenile black sea bass Centropristis striata [J]. Aquaculture, 2016(464): 618-628.
[43] Alam M S, Watanabe W O, Carroll P M, et al. Evaluation of genetically-improved (glandless) and genetically-modified low-gossypol cottonseed meal as alternative protein sources in the diet of juvenile southern flounder Paralichthys lethostigma reared in a recirculating aquaculture system [J]. Aquaculture, 2018(489): 36-45.
[44] Zhu S, Gao W, Wen Z, et al. Partial substitution of fish meal by Clostridium autoethanogenum protein in the diets of juvenile largemouth bass (Micropterus salmoides) [J]. Aquaculture Reports, 2022(22): 100938.
[45] Yao W X, Yang P X, Zhang X, et al. Effects of replacing dietary fish meal with Clostridium autoethanogenum protein on growth and flesh quality of Pacific white shrimp (Litopenaeus vannamei) [J]. Aquaculture, 2022(549): 737770.
[46] Øverland M, Tauson A-H, Shearer K, et al. Evaluation of methane-utilising bacteria products as feed ingredients for monogastric animals [J]. Archives of Animal Nutrition, 2010, 64(3): 171-189. doi: 10.1080/17450391003691534
[47] Marit Berge G, Baeverfjord G, Skrede A, et al. Bacterial protein grown on natural gas as protein source in diets for Atlantic salmon, Salmo salar, in saltwater [J]. Aquaculture, 2005, 244(1-4): 233-240. doi: 10.1016/j.aquaculture.2004.11.017
[48] Hardy, Ronald, W. Understanding and using apparent digestibility coefficients in fish nutrition [J]. Aquaculture Magazine, 1997.
[49] Davies S J, Gouveia A. Comparison of yttrium and chromic oxides as inert dietary markers for the estimation of apparent digestibility coefficients in mirror carp Cyprinus carpio fed on diets containing soybean-, maize- and fish-derived proteins [J]. Aquaculture Nutrition, 2006, 12(6): 451-458. doi: 10.1111/j.1365-2095.2006.00448.x
[50] National R C. Nutrient Requirements of Fish and Shrimp [M]. Washington, D. C.: National Academy Press, 2011. 207-209.
[51] Ahmed I, Khan M A, Jafri A K. Dietary threonine requirement of fingerling Indian major carp, Cirrhinus mrigala (Hamilton) [J]. Aquaculture Research, 2004, 35(2): 162-170. doi: 10.1111/j.1365-2109.2004.00997.x
[52] Budavari S, O’neil M J, Smith A, et al. The merck index [M]. 11. Merck Rahway, NJ, 1989.
[53] Lee S, Chowdhury M K, Hardy R W, et al. Apparent digestibility of protein, amino acids and gross energy in rainbow trout fed various feed ingredients with or without protease [J]. Aquaculture, 2020(524): 735270.
[54] Cheng Z J, Hardy R W. Effects of extrusion processing of feed ingredients on apparent digestibility coefficients of nutrients for rainbow trout (Oncorhynchus mykiss) [J]. Aquaculture Nutrition, 2003, 9(2): 77-83. doi: 10.1046/j.1365-2095.2003.00226.x
[55] Wu X Y, Liu Y J, Tian L X, et al. Apparent digestibility coefficients of selected feed ingredients for yellowfin seabream, Sparus latus [J]. Journal of the World Aquaculture Society, 2006, 37(3): 237-245. doi: 10.1111/j.1749-7345.2006.00034.x
[56] 刘泓宇, 李立贤, Ayiku S, 等. 酵母培养物对珍珠龙胆石斑鱼生长性能, 肠道形态, 免疫功能和抗病力的影响 [J]. 广东海洋大学学报, 2021, 41(3): 1-11. doi: 10.3969/j.issn.1673-9159.2021.03.001 Liu H Y, Li L X, Ayiku S, et al. Effects of dietary yeast culture supplementation on growth, intestinal morphology, immunity, and disease resistance in Epinephelus fuscoguttatus♀×Epinephelus lanceolatu♂ [J]. Journal of Guangdong Ocean University, 2021, 41(3): 1-11. doi: 10.3969/j.issn.1673-9159.2021.03.001
[57] Association of Official Analytical Chemists. Official Methods of Analysis [S]. AOAC, Washington, D. C., 1999.
