鄱阳湖鱼类多样性的时空变化特征研究

蒋祥龙, 黎明政, 杨少荣, 林鹏程, 常涛, 王春伶, 张晨, 高欣

蒋祥龙, 黎明政, 杨少荣, 林鹏程, 常涛, 王春伶, 张晨, 高欣. 鄱阳湖鱼类多样性的时空变化特征研究[J]. 水生生物学报, 2023, 47(3): 376-388. DOI: 10.7541/2023.2022.0317
引用本文: 蒋祥龙, 黎明政, 杨少荣, 林鹏程, 常涛, 王春伶, 张晨, 高欣. 鄱阳湖鱼类多样性的时空变化特征研究[J]. 水生生物学报, 2023, 47(3): 376-388. DOI: 10.7541/2023.2022.0317
JIANG Xiang-Long, LI Ming-Zheng, YANG Shao-Rong, LIN Peng-Cheng, CHANG Tao, WANG Chun-Ling, ZHANG Chen, GAO Xin. TEMPORAL VARIATION OF FISH BIODIVERSITY IN POYANG LAKE[J]. ACTA HYDROBIOLOGICA SINICA, 2023, 47(3): 376-388. DOI: 10.7541/2023.2022.0317
Citation: JIANG Xiang-Long, LI Ming-Zheng, YANG Shao-Rong, LIN Peng-Cheng, CHANG Tao, WANG Chun-Ling, ZHANG Chen, GAO Xin. TEMPORAL VARIATION OF FISH BIODIVERSITY IN POYANG LAKE[J]. ACTA HYDROBIOLOGICA SINICA, 2023, 47(3): 376-388. DOI: 10.7541/2023.2022.0317

鄱阳湖鱼类多样性的时空变化特征研究

基金项目: 国家重点研发计划(2018YFD0900804); 中国科学院战略性先导科技专项(B类)(XDB31040000); 中国生物多样性监测与研究网络-内陆水体鱼类多样性监测网资助
详细信息
    作者简介:

    蒋祥龙(1996—), 男, 硕士; 研究方向为鱼类生态学。E-mail: 274710975@qq.com

    通信作者:

    高欣(1980—), 男, 研究方向为鱼类生态学。E-mail: gaoxin@ihb.ac.cn

  • 中图分类号: S932.4

TEMPORAL VARIATION OF FISH BIODIVERSITY IN POYANG LAKE

Funds: Supported by the National Key R and D Program of China (2018YFD0900804); the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB31040000); the Sino BON–Inland Water Fish Diversity Observation Network
    Corresponding author:
  • 摘要: 研究基于2010年4月、7月和2018年8月、2019年5月在鄱阳湖9个区域的鱼类多样性调查数据, 分析鱼类物种多样性、功能多样性和分类差异指数的时空变化以及其与环境之间的关系, 了解鄱阳湖近十年来鱼类群落多样性的时空变化特征。结果显示, 2010年和2018—2019年分别调查到鱼类74种和93种, 群落结构差异显著(P<0.05), 差异贡献率最高的物种为短颌鲚、似鳊、鲫、光泽黄颡鱼和鲤; 水温、总悬浮物和叶绿素等环境因素具有显著的年际和季节差异(P<0.05)。与2010年相比, 2018—2019年鱼类物种多样性和功能多样性指数有一定增加, 分类差异指数没有显著变化。分类差异指数的随机检验显示(Randomization test), 与2010年相比, 2018—2019年位于95%概率置信范围下方的区域增加。水温、总悬浮物和叶绿素等环境因素对物种多样性、功能多样性和分类差异指数有显著的影响(P<0.05)。结果表明, 近十年来, 鄱阳湖鱼类群落结构发生明显改变, 但是小型鱼类依旧是优势种, 鱼类群落小型化明显, 主要原因可能是过度捕捞的影响。同时, 鄱阳湖的人类活动干扰增大, 鄱阳县、新建县和余干县等距离长江干流较远的区域人类活动干扰较大。长江十年禁渔的实施会对鄱阳湖鱼类资源恢复会起到明显作用。
    Abstract: Biodiversity serves as an important index in reflecting the impact of environmental changes on ecological communities. It is also essential in evaluating the health and integrity of ecosystems, providing insights into management and conservation initiatives. The river-lake complex ecosystem in the middle and lower Yangtze River are one of the most threatened areas subjected to anthropogenic activities. However, there is still a lack of research on taxonomic diversity and general understanding of fish community and diversity changes in the Poyang Lake over a long time span. Based on data derived from fish resources investigation in 9 regions of the Poyang Lake area in April and July 2010, August 2018 and May 2019, we analyzed the temporal changes of species diversity, functional diversity and taxonomic diversity of fish communities in the Poyang Lake as well as the relationship between biodiversity and environmental factors. The results showed that 74 and 93 species of fish were collected in 2010 and 2018—2019, respectively. There were significant differences in community structure, with Coilia brachygnathus, Pseudobrama simoni, Carassius auratus, Pelteobaggrus nitidus and Cyprinus carpio contributed the most variance. There were also significant differences in environmental factors between different years and seasons (P<0.05). Although the species diversity and functional diversity in 2018—2019 were higher than those in 2010, the variations in functional diversity and taxonomic distinctness (Λ+) were insignificant, suggesting the taxonomic range has narrowed albeit the fish species has increased in the past decade. The randomization test of the average taxonomic distinctness index (Δ+) and the variation in taxonomic distinctness (Λ+) showed that the number of sampling localities below the 95% probability confidence funnel from 2018 to 2019 increased compared with 2010, indicating that the degree of interference in the Poyang Lake area increased. The fish biodiversity in the Poyang Lake area was significantly correlated with water temperature, chlorophyll and total suspended solids concentration (P<0.05). The biodiversity of fish community was positively correlated with water temperature. However, the average taxonomic distinctness index (Δ+) and the variation in taxonomic distinctness (Λ+) were negatively correlated with the chlorophyll and total suspended solids. The results showed that the number of fish species in the Poyang Lake has increased under the periodic fishing ban of the Yangtze River, breeding and releasing project and ecological regulations. However, the small-sized fishes were still the dominant species in fish communities in the Poyang Lake during the past decade. This could be attributed to over-exploitation. Besides, anthropogenic disturbance compromised habitat heterogeneity. In particular, regions that located far from the Yangtze mainstream like the Poyang county, Xinjian county and Yugan county were more impacted by human activities. In order to protect and restore fish diversity in the Poyang Lake as well as the flood plain habitats in the middle and lower reaches of the Yangtze River, we suggest to take a series of measures in complementary to the ten-year fishing ban, such as demolition of small hydro power plants, reduction of reclamation and restoration of natural habitats.
  • 图  1   2010年和2018—2019年鄱阳湖鱼类多样性调查区域

