AQUATIC FOOD WEB OF THE HUN-TAI RIVER BASIN IN LIAONING BASED ON STABLE ISOTOPE ANALYSIS
-
摘要:
为探究辽宁省浑太河流域水生生物营养结构特征及其变化, 分别于2020年秋季(10月)和2021年春季(5月)对该流域开展渔业资源调查, 依据主要消费者及饵料生物样品的碳、氮稳定同位素值(δ13C和δ15N), 利用SIBER和MixSIAR模型分析渔获物群落营养结构的时空差异, 并初步构建该流域的食物网。结果表明, 主要渔获物的δ13C和δ15N值分别为–37.18‰— –19.28‰和7.98‰—16.51‰, 且季节性差异不显著(P>0.05), 但δ13C值空间差异极显著(P<0.01)。浑太河流域渔获物的营养级为1.71—4.39, 同种鱼类营养级具有极显著的时空差异(P<0.01)。与春季相比, 鱼类在秋季摄食的食物资源更丰富、所占的生态位更宽, 同时太子河的各项群落营养结构指标均优于浑河。基础食源分析结果表明水生植物与陆生植物分别为浑太河两个季度的主要碳源, 陆生植物和POM分别为浑河和太子河中鱼类的主要碳源。研究填补了对浑太河流域水生生物食物网及群落营养结构研究的空缺, 为该流域后续的保护、修复及进一步开发提供参考依据。
Abstract:In order to investigate the trophic structure characteristics and spatiotemporal variations of aquatic communities in the Hun-Tai River, an important branch of the Liaohe River, the fishery resources surveys were conducted in autumn (October) 2020 and spring (May) 2021. Based on stable isotope analysis, the δ13C and δ15N values of dominant consumers and basal food sources in the river were determined. Then the spatiotemporal variations of trophic structures and the contributions of the basal carbon sources to the aquatic food web were analyzed by SIBER and MixSIAR package. In our study, a total of 23 species of catches, belonging to 3 orders, 6 families, and 20 genera were collected. All the δ13C and δ15N values of the main catches ranged widely from –37.18‰ to –19.28‰, 7.98‰ to 16.51‰, respectively. There were no significant seasonal differences in δ13C and δ15N values (P>0.05). However, the δ13C values variations of spatiality were significant (P<0.01), and the carnivorous δ15N values were higher than omnivorous (P<0.05). The trophic level of catches, ranging from 1.71 to 4.39 in the Hun-Tai River, had extremely significant temporal and spatial differences (P<0.01). The comparison of the ecosystem trophic structure revealed that the food resources and ecological niche occupied by fish in autumn were higher and broader than that in spring, and all trophic structure indicators (NR/CR/TA/CD/NND/SDNND) of the Taizi River higher than those of the Hun River might be brought out by the higher degree of exploitation in the Hun River. In addition, the basal food sources analysis results supposed that aquatic plants and terrestrial plants were major carbon sources in autumn and spring, respectively. Meanwhile the terrestrial plants and POM were major carbon sources in the Hun River and Taizi River, respectively. This study of enriching the contents about food web in the Hun-Tai River provided references for the subsequent protection, restoration and further development, and accumulated basic data for the reconstruction of the river ecosystem in Northeast China.