[58] Cho C Y, Kaushik S J. Nutritional energetics in fish: energy and protein utilization in rainbow trout (Salmo gairdneri) [J]. Aspects of Food Production, Consumption and Energy Values, 1990(61): 132-172.
[59] Glencross B D, Booth M, Allan G L. A feed is only as good as its ingredients-a review of ingredient evaluation strategies for aquaculture feeds [J]. Aquaculture Nutrition, 2007, 13(1): 17-34. doi: 10.1111/j.1365-2095.2007.00450.x
[60] Cho C. Apparent digestibility measurement in feedstuffs for rainbow trout [C]//Proc. World Symp. on Finfish Nutrition and Fishfeed Technology Vol. II, 1979: 239-247.
[61] Brunson J F, Romaire R P, Reigh R C. Apparent digestibility of selected ingredients in diets for white shrimp Penaeus setiferus L. [J]. Aquaculture Nutrition, 1997, 3(1): 9-16. doi: 10.1046/j.1365-2095.1997.00068.x
[62] Raji A A, Jimoh W A, Bakar N A, et al. Dietary use of Spirulina (Arthrospira) and Chlorella instead of fish meal on growth and digestibility of nutrients, amino acids and fatty acids by African catfish [J]. Journal of Applied Phycology, 2020, 32(3): 1763-1770. doi: 10.1007/s10811-020-02070-y
[63] Batista S, Pintado M, Marques A, et al. Use of technological processing of seaweed and microalgae as strategy to improve their apparent digestibility coefficients in European seabass (Dicentrarchus labrax) juveniles [J]. Journal of Applied Phycology, 2020, 32(5): 3429-3446. doi: 10.1007/s10811-020-02185-2
[64] Tibbetts S M, Mann J, Dumas A. Apparent digestibility of nutrients, energy, essential amino acids and fatty acids of juvenile Atlantic salmon (Salmo salar L.) diets containing whole-cell or cell-ruptured Chlorella vulgaris meals at five dietary inclusion levels [J]. Aquaculture, 2017(481): 25-39.
[65] Li M H, Oberle D F, Lucas P M. Apparent digestibility of alternative plant‐protein feedstuffs for channel catfish, Ictalurus punctatus (Rafinesque) [J]. Aquaculture Research, 2013, 44(2): 282-288. doi: 10.1111/j.1365-2109.2011.03035.x
[66] Robaina L, Moyano F, Izquierdo M S, et al. Corn gluten and meat and bone meals as protein sources in diets for gilthead seabream (Sparus aurata): nutritional and histological implications [J]. Aquaculture, 1997, 157(3-4): 347-359. doi: 10.1016/S0044-8486(97)00174-9
[67] Köprücü K, Özdemir Y. Apparent digestibility of selected feed ingredients for Nile tilapia (Oreochromis niloticus) [J]. Aquaculture, 2005, 250(1-2): 308-316. doi: 10.1016/j.aquaculture.2004.12.003
[68] Dumas A, Raggi T, Barkhouse J, et al. The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss) [J]. Aquaculture, 2018(492): 24-34.
[69] Renna M, Schiavone A, Gai F, et al. Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets [J]. Journal of Animal Science and Biotechnology, 2017, 8(1): 1-13. doi: 10.1186/s40104-016-0130-8
[70] Storebakken T, Kvien I S, Shearer K D, et al. The apparent digestibility of diets containing fish meal, soybean meal or bacterial meal fed to Atlantic salmon (Salmo salar): evaluation of different faecal collection methods [J]. Aquaculture, 1998, 169(3-4): 195-210. doi: 10.1016/S0044-8486(98)00379-2
[71] 王文娟. 斜带石斑鱼, 军曹鱼和凡纳滨对虾对常用饲料原料表观消化率的研究 [D]. 湛江: 广东海洋大学, 2012. Wang W J. Apparent digestibility of selected feed ingredients for Epinephelus coioides, Rachycentron canadum and Litopenaeus vannamei [D]. Zhanjiang: Guangdong Ocean University, 2012.