    Figure  1.   Sampling area in the Poyang Lake Basin in 2010 and 2018—2019

    图  2   2010年和2018—2019年鄱阳湖湖区的鱼类群落时空变化

    Figure  2.   The spatial-temporal changes of fish assemblage structures in the Poyang Lake

    图  3   2010年和2018—2019年鄱阳湖不同季度的多样性指数变化(a和 b存在显著差异, a和ab、b和ab之间表示不存在显著差异, P<0.05)

    Figure  3.   The seasonal changes of the diversity indexes of fish assemblages in the Poyang Lake (Different letters indicate significant differences at P<0.05)

    图  4   鄱阳湖不同季度鱼类群落平均分类差异性指数的随机化检验

    中心线是总物种列表的平均值。漏斗线是95%模拟值的置信区间; 下同

    Figure  4.   The changes of the average taxonomic distinctness of fish assemblages in the sampling area of Poyang Lake are analyzed by the randomization test

    Central line is the mean value for the total species list. Funnel line is confidence limits within which 95% of simulated values lie. The same applies below

    图  5   鄱阳湖不同季度鱼类群落分类差异变异指数的随机化检验

    Figure  5.   The changes of the variation in taxonomic distinctness of fish assemblages in the sampling area of Poyang Lake are analyzed by the randomization test

    图  6   鄱阳湖鱼类多样性指数与环境因素关系

    Figure  6.   Relationship between fish diversity indexes and environmental factors in the Poyang Lake

    表  1   鄱阳湖鱼类的功能性状参数

    Table  1   Fish functional traits in the Poyang lake

    类别
    Category
    功能性状
    Functional traits
    单位/描述
    Unit/Description
    形态
    Morphology
    体型体长(cm)/体高(cm)
    体长/尾柄长
    最大体长cm
    相对眼径头长(cm)/眼径(cm)
    口位上位、端位、下位
    生境
    Habitat
    垂直分布底栖、中下层、中上层
    流速喜好流水型、静水型、广适型
    洄游类型洄游型、湖泊定居型、河流型
    营养水平
    Trophic level
    食性植食性、鱼食性、杂食性 、浮游生物食性、底栖无脊椎食性、碎屑食性
    生活史
    Life history
    寿命鱼类最大存活时间(年)
    初次性成熟时间鱼类繁殖的最初时间
    产卵类型漂流性卵、黏性卵、筑巢产卵、于贝类中产卵
    产卵量鱼类一次繁殖期产卵的数量
    下载: 导出CSV

    表  2   2010年与2018—2019年鱼类群落结构差异的主要影响物种

    Table  2   The fish species mainly contributed to the dissimilarity of the fish assemblage structures in the Poyang Lake between 2010 and 2018—2019