-
Keywords:
- Aquatic Food Webs /
- Stable Isotopes /
- Trophic Structure /
- Hun-Tai River
-
-
图 2 浑太河流域同种渔获物δ13C和δ15N值的时空差异
a为浑太河同种渔获物不同季节的δ13C和δ15N值; b为浑太河同种渔获物不同支流的δ13C和δ15N值; **表示差异极显著(P<0.01)
Figure 2. The spatiotemporal differences of δ13C and δ15N values of the same selected species in the Hun-Tai River
a. δ13C and δ15N values of the same selected species in different seasons in the Hun-Tai River; b. δ13C and δ15N values of the same selected species in different tributaries in the Hun-Tai River; **indicates highly significant difference (P<0.01)
图 5 浑太河流域生物群落指标
a, b, c分别为浑河、太子河、浑太河不同季节鱼类生物群落指标; d为浑太河不同支流鱼类生物群落指标
Figure 5. The community-wide metrics in the Hun-Tai River
a, b and c represent the community-wide metrics in different seasons in the Hun, Taizi and Hun-Tai River respectively; d represents the community-wide metrics in different tributaries in the Hun-Tai River
表 1 浑太河生态系统碳、氮稳定同位素值
Table 1 δ13C and δ15N values in the Hun-Tai River ecosystem (n=343, x±SD)
种类Species 食性
Feeding habit秋季Autumn 春季Spring 样本量n δ13C (‰) δ15N (‰) 样本量n δ13C (‰) δ15N (‰) 䱗Hemiculter leucisculus Om 8 –24.33±0.85 12.94±0.71 10 –26.52±2.17 12.74±1.28 彩副鱊Paracheilognathus imberbis Om 5 –26.04±1.01 12.10±0.85 — — — 方氏鳑鲏Rhodeus fangi Om — — — 8 –27.40±2.59 11.76±2.52 高体鳑鲏Rhodeus lighti Om 13 –26.18±4.67 11.75±2.34 10 –25.65±2.06 12.22±1.37 大鳍鱊Acheilognathus macropterus Om 16 –28.44±6.20 12.87±3.13 13 –25.04±1.57 12.37±1.58 麦穗鱼Pseudorasbora parva Om 12 –26.67±9.36 12.67±1.28 13 –23.27±1.97 13.06±1.1 黑鳍鳈Sarcocheilichthys nigripinnis Om 3 –37.18±10.76 14.15±0.62 — — — 银Squalidus argentatus Om — — — 5 –20.53±0.54 10.87±0.47 亮银Squalidus nitens Om — — — 3 –24.52±0.29 11.48±0.37 清徐胡Huigobio chinssuensis Om 18 –22.16±4.12 11.82±1.75 7 –25.95±1.24 13.42±2.54 棒花鱼Abbottina rivularis Om — — — 7 –24.26±1.22 13.77±1.83 鲫Carassius auratus Om 36 –26.03±6.99 11.71±1.58 9 –25.11±1.82 11.06±1.84 北方须鳅Barbatula barbatula nuda Om 10 –23.95±0.53 9.00±1.02 9 –25.29±3.99 10.16±1.36 泥鳅Misgurnus anguillicaudatus Om 7 –26.85±8.77 8.11±1.95 3 –24.27±1.25 9.80±1.65 日本沼虾Macrobrachium nipponense Om 7 –22.62±1.63 12.03±1.89 6 –24.61±1.73 12.29±2.77 中华绒螯蟹Eriocheir sinensis Om 5 –25.52±0.41 7.98±2.02 — — — 宽鳍鱲Zacco platypus He 22 –23.66±2.48 12.18±1.76 19 –24.21±3.24 10.55±2.39 鲢Hypophthalmichthys molitrix He 4 –30.10±7.01 10.57±1.22 — — — 拉氏鱥Rhynchocypris lagowskii Ca 17 –22.67±3.18 10.59±3.65 18 –22.89±3.24 10.55±2.39 抚顺Gobio fushunensis Ca — — — 3 –25.95±0.73 8.72±0.74 兴凯银Squalidus chankaensis Ca 5 –19.28±0.27 11.96±0.16 — — — 小黄䱂Micropercops swinhonis Ca 6 –34.66±10.89 13.02±0.97 3 –25.55±0.24 16.51±1.49 纹缟虾虎鱼Tridentiger trigonocephalus Ca — — — 3 –26.06±0.43 14.64±0.71 浮游植物Phytoplankton 8 –26.75±1.89 4.12±0.76 8 –25.49±1.55 2.34±0.83 浮游动物Zooplankton 8 –26.38±1.80 5.19±1.71 8 –26.12±2.52 9.25±0.73 颗粒有机物Particulate organic matter 8 –26.28±1.76 4.97±2.45 8 –26.52±1.55 2.97±0.62 陆生植物Terrestrial plant 9 –30.57±4.56 7.06±2.86 4 –28.37±0.95 4.45±1.39 水生植物Aquatic plant 15 –25.55±3.63 6.90±1.61 18 –29.33±2.27 5.02±2.30 着生藻类Periphytic algae 5 –21.89±3.33 1.65±0.84 6 –24.09±3.09 5.18±1.43 注: Om、He和Ca 分别表示杂食性, 植食性和肉食性; “—”表示无相关数据Note: Om, He and Ca indicate omnivore, herbivore and carnivore, respectively. “—” indicates no data 表 2 浑太河流域不同季度鱼类基础食物碳源贡献率[均值(5%—97.5%置信区间)]
Table 2 The contribution rate of basic food carbon sources of fish in the Hun-Tai River in different seasons (mean proportion with 5% and 97.5% confidence intervals)
种类
Species秋季Autumn (%) 春季Spring (%) 浮游植物
Phytoplankton陆生植物
Terrestrial plantPOM 水生植物
Aquatic plant着生藻类
Periphytic algae浮游植物
Phytoplankton陆生植物
Terrestrial plantPOM 水生植物
Aquatic plant着生藻类
Periphytic algae䱗Hemiculter leucisculus 15.4
(0.3—66.5)29.3
(5.1—72)11.9
(1—59.1)26.6
(3.1—78.4)16.7
(1.1—66.4)16.3
(0.5—66.8)41.5
(10.1—85.1)11.5
(0.4—55.3)17.1
(0.3—67.9)13.6
(0.6—52.8)彩副鱊Paracheilognathus imberbis 16.5
(0.4—64.6)24.7
(3.5—66.2)12.3
(1.3—55.7)29.9
(3.4—79.9)16.6
(0.9—71.4)方氏鳑鲏Rhodeus fangi 17
(0.5—69.2)42.6
(9.7—88.3)12.5
(0.3—57.4)18.4
(0.3—72)9.6
(0.5—37.8)高体鳑鲏Rhodeus lighti 8.4
(0.2—52.8)13.2
(0.6—57.6)5.3
(0.3—35.2)61.9
(12.4—96.7)11.1
(0.3—57.2)18
(0.4—71.5)32.2
(8.1—78.5)13.2
(0.3—59.4)18.4
(0.3—72.4)18.2
(1.1—51.8)大鳍鱊Acheilognathus macropterus 12.9
(0.4—67)41.7
(8.6—86)9
(0.5—49.7)21.7
(1.8—78)14.6
(0.8—62.6)17.7
(0.4—69.1)31.6
(7.8—70.9)14
(0.4—56.6)17.6
(0.3—67.8)19.1
(1.4—56.1)麦穗鱼Pseudorasbora parva 11.7
(0.4—58.7)25.2
(3—72.2)6.6
(0.4—39.9)40.7
(4.3—90.2)15.8
(0.7—69.9)15.6
(0.3—65.4)25.4
(6.3—63.4)10.6
(0.4—45.2)16.4
(0.3—66.7)32
(2.5—71.4)黑鳍鳈Sarcocheilichthys nigripinnis 4.9
(0.1—34.4)2.8
(0.1—14.6)2.4
(0.1—14.6)82.9
(47.2—98.9)7