[72] Goddard S, Halver J E, Hardy R W. Book Review: Fish Nutrition: Commercial Fish and Shellfish Technologies Program [M]. Virginia, Tech, 2003.
[73] Veldkamp T, Bosch G. Insects: a protein-rich feed ingredient in pig and poultry diets [J]. Animal Frontiers, 2015, 5(2): 45-50.
[74] Belforti M, Gai F, Lussiana C, et al. Tenebrio molitor meal in rainbow trout (Oncorhynchus mykiss) diets: effects on animal performance, nutrient digestibility and chemical composition of fillets [J]. Italian Journal of Animal Science, 2015, 14(4): 4170. doi: 10.4081/ijas.2015.4170
[75] Bovera F, Loponte R, Marono S, et al. Use of Tenebrio molitor larvae meal as protein source in broiler diet: Effect on growth performance, nutrient digestibility, and carcass and meat traits [J]. Journal of Animal Science, 2016, 94(2): 639-647. doi: 10.2527/jas.2015-9201
[76] Sánchez-Muros M J, Barroso F G, Manzano-Agugliaro F. Insect meal as renewable source of food for animal feeding: a review [J]. Journal of Cleaner Production, 2014(65): 16-27. doi: 10.1016/j.jclepro.2013.11.068
[77] Longvah T, Mangthya K, Ramulu P. Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae [J]. Food Chemistry, 2011, 128(2): 400-403. doi: 10.1016/j.foodchem.2011.03.041
[78] Huang B C, Zhang S, Dong X H, et al. Effects of fishmeal replacement by black soldier fly on growth performance, digestive enzyme activity, intestine morphology, intestinal flora and immune response of pearl gentian grouper (Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂) [J]. Fish & Shellfish Immunology, 2022(120): 497-506.
[79] 房进广, 梁旭方, 刘立维, 等. 麦瑞加拉鲮幼鱼对12种原料表观消化率的比较研究 [J]. 水生生物学报, 2016, 40(6): 1178-1186. doi: 10.7541/2016.153 Fang J G, Liang X F, Liu L W, et al. Comparative research on apparent digestibility of twelve ingredients for juvenile Cirrhinus mrigala [J]. Acta Hydrobiologica Sinica, 2016, 40(6): 1178-1186. doi: 10.7541/2016.153
[80] Austreng E, Refstie T. Effect of varying dietary protein level in different families of rainbow trout [J]. Aquaculture, 1979, 18(2): 145-156. doi: 10.1016/0044-8486(79)90027-9
[81] Mcgoogan B B, Reigh R C. Apparent digestibility of selected ingredients in red drum (Sciaenops ocellatus) diets [J]. Aquaculture, 1996, 141(3-4): 233-244. doi: 10.1016/0044-8486(95)01217-6
[82] Santinha P J M, Gomes E F S, Coimbra J O. Effects of protein level of the diet on digestibility and growth of gilthead sea bream, Sparus auratus L. [J]. Aquaculture Nutrition, 1996, 2(2): 81-87. doi: 10.1111/j.1365-2095.1996.tb00012.x
[83] Usmani N, Khalil Jafri A, Afzal Khan M. Nutrient digestibility studies in Heteropneustes fossilis (Bloch), Clarias batrachus (Linnaeus) and C. gariepinus (Burchell) [J]. Aquaculture Research, 2003, 34(14): 1247-1253. doi: 10.1046/j.1365-2109.2003.00930.x
[84] Zhou Q C, Yue Y R. Apparent digestibility coefficients of selected feed ingredients for juvenile hybrid tilapia, Oreochromis niloticus×Oreochromis aureus [J]. Aquaculture Research, 2012, 43(6): 806-814. doi: 10.1111/j.1365-2109.2011.02892.x
[85] Kroeckel S, Harjes A G E, Roth I, et al. When a turbot catches a fly: evaluation of a pre-pupae meal of the black soldier fly (Hermetia illucens) as fish meal substitute-growth performance and chitin degradation in juvenile turbot (Psetta maxima) [J]. Aquaculture, 2012(364): 345-352.