    种类
    Species
    对差异的贡献
    Contribution to dissimilarity
    贡献率
    Contribution
    (%)
    累积贡献率
    Cumulative
    (%)
    短颌鲚Coilia brachygnathus8.518.51
    似鳊Pseudobrama simoni8.2616.77
    Carassius auratus7.3224.09
    光泽黄颡鱼Pelteobaggrus nitidus5.0329.12
    Cyprinus carpio4.733.82
    蛇Saurogobio dabryi4.6338.45
    翘嘴鲌Culter alburnus3.541.95
    Hemiculter leucisculus3.4345.38
    短须鱊Acheilognathus barbatulus3.0748.45
    光唇蛇Saurogobio gymnocheilus2.8851.33
    大鳍鱊Acheilognathus macropterus2.7954.12
    Megalobrama skolkovii2.7756.89
    贝氏䱗Hemiculter bleekeri2.5959.48
    麦穗鱼Pseudorasbora parva2.5462.02
    蒙古鲌Chanodichthys mongolicus2.1864.2
    银鲴Xenocypris macrolepis2.1666.36
    高体鳑鲏Rhodeus ocellatus1.9168.26
    Silurus asotus1.8870.14
    下载: 导出CSV

    表  3   鄱阳湖不同季度环境因素比较

    Table  3   The environmental factors at the different seasons in Poyang Lake

    环境参数Environmental factors2010年4月
    April 2010
    2010年7月
    July 2010
    2018年8月
    August 2018
    2019年5月
    May 2019
    水温 Water temperature (℃)16.2±1.3a30.1±1.9b32.3±1.9c25.0±2.9d
    透明度 Transparency (cm)52.1±17.9a88.6±25.2b47.7±23.1a56.7±29.6a
    叶绿素 Chl. a (mg/L)5.5±1.0ab5.7±0.7b4.7±0.6a6.3±1.5b
    总悬浮物 Total suspended matter (mg/L)35.6±3.1a24.9±2.3b35.6±3.1a31.7±4.4c
    注: 表中数据为环境指数的平均值(P<0.05)。a和 b表示存在显著差异, a和ab、b和ab之间表示不存在显著差异Note: Data are the means of environmental index. The different superscript letters in the upper right corner of the same row show significantly difference between the data (P<0.05)
    下载: 导出CSV
  • [1]

    Dudgeon D, Arthington A H, Gessner M O, et al. Freshwater biodiversity: importance, threats, status and conservation challenges [J]. Biological Reviews, 2006, 81(2): 163-182. doi: 10.1017/S1464793105006950

    [2]

    Søndergaard M, Bjerring R, Jeppesen E. Persistent internal phosphorus loading during summer in shallow eutrophic lakes [J]. Hydrobiogia, 2012, 710(1): 95-107.

    [3]

    Ji L, Jiang X, Liu C, et al. Response of traditional and taxonomic distinctness diversity indices of benthic macroinvertebrates to environmental degradation gradient in a large Chinese shallow lake [J]. Environmental Science and Pollution Research, 2020, 27(17): 21804-21815. doi: 10.1007/s11356-020-08610-w

    [4]

    Liu Z, Li Z, Castro D M P, et al. Effects of different types of land-use on taxonomic and functional diversity of benthic macroinvertebrates in a subtropical river network [J]. Environmental Science and Pollution Research, 2021, 28(32): 44339-44353. doi: 10.1007/s11356-021-13867-w

    [5]

    Beckmann M, Gerstner K, Akin-Fajiye M, et al. Conventional land-use intensification reduces species richness and increases production: A global meta-analysis [J]. Global Change Biology, 2019, 25(6): 1941-1956. doi: 10.1111/gcb.14606

    [6]

    Reid A J, Carlson A K, Creed I F, et al. Emerging threats and persistent conservation challenges for freshwater biodiversity [J]. Biological reviews of the Cambridge Philosophical Society, 2019, 94(3): 849-873. doi: 10.1111/brv.12480

    [7]

    Tickner D, Opperman J J, Abell R, et al. Bending the curve of global freshwater biodiversity loss: An emergency recovery plan [J]. Bioscience, 2020, 70(4): 330-342. doi: 10.1093/biosci/biaa002

    [8]

    Zhang C, Ding C, Ding L, et al. Large-scale cascaded dam constructions drive taxonomic and phylogenetic differentiation of fish fauna in the Lancang River, China [J]. Reviews in Fish Biology and Fisheries, 2019, 29(4): 895-916. doi: 10.1007/s11160-019-09580-0

    [9]

    Craven D, Eisenhauer N, Pearse W D, et al. Multiple facets of biodiversity drive the diversity-stability relationship [J]. Nature Ecology and Evolution, 2018, 2(10): 1579-1587. doi: 10.1038/s41559-018-0647-7

    [10]

    Brun P, Zimmermann N E, Graham C H, et al. The productivity-biodiversity relationship varies across diversity dimensions [J]. Nature Communications, 2019, 10: 5691. doi: 10.1038/s41467-019-13678-1

    [11]

    Vile J S, Henning B F. Development of indices of biotic integrity for high-gradient wadeable rivers and headwater streams in New Jersey [J]. Ecological Indicators, 2018(90): 469-484. doi: 10.1016/j.ecolind.2018.03.027

    [12]

    Bailey R C, Norris R H. , Reynoldson T B. Bioassessment of Freshwater Ecosystems: Using the Reference Condition Approach [M]. Springer, 2004, US, Boston, MA: 1-15.