(0.2—44.7)银Squalidus argentatus 19.1
(0.6—71.4)12.1
(2.1—40.7)13.1
(0.3—57.9)18.3
(0.3—72.6)37.4
(3.2—86.1)亮银Squalidus nitens 19.5
(0.8—72.1)25.5
(4.3—71.4)15.3
(0.5—67.3)19.9
(0.3—74.2)19.8
(1—61.5)清徐胡Huigobio chinssuensis 14.3
(0.5—69.7)23.2
(2.9—65.8)9.8
(0.8—57.2)33.5
(3.5—86.2)19.1
(1.1—73.3)16.3
(0.3—63.7)44.7
(11.8—85)11.8
(0.3—57.8)16.6
(0.3—65.8)10.6
(0.5—37.8)棒花鱼Abbottina rivularis 16.8
(0.4—63.3)34.9
(10.1—77.6)11.3
(0.3—48.6)16.2
(0.3—64.5)20.8
(1.1—59.7)鲫Carassius auratus 14.8
(0.5—66.1)19.7
(2.6—59.6)8.7
(0.9—45.5)39.7
(6.7—85.9)17.1
(0.9—74.7)20.6
(0.5—76)22.8
(3.9—64)15.4
(0.4—67.4)21.4
(0.3—74.1)19.8
(1.4—65.9)北方须鳅Carassius auratus 17
(1—49.9)14.1
(3.1—42.5)12.5
(3.1—35)36.2
(12.1—74.3)20.1
(2.4—64.6)18
(0.7—51.5)23.7
(11.6—55.1)12.6
(0.9—39.5)18.9
(0.7—53.1)26.8
(2.5—64.9)泥鳅Misgurnus anguillicaudatus 24.2
(0.5—77)7.5
(0.6—32.1)22.3
(1.3—70.1)23.1
(2.1—73)23
(0.9—86.2)22.4
(0.6—82.3)17.7
(2.3—60.5)16.7
(0.3—73.4)19.7
(0.3—74.6)23.5
(1.1—73)宽鳍鱲Zacco platypus 12.1
(0.4—50.2)27.4
(4.2—70.4)9.5
(0.7—52.4)33.3
(5—84.1)17.7
(1—74.2)15.6
(0.4—61.2)17.6
(4.1—50.8)10.8
(0.5—46.5)18.3
(0.3—77.2)37.6
(3.1—77.8)鲢Hypophthalmichthys molitrix 18.7
(0.5—71.5)15.9
(1.1—56.8)13.3
(1.1—54.6)35.1
(3.3—85.3)17
(0.8—74.9)拉氏鱥Rhynchocypris lagowskii 12.1
(0.4—59.4)20.5
(2.4—63.4)9.5
(0.9—53.1)37.7
(4.4—86.4)20.3
(1—75.1)20.2
(0.4—80.2)11.2
(1.9—41)11.3
(0.4—47)18.9
(0.3—73.5)38.4
(2.6—83.9)抚顺Gobio fushunensis 21.8
(0.5—80)20.6
(1.6—72.1)18.1
(0.3—84.9)22.5
(0.3—81.1)17
(0.6—71.6)兴凯银Squalidus chankaensis 9.6
(0.4—59.4)14.3
(0.8—58.1)6.7
(0.5—39)52.6
(5.5—94.9)16.7
(0.6—70)小黄䱂Micropercops swinhonis 14.3
(0.4—67.5)28.3
(2.9—79.2)9.6
(0.7—53.7)32
(2.7—89.4)15.7
(0.9—69.1)14.8
(0.4—62.1)50.8
(16.6—87.5)10.1
(0.3—47.9)14.5
(0.3—63.2)9.8
(0.5—36.3)纹缟虾虎鱼Tridentiger trigonocephalus 16.7
(0.5—66.5)44.7
(11.1—86.5)11.1
(0.3—50.9)16.5
(0.3—68.9)11.1
(0.5—40.8) -
[1] 殷名称. 鱼类生态学 [M]. 北京: 中国农业出版社, 1995: 231-236. Yin M C. Fish Ecology [M]. Beijing: China Agriculture Press, 1995: 231-236.
[2] Lindeman R L. The trophic-dynamic aspect of ecology [J]. Ecology, 1942, 23(4): 399-417. doi: 10.2307/1930126
[3] Pimm S L. Food Webs [M]. London: Chapman and Hall, 1982: 1-11.
[4] Belgrano A, Scharler U M, Dunne J, et al. Aquatic Food Webs: An Ecosystem Approach [M]. Oxford: Oxford University Press, 2004: 1-66.