[86] Piccolo G, Iaconisi V, Marono S, et al. Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata) [J]. Animal Feed Science and Technology, 2017(226): 12-20.
[87] Portz L, Cyrino J E P. Digestibility of nutrients and amino acids of different protein sources in practical diets by largemouth bass Micropterus salmoides (Lacepéde, 1802) [J]. Aquaculture Research, 2004, 35(4): 312-320. doi: 10.1111/j.1365-2109.2004.00984.x
[88] Che J, Su B, Tang B, et al. Apparent digestibility coefficients of animal and plant feed ingredients for juvenile Pseudobagrus ussuriensis [J]. Aquaculture Nutrition, 2017, 23(5): 1128-1135. doi: 10.1111/anu.12481
[89] Lin H Z, Liu Y J, Tian L X, et al. Apparent digestibility coefficients of various feed ingredients for grouper Epinephelus coioides [J]. Journal of the World Aquaculture Society, 2004, 35(2): 134-142. doi: 10.1111/j.1749-7345.2004.tb01069.x
[90] Austreng E, Skrede A, Eldegard Å. Digestibility of fat and fatty acids in rainbow trout and mink [J]. Aquaculture, 1980, 19(1): 93-95. doi: 10.1016/0044-8486(80)90010-1
[91] Li M, Liang H, Xie J, et al. Diet supplemented with a novel Clostridium autoethanogenum protein have a positive effect on the growth performance, antioxidant status and immunity in juvenile Jian carp (Cyprinus carpio var. Jian) [J]. Aquaculture Reports, 2021(19): 100572.
[92] 魏洪城, 郁欢欢, 陈晓明, 等. 乙醇梭菌蛋白替代豆粕对草鱼生长性能、血浆生化指标及肝胰脏和肠道组织病理的影响 [J]. 动物营养学报, 2018, 30(10): 4190-4201. doi: 10.3969/j.issn.1006-267x.2018.10.045 Wei H C, Yu H H, Chen X M, et al. Effects of soybean meal replaced by Clostridium autoethanogenum protein on growth performance, plasma biochemical indexes and hepatopancreas and intestinal histopathology of grass carp (Ctenopharyngodon idllus) [J]. Chinese Journal of Animal Nutrition, 2018, 30(10): 4190-4201. doi: 10.3969/j.issn.1006-267x.2018.10.045
[93] Small B C, Soares J H. Quantitative dietary lysine requirement of juvenile striped bass Morone saxatilis [J]. Aquaculture Nutrition, 2000, 6(4): 207-212. doi: 10.1046/j.1365-2095.2000.00140.x
[94] Øverland M, Skrede A, Matre T. Bacterial protein grown on natural gas as feed for pigs [J]. Acta Agriculturae Scandinavica, Section A-Animal Science, 2001, 51(2): 97-106. doi: 10.1080/090647001750193422
[95] Abimorad E G, Squassoni G H, Carneiro D J. Apparent digestibility of protein, energy, and amino acids in some selected feed ingredients for pacu Piaractus mesopotamicus [J]. Aquaculture nutrition, 2008, 14(4): 374-380. doi: 10.1111/j.1365-2095.2007.00544.x
[96] Vidakovic A, Huyben D, Sundh H, et al. Growth performance, nutrient digestibility and intestinal morphology of rainbow trout (Oncorhynchus mykiss) fed graded levels of the yeasts Saccharomyces cerevisiae and Wickerhamomyces anomalus [J]. Aquaculture Nutrition, 2020, 26(2): 275-286. doi: 10.1111/anu.12988
[97] Craig S, Helfrich L A, Kuhn D, et al. Understanding Fish Nutrition, Feeds, and Feeding [C]. Virginia Polytechnic Institute and State University, 2017: 1-6.
计量
- 文章访问数: 1248
- HTML全文浏览量: 720
- PDF下载量: 45