    [13]

    Aswani S, Ferse S C A, Stäbler M, et al. Detecting change in local ecological knowledge: an application of an index of taxonomic distinctness to an ethnoichthyological classification in the Solomon Islands [J]. Ecological Indicators, 2020(119): 106865. doi: 10.1016/j.ecolind.2020.106865

    [14]

    Tilman D, Reich P B, Knops J, et al. Diversity and productivity in a long-term grassland experiment [J]. Science, 2001, 294(5543): 843-845. doi: 10.1126/science.1060391

    [15]

    Petchey O L and Gaston K J. Functional diversity (FD), species richness and community composition [J]. Ecology Letters, 2002, 5(3): 402-411. doi: 10.1046/j.1461-0248.2002.00339.x

    [16] 王波, 梁婕鹏. 基于不同空间尺度的河流健康评价方法探讨 [J]. 长江科学院院报, 2011, 28(12): 32-35. doi: 10.3969/j.issn.1001-5485.2011.12.008

    Wang B, Liang J P. River health assessment method based on different spatial scales [J]. Journal of Yangtze River Scientific Research Institute, 2011, 28(12): 32-35. doi: 10.3969/j.issn.1001-5485.2011.12.008

    [17]

    Faith D P. Conservation evaluation and phylogenetic diversity [J]. Biological Conservation, 1992, 61(1): 1-10. doi: 10.1016/0006-3207(92)91201-3

    [18]

    Winter M, Devictor V, Schweiger O. Phylogenetic diversity and nature conservation: where are we [J]? Trends in Ecology and Evolution, 2013, 28(4): 199-204. doi: 10.1016/j.tree.2012.10.015

    [19]

    Clarke K R and Warwick R M. A taxonomic distinctness index and its statistical properties [J]. Journal of Applied Ecology, 1998, 35(4): 523-531. doi: 10.1046/j.1365-2664.1998.3540523.x

    [20]

    Chen K, Jia Y, Xiong X, et al. Integration of taxonomic distinctness indices into the assessment of headwater streams with a high altitude gradient and low species richness along the upper Han River, China [J]. Ecological Indicators, 2020(112): 106106. doi: 10.1016/j.ecolind.2020.106106

    [21]

    Jiang X M, Pan B Z, Sun Z, et al. Application of taxonomic distinctness indices of fish assemblages for assessing effects of river-lake disconnection and eutrophication in floodplain lakes [J]. Ecological Indicators, 2020(110): 105955. doi: 10.1016/j.ecolind.2019.105955

    [22]

    Su G H, Logez M, Xu J, et al. Human impacts on global freshwater fish biodiversity [J]. Science, 2021, 371(6531): 835-838. doi: 10.1126/science.abd3369

    [23]

    Villéger S, Grenouillet G, Brosse S. Functional homogenization exceeds taxonomic homogenization among European fish assemblages [J]. Global Ecology and Biogeography, 2014, 23(12): 1450-1460. doi: 10.1111/geb.12226

    [24]

    Jog S K and Bried J T. Taxonomic distinctness poorly reflects floristic quality in a wetland study system [J]. Ecological Indicators, 2021(121): 107086. doi: 10.1016/j.ecolind.2020.107086

    [25]

    Takács P, Abonyi A, Bánó B, et al. Effect of non-native species on taxonomic and functional diversity of fish communities in different river types [J]. Biodiversity and Conservation, 2021, 30(8): 2511-2528.

    [26]

    Wang J, Chen L, Tang W, et al. Effects of dam construction and fish invasion on the species, functional and phylogenetic diversity of fish assemblages in the Yellow River Basin [J]. Journal of Environmental Management, 2021(293): 112863. doi: 10.1016/j.jenvman.2021.112863

    [27] 曾少龙, 赖格英, 杨涛. 从涨退水看鄱阳湖水位-湖面面积关系 [J]. 水文, 2019, 39(3): 46-51. doi: 10.3969/j.issn.1000-0852.2019.03.008

    Zeng S L, Lai G Y, Yang T. Relationship between water level and area based on water fluctuating in Poyang Lake [J]. Journal of China Hydrology, 2019, 39(3): 46-51. doi: 10.3969/j.issn.1000-0852.2019.03.008

    [28] 胡振鹏, 张祖芳, 刘以珍, 等. 碟形湖在鄱阳湖湿地生态系统的作用和意义 [J]. 江西水利科技, 2015, 41(5): 317-323. doi: 10.3969/j.issn.1004-4701.2015.05.01

    Hu Z P, Zhang Z F, Liu Y Z, et al. The function and significance of the Shallow-Lakes in the Poyang Lake wetland ecosystem [J]. Jiangxi Hydraulic Science & Technology, 2015, 41(5): 317-323. doi: 10.3969/j.issn.1004-4701.2015.05.01

    [29]

    Wang Y, Molinos J G, Shi L, et al. Drivers and changes of the Poyang Lake wetland ecosystem [J]. Wetlands, 2019, 39(1): 35-44.