[5] Kwak I S, Park Y S. Food chains and food webs in aquatic ecosystems [J]. Applied Sciences, 2020, 10(14): 5012. doi: 10.3390/app10145012
[6] 高小迪, 陈新军, 李云凯. 水生食物网研究方法的发展和应用 [J]. 中国水产科学, 2018, 25(6): 1347-1360. doi: 10.3724/SP.J.1118.2018.17334 Gao X D, Chen X J, Li Y K. A review on the methods used in aquatic food web research: development and applications [J]. Journal of Fishery Sciences of China, 2018, 25(6): 1347-1360. doi: 10.3724/SP.J.1118.2018.17334
[7] 杨蕊, 韩东燕, 高春霞, 等. 浙江南部近海前肛鳗营养生态位变化研究——基于稳定同位素技术 [J]. 生态学报, 2022, 42(23): 9796-9807. Yang R, Han D Y, Gao C X, et al. Chang of trophic niche of Dysomma anguillare in the offshore waters of southern Zhejiang by stable isotope analysis [J]. Acta Ecologica Sinica, 2022, 42(23): 9796-9807.
[8] 彭彪彪, 王思凯, 赵峰, 等. 长江口盐沼湿地3种亚生境中国花鲈的碳、氮稳定同位素特征及基础食源差异 [J]. 中国水产科学, 2022, 29(2): 295-303. Peng B B, Wang S K, Zhao F, et al. Carbon and nitrogen isotopic characteristics and food source differences of Lateolabrax maculatus in three sub habitats of salt marsh wetland in the Yangtze River Estuary [J]. Journal of Fishery Sciences of China, 2022, 29(2): 295-303.
[9] 郭雯, 黄林培, 王明果, 等. 不同组织碳、氮元素含量和同位素分馏特征研究——以抚仙湖草鱼、鱇浪白鱼为例 [J]. 中国环境科学, 2022, 42(1): 345-355. doi: 10.19674/j.cnki.issn1000-6923.2022.0013 Guo W, Huang L P, Wang M G, et al. Carbon and nitrogen contents and isotopic fractionation in different tissues of Ctenopharyngodon idellus and Anabarilius grahami in Fuxian Lake [J]. China Environmental Science, 2022, 42(1): 345-355. doi: 10.19674/j.cnki.issn1000-6923.2022.0013
[10] 王晨. 水文变化对巴松错食物源及食物网特征的影响 [D]. 武汉: 华中农业大学, 2020: 1-14. Wang C. Effects of hydrological variation on food organisms and food webs in lake Basomtso [D]. Wuhan: Huazhong Agriculture University, 2020: 1-14.
[11] 叶学瑶, 任泷, 匡箴, 等. 基于稳定同位素技术的阳澄湖鱼类群落营养结构研究 [J]. 中国水产科学, 2021, 28(6): 703-714. Ye X Y, Ren L, Kuang Z, et al. Analysis of the trophic structure of fish populations in Yangcheng Lake based on stable isotope technology [J]. Journal of Fishery Sciences of China, 2021, 28(6): 703-714.
[12] 赵冬福, 任泷, 任可成, 等. 梅梁湾鲢鳙生态增殖区内外食物网结构差异 [J]. 中国水产科学, 2022, 29(11): 1601-1611. Zhao D F, Ren L, Ren K C, et al. Differences in the structure of food webs inside and outside the ecological stocking area of silver carp and bighead carp in the Meiliang Bay [J]. Journal of Fishery Sciences of China, 2022, 29(11): 1601-1611.
[13] 李学梅, 朱挺兵, 王旭歌, 等. 基于稳定同位素技术的长湖鱼类营养结构研究 [J]. 生物资源, 2021, 43(6): 545-551. Li X M, Zhu T B, Wang X G, et al. Study on trophic structure of fish communities in Changhu Lake based on stable carbon and nitrogen isotopes [J]. Biotic Resources, 2021, 43(6): 545-551.
[14] 霍堂斌, 姜作发, 马波, 等. 应用同位素分析黑龙江中游主要鱼类营养层次 [J]. 淡水渔业, 2013, 43(2): 3-8. Huo T B, Jiang Z F, Ma B, et al. Study on trophic level of main fishes in the middle reach of Heilongjiang River by stable carbon and nitrogen isotopes analysis [J]. Freshwater Fisheries, 2013, 43(2): 3-8.
[15] 温周瑞, 熊鹰, 徐军, 等. 太湖贡湖湾食物网特征研究 [J]. 水生生物学报, 2016, 40(1): 131-138. Wen Z R, Xiong Y, Xu J, et al. The studies on the structures of the food web and the trophic relationships in the Gonghu Bay of the Taihu Lake [J]. Acta Hydrobiologica Sinica, 2016, 40(1): 131-138.
[16] Arechavala-Lopez P, Fernandez-Jover D, Black K D, et al. Differentiating the wild or farmed origin of Mediterranean fish: a review of tools for sea bream and sea bass [J]. Reviews in Aquaculture, 2013, 5(3): 137-157. doi: 10.1111/raq.12006
[17] Hilgendag I R, Swanson H K, Lewis C W, et al. Mercury biomagnification in benthic, pelagic, and benthopelagic food webs in an Arctic marine ecosystem [J]. Science of the Total Environment, 2022(841): 156424.
[18] Wang X N, Ding H Y, He X G, et al. Assessing fish species tolerance in the Huntai River Basin, China: biological traits versus weighted averaging approaches [J]. Water, 2018, 10(12): 1843. doi: 10.3390/w10121843
[19] 刘猛, 渠晓东, 彭文启, 等. 浑太河流域鱼类生物完整性指数构建与应用 [J]. 环境科学研究, 2016, 29(3): 343-352. Liu M, Qu X D, Peng W Q, et al. Development and application of a fish-based index of biological integrity for the Hun-Tai River Basin [J]. Research of Environmental Sciences, 2016, 29(3): 343-352.
[20] 解玉浩. 东北地区淡水鱼类 [M]. 沈阳: 辽宁科学技术出版社, 2007: 1-483. Xie Y H. Freshwater Fishes in Northeast Region of China [M]. Shenyang: Liaoning Science and Technology Publishing House, 2007: 1-483.
[21] 魏锦宏, 谭春阳, 宋开山, 等. 2000—2010年浑太河流域土地利用与景观格局变化研究 [J]. 林业资源管理, 2014(1): 98-103. Wei J H, Tan C Y, Song K S, et al. Study on land use and landscape shifting in Huntai River Basin from 2000 to 2010 [J]. Forest Resources Management, 2014(1): 98-103.
[22] 黄荣. 辽河流域河流生态环境特征及其分类研究 [D]. 沈阳: 辽宁大学, 2015: 4-64. Huang R, Research on the river ecology environment and river classification in Liaohe River Basin [D]. Shenyang: Liaoning University, 2015: 4-64.
[23] 李尧, 刘建卫, 秦国帅, 等. 浑太流域水质演变特征及污染源解析 [J]. 中国农村水利水电, 2021(8): 14-17,22. Li Y, Liu J W, Qin G S, et al. Water quality evolution characteristics and pollution source analysis in Huntai River Basin [J]. China Rural Water and Hydropower, 2021(8): 14-17,22.
[24] 张杰, 苏航, 盛楚涵, 等. 浑太河河流生态系统完整性评价体系的构建 [J]. 环境科学研究, 2020, 33(2): 363-374. Zhang J, Su H, Sheng C H, et al. Construction of an evaluation system to assess the ecosystem integrity of the Hun-Tai River [J]. Research of Environmental Sciences, 2020, 33(2): 363-374.