    [30]

    Zhang C, Li M, Chang T, et al. The interaction processes of the fish assemblages between the Yangtze River and Poyang Lake, China [J]. Ecology of Freshwater Fish, 2021, 30(4): 541-550. doi: 10.1111/eff.12603

    [31]

    Liu X, Wu R, Chen X, et al. Effects of dams and their environmental impacts on the genetic diversity and connectivity of freshwater mussel populations in Poyang Lake Basin, China [J]. Freshwater Biology, 2020, 65(2): 264-277. doi: 10.1111/fwb.13419

    [32] 金斌松, 聂明, 李琴, 等. 鄱阳湖流域基本特征、面临挑战和关键科学问题 [J]. 长江流域资源与环境, 2012, 21(3): 268-275.

    Jin B S, Nie M, Li Q, et al. Basic characteristics, challenges and key scientific questions of the Poyang Lake Basin [J]. Resources and Environment in the Yangtze Basin, 2012, 21(3): 268-275.

    [33] 王生, 段辛斌, 陈文静, 等. 鄱阳湖湖口鱼类资源现状调查 [J]. 淡水渔业, 2016, 46(6): 50-55. doi: 10.3969/j.issn.1000-6907.2016.06.009

    Wang S, Duan X B, Chen W J, et al. Status and changes of fish resources in the Hukou area of Poyang Lake [J]. Freshwater Fisheries, 2016, 46(6): 50-55. doi: 10.3969/j.issn.1000-6907.2016.06.009

    [34]

    Liu X J, Qin J, Xu Y, et al. Biodiversity pattern of fish assemblages in Poyang Lake Basin: Threat and conservation [J]. Ecology and Evolution, 2019, 9(20): 11672-11683. doi: 10.1002/ece3.5661

    [35] 张文, 崔长露, 李林宜, 等. 基于长时间序列遥感数据的鄱阳湖水面面积监测分析 [J]. 水文, 2019, 39(3): 29-35. doi: 10.3969/j.issn.1000-0852.2019.03.005

    Zhang W, Cui C L, Li L Y, et al. Analysis of relationship between water area and water level based on long-term observation in Poyang Lake [J]. Journal of China Hydrology, 2019, 39(3): 29-35. doi: 10.3969/j.issn.1000-0852.2019.03.005

    [36] 陈旻坤, 徐昔保. 近30年来鄱阳湖生态系统服务变化 [J]. 湖泊科学, 2021, 33(1): 309-318. doi: 10.18307/2021.0126

    Chen M K, Xu X B. Lake Poyang ecosystem services changes in the last 30 years [J]. Journal of Lake Sciences, 2021, 33(1): 309-318. doi: 10.18307/2021.0126

    [37] 刘海, 黄跃飞, 郑粮, 等. 鄱阳湖生态经济区成立前后植被覆盖变化 [J]. 测绘科学, 2020, 45(4): 161-167. doi: 10.16251/j.cnki.1009-2307.2020.04.023

    Liu H, Huang Y F, Zheng L, et al. Vegetation cover changes before and after the establishment of Poyang Lake eco-economic zone [J]. Science of Surveying and Mapping, 2020, 45(4): 161-167. doi: 10.16251/j.cnki.1009-2307.2020.04.023

    [38]

    Wang H, Yuan X Y, Li Z Y, et al. The nutritional status of waters and origin analysis of the xitiaoxi tributaries [J]. Advanced Materials Research, 2014(937): 669-675. doi: 10.4028/www.scientific.net/AMR.937.669

    [39]

    Chen F Y, Wu G F, Wang J J, et al. A MODIS-based retrieval model of suspended particulate matter concentration for the two largest freshwater lakes in China [J]. Sustainability, 2016, 8(8): 832. doi: 10.3390/su8080832

    [40]

    Clarke K R, and Warwick R M. A further biodiversity index applicable to species lists: variation in taxonomic distinctness [J]. Marine Ecology Progress Series, 2001(216): 265-278. doi: 10.3354/meps216265

    [41]

    Clarke K R. Non-parametric multivariate analyses of changes in community structure [J]. Australian Journal of Ecology, 1993, 18(1): 117-143. doi: 10.1111/j.1442-9993.1993.tb00438.x

    [42]

    Violle C, Bonis A, Plantegenest M, et al. Plant functional traits capture species richness variations along a flooding gradient [J]. Oikos, 2011, 120(3): 389-398. doi: 10.1111/j.1600-0706.2010.18525.x

    [43]

    Zhang C, Fujiwara M, Pawluk M, et al. Changes in taxonomic and functional diversity of fish communities after catastrophic habitat alteration caused by construction of Three Gorges Dam [J]. Ecology and Evolution, 2020, 10(12): 5829-5839. doi: 10.1002/ece3.6320

    [44] 丁瑞华. 四川鱼类志 [M]. 成都: 四川科学技术出版社, 1994.

    Ding R H. The Fishes of Sichuan, China [M]. Chengdu: Sichuan Science and Technology Press, 1994.

    [45]

    Schleuter D, Daufresne M, Massol F, et al. A user’s guide to functional diversity indices [J]. Ecological Monographs, 2010, 80(3): 469-484. doi: 10.1890/08-2225.1

    [46]

    Nelson J S, Grande T, Wilson M V H. Fishes of the world [M]. 5th ed. New York: John Wiely and Sons Inc, 2006: 1-624.

    [47]

    Wood S N. Generalised additive models, an introduction with R [M]. 2nd ed. Chapman and Hall/CRC: Boca Raton, FL, USA, 2006: 391-392.

    [48] 陈诚, 黎明政, 高欣, 等. 长江中游宜昌江段鱼类早期资源现状及水文影响条件 [J]. 水生生物学报, 2020, 44(5): 1055-1063. doi: 10.7541/2020.122

    Chen C, Li M Z, Gao X, et al. The status of the early-stage fish resources and hydrologic influencing conditions in the Yichang section in the middle reaches of the Yangtze River [J]. Acta Hydrobiologica Sinica, 2020, 44(5): 1055-1063. doi: 10.7541/2020.122

    [49] 常涛, 段中华, 黎明政. 三峡水库蓄水后长江中游宜昌江段鱼类早期资源群聚动态 [J]. 长江流域资源与环境, 2021, 30(1): 137-146.

    Chang T, Duan Z H, Li M Z. Dynamic of fish eggs assemblage in the middle Yangtze River after the impoundment of the Three Gorges Reservoir [J]. Resources and Environment in the Yangtze Basin, 2021, 30(1): 137-146.

    [50] 周雪, 汪登强, 段辛斌, 等. 长江中游宜昌江段鱼卵时空分布特征研究 [J]. 长江流域资源与环境, 2021, 30(4): 861-868.

    Zhou X, Wang D Q, Duan X B, et al. Studies on spatial and temporal distribution of fish eggs in the Yichang section in middle reaches of the Yangtze River [J]. Resources and Environment in the Yangtze Basin, 2021, 30(4): 861-868.

    [51] 熊飞, 刘红艳, 段辛斌, 等. 长江上游江津江段鱼类群落结构及资源利用 [J]. 安徽大学学报(自然科学版), 2014, 38(3): 94-102.

    Xiong F, Liu H Y, Duan X B, et al. Community structure of fish and resources utilization in Jiangjin section of the upper Yangtze River [J]. Journal of Anhui University (Natural Science Edition), 2014, 38(3): 94-102.

    [52] 陈文静, 贺刚, 吴斌, 等. 鄱阳湖通江水道鱼类空间分布特征及资源量评估 [J]. 湖泊科学, 2017, 29(4): 923-931. doi: 10.18307/2017.0416

    Chen W J, He G, Wu B, et al. Spatial distribution and biomass assessment of fish in the channel connecting the Lake Poyang and the Yangtze River [J]. Journal of Lake Sciences, 2017, 29(4): 923-931. doi: 10.18307/2017.0416

    [53] 朱轶, 吕偲, 胡慧建, 等. 三峡大坝运行前后西洞庭湖鱼类群落结构特征变化 [J]. 湖泊科学, 2014, 26(6): 844-852. doi: 10.18307/2014.0605

    Zhu Y, Lu S, Hu H J, et al. Changes in fish community structure in West Dongting Lake after the operation of the Three Gorges Dam [J]. Journal of Lake Sciences, 2014, 26(6): 844-852. doi: 10.18307/2014.0605

    [54] 陈卫东, 生楠, 朱法明. 太湖渔业资源现状及产业发展对策 [J]. 安徽农业科学, 2017, 45(7): 226-228. doi: 10.3969/j.issn.0517-6611.2017.07.076

    Chen W D, Sheng N, Zhu F M. Lake Taihu fishery resource status and industrial development countermeasures [J]. Journal of Anhui Agricultural Sciences, 2017, 45(7): 226-228. doi: 10.3969/j.issn.0517-6611.2017.07.076

    [55] 毛志刚, 谷孝鸿, 曾庆飞. 呼伦湖鱼类群落结构及其渔业资源变化 [J]. 湖泊科学, 2016, 28(2): 387-394. doi: 10.18307/2016.0219

    Mao Z G, Gu X H, Zeng Q F. The structure of fish community and changes of fishery resources in Lake Hulun [J]. Journal of Lake Sciences, 2016, 28(2): 387-394. doi: 10.18307/2016.0219

    [56]

    Stamou G, Polyzou C, Karagianni A, et al. Taxonomic distinctness indices for discriminating patterns in freshwater rotifer assemblages [J]. Hydrobiologia, 2017, 796(1): 319-331. doi: 10.1007/s10750-016-2894-4

    [57]

    Stojković Piperac M, Milošević D, Petrović A, et al. The best data design for applying the taxonomic distinctness index in lotic systems: a case study of the Southern Morava River Basin [J]. Science of the Total Environment, 2018(610/611): 1281-1287. doi: 10.1016/j.scitotenv.2017.08.093

    [58]

    Guo C, Chen Y, Gozlan R E, et al. Biogeographic freshwater fish pattern legacy revealed despite rapid socio-economic changes in China [J]. Fish and Fisheries, 2019, 20(5): 857-869. doi: 10.1111/faf.12380

    [59] 方娜. 鄱阳湖典型湿地水质富营养化评价及其与土地利用格局之间的关系 [D]. 南昌: 江西师范大学, 2020.

    Fang N. Evaluation of water quality from the perspective of eutrophication in Poyang Lake wetland and its relationship with land use patterns [D]. Nanchang: Jiangxi Normal University, 2020.

    [60] 李括, 杨柯, 彭敏, 等. 近20年来鄱阳湖流域泛滥平原沉积物微量元素含量与污染变化 [J]. 环境科学, 2021, 42(4): 1724-1738. doi: 10.13227/j.hjkx.202008083

    Li K, Yang K, Peng M, et al. Changes in concentrations and pollution levels of trace elements of floodplain sediments of Poyang Lake Basin in recent twenty years [J]. Environmental Science, 2021, 42(4): 1724-1738. doi: 10.13227/j.hjkx.202008083

    [61] 温春云, 刘聚涛, 胡芳, 等. 鄱阳湖水质变化特征及水体富营养化评价 [J]. 中国农村水利水电, 2020(11): 83-88. doi: 10.3969/j.issn.1007-2284.2020.11.015

    Wen C Y, Liu J T, Hu F, et al. Water quality change characteristics and eutrophication assessment of Poyang Lake [J]. China Rural Water and Hydropower, 2020(11): 83-88. doi: 10.3969/j.issn.1007-2284.2020.11.015

    [62] 齐述华, 廖富强. 鄱阳湖水利枢纽工程水位调控方案的探讨 [J]. 地理学报, 2013, 68(1): 118-126. doi: 10.11821/xb201301013

    Qi S H, Liao F Q. A study on the scheme of water level regulation of the Poyang Lake hydraulic project [J]. Acta Geographica Sinica, 2013, 68(1): 118-126. doi: 10.11821/xb201301013

    [63] 吴申浩. 鄱阳湖洪泛平原鱼类群落与功能多样性的联系 [D]. 南昌: 南昌大学, 2020.

    WU S H. Functional traits relationships of fish assemblages in sub-lakes of Poyang Lake Floodplain [D]. Nanchang: Nanchang University, 2020.

    [64]

    Jin B S, Winemiller K O, Shao B, et al. Fish assemblage structure in relation to seasonal environmental variation in sub-lakes of the Poyang Lake floodplain, China [J]. Fisheries Management and Ecology, 2019, 26(2): 131-140. doi: 10.1111/fme.12333

    [65]

    Granado-Lorencio C, Lobón Cerviá J, Lima C R M A. Floodplain lake fish assemblages in the Amazon River: directions in conservation biology [J]. Biodiversity and Conservation, 2007, 16(3): 679-692. doi: 10.1007/s10531-005-3742-4

    [66] 杨少荣, 黎明政, 朱其广, 等. 鄱阳湖鱼类群落结构及其时空动态 [J]. 长江流域资源与环境, 2015, 24(1): 54-64. doi: 10.11870/cjlyzyyhj201501008

    Yang S R, Li M Z, Zhu Q G, et al. Spatial and temporal variations of fish assemblages in Poyang Lake [J]. Resources and Environment in the Yangtze Basin, 2015, 24(1): 54-64. doi: 10.11870/cjlyzyyhj201501008

    [67] 蒋祥龙, 黎明政, 杨少荣, 等. 鄱阳湖鱼类集合群落结构特征及其时间变化研究 [J]. 长江流域资源与环境, 2022, 31(3): 588-601.

    Jiang X L, Li M Z, Yang S R, et al. Temporal variation of fish metacommunity structure in Poyang Lake [J]. Resources and Environment in the Yangtze Basin, 2022, 31(3): 588-601.

    [68]

    Vasconcelos R P, Henriques S, França S, et al. Global patterns and predictors of fish species richness in estuaries [J]. Journal of Animal Ecology, 2015, 84(5): 1331-1341. doi: 10.1111/1365-2656.12372

    [69]

    Sutton A, Beckley L. Species richness, taxonomic distinctness and environmental influences on euphausiid zoogeography in the Indian Ocean [J]. Diversity, 2017, 9(2): 23. doi: 10.3390/d9020023

    [70] 张文武, 马琴, 黎明政, 等. 三峡水库和长江中下游通江湖泊(洞庭湖和鄱阳湖)草鱼、鲢的孵化日期及早期生长特征 [J]. 湖泊科学, 2020, 32(3): 804-812. doi: 10.18307/2020.0320

    Zhang W W, Ma Q, Li M Z, et al. Hatch dates and growth rates of grass carp (Ctenopharyngodon idellus) and silver carp (Hypophthalmichthys molitrix) juveniles in Three Gorges Reservoir, Lake Dongting and Lake Poyang [J]. Journal of Lake Sciences, 2020, 32(3): 804-812. doi: 10.18307/2020.0320

    [71]

    Letessier T B, Cox M J, Brierley A S. Drivers of variability in euphausiid species abundance throughout the Pacific Ocean [J]. Journal of Plankton Research, 2011, 33(9): 1342-1357. doi: 10.1093/plankt/fbr033

    [72]

    Irigoien X, Huisman J, Harris R P. Global biodiversity patterns of marine phytoplankton and zooplankton [J]. Nature, 2004, 429(6994): 863-867. doi: 10.1038/nature02593

    [73]

    Chi S Y, Li M, Zheng J X, et al. Macroinvertebrate communities in the Big East Lake water network in relation to environmental factors [J]. Knowledge and Management of Aquatic Ecosystems, 2017(418): 22. doi: 10.1051/kmae/2017011

    [74]

    Obolewski K, Glińska-Lewczuk K, Ożgo M, et al. Connectivity restoration of floodplain lakes: an assessment based on macroinvertebrate communities [J]. Hydrobiologia, 2016, 774(1): 23-37. doi: 10.1007/s10750-015-2530-8

    [75]

    Cai Y J, Lu Y J, Liu J S, et al. Macrozoobenthic community structure in a large shallow lake: disentangling the effect of eutrophication and wind-wave disturbance [J]. Limnologica, 2016(59): 1-9. doi: 10.1016/j.limno.2016.03.006

    [76]

    Arantes C C, Winemiller K O, Petrere M, et al. Relationships between forest cover and fish diversity in the Amazon River floodplain [J]. Journal of Applied Ecology, 2018, 55(1): 386-395. doi: 10.1111/1365-2664.12967

    [77] 蓝雪春. 洞里萨湖渔业资源的主要影响因素探析 [J]. 安徽农业科学, 2020, 48(20): 99-102. doi: 10.3969/j.issn.0517-6611.2020.20.027

    Lan X C. Analysis on the main influencing factors of fisheries resources in Tonle Sap Lake [J]. Journal of Anhui Agricultural Sciences, 2020, 48(20): 99-102. doi: 10.3969/j.issn.0517-6611.2020.20.027

    [78]

    Kummu M, Tes S, Yin S, et al. Water balance analysis for the Tonle Sap Lake-floodplain system [J]. Hydrological Processes, 2014, 28(4): 1722-1733. doi: 10.1002/hyp.9718

    [79]

    de C Freitas C E, Siqueira-Souza F K, Guimarães A R, et al. Interconnectedness during high water maintains similarity in fish assemblages of island floodplain lakes in the Amazonian Basin [J]. Zoologia (Curitiba) , 2010, 27(6): 931-938. doi: 10.1590/S1984-46702010000600014

    [80]

    Siqueira-Souza F K, Freitas C E C, Hurd L E, et al. Amazon floodplain fish diversity at different scales: do time and place really matter [J]? Hydrobiologia, 2016, 776(1): 99-110. doi: 10.1007/s10750-016-2738-2

    [81]

    Barros D D F, Petrere M Jr, Lecours V, et al. Effects of deforestation and other environmental variables on floodplain fish catch in the Amazon [J]. Fisheries Research, 2020(230): 105643. doi: 10.1016/j.fishres.2020.105643

图(6)  /  表(3)
计量
  • 文章访问数:  3290
  • HTML全文浏览量:  376
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-30
  • 修回日期:  2022-11-01
  • 网络出版日期:  2022-11-28
  • 发布日期:  2023-03-14

目录

    /

    返回文章
    返回