[25] 李柳阳, 邵田田, 张鑫, 等. 伊洛河和浑太河春季水体光学吸收特征的对比 [J]. 环境科学, 2018, 39(9): 4122-4131. Li L Y, Shao T T, Zhang X, et al. Comparative characteristics of optical absorption in waters from Yiluo River and Huntai River in spring [J]. Environmental Science, 2018, 39(9): 4122-4131.
[26] Qu X D, Ren Z, Zhang M, et al. Sediment heavy metals and benthic diversities in Hun-Tai River, northeast of China [J]. Environmental Science and Pollution Research, 2017, 24(11): 10662-10673. doi: 10.1007/s11356-017-8642-0
[27] 张晏溧. 浑太河沉积物中重金属分布特征及其对大型底栖动物的影响 [D]. 重庆: 西南大学, 2012: 1-52. Zhang Y L. Distribution of heavy metals in sediments of Hun-Tai River and the impact on macroinvertebrate [D]. Chongqing: Southwest University, 2012: 1-52.
[28] 徐彩彩. 辽河流域河流分类与生境评价研究 [D]. 太原: 山西大学, 2015: 1-38. Xu C C. The study of river classification and river habitat assessment in Liaohe River Basin [D]. Taiyuan: Shanxi University, 2015: 1-38.
[29] 李艳利, 李艳粉, 李科. 不同尺度下人类活动对浑太河流域鱼类和大型底栖动物群落特征的影响 [J]. 环境科学研究, 2016, 29(8): 1145-1153. Li Y L, Li Y F, Li K. Relative influence of anthropogenic stressors on fish and macroinvertebrate communities at different scales in Huntai Rivers [J]. Research of Environmental Sciences, 2016, 29(8): 1145-1153.
[30] 徐军, 王玉玉, 王康, 等. 水域生态学中生物稳定同位素样品采集、处理与保存 [J]. 水生生物学报, 2020, 44(5): 989-997. Xu J, Wang Y Y, Wang K, et al. Protocols for sample collection, pretreatment and preservation of aquatic organisms in stable isotope ecology [J]. Acta Hydrobiologica Sinica, 2020, 44(5): 989-997.
[31] Post D M, Pace M L, Hairston N G. Ecosystem size determines food-chain length in lakes [J]. Nature, 2000, 405(6790): 1047-1049. doi: 10.1038/35016565
[32] Layman C A, Arrington D A, Montaña C G, et al. Can stable isotope ratios provide for community-wide measures of trophic structure [J]? Ecology, 2007, 88(1): 42-48. doi: 10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2
[33] 巴家文, 邓华堂, 段辛斌, 等. 应用稳定性同位素(δ13C、δ15N)技术研究长江中游干流主要鱼类的营养级 [J]. 动物学杂志, 2015, 50(4): 537-546. Ba J W, Deng H T, Duan X B, et al. Trophic level analysis on main fish species in the middle reaches of Yangtze River by δ13C and δ15N analysis [J]. Chinese Journal of Zoology, 2015, 50(4): 537-546.
[34] 邓华堂, 段辛斌, 刘绍平, 等. 大宁河下游主要鱼类营养结构的时空变化 [J]. 生态学报, 2014, 34(23): 7110-7118. Deng H T, Duan X B, Liu S P, et al. Temporal and spatial variations in the trophic structure of key species in downstream of the Daning River [J]. Acta Ecologica Sinica, 2014, 34(23): 7110-7118.
[35] 周正, 黄宇波, 王斌梁, 等. 运用稳定同位素技术分析三峡坝前水域的食物网结构 [J]. 生态科学, 2020, 39(5): 82-90. Zhou Z, Huang Y B, Wang B L, et al. The analysis of food web structure in the area in front of the Three Gorges Dam using the stable isotope technology [J]. Ecological Science, 2020, 39(5): 82-90.
[36] Reckerth A, Stichler W, Schmidt A, et al. Long-term data set analysis of stable isotopic composition in German rivers [J]. Journal of Hydrology, 2017(552): 718-731.
[37] 李斌, 徐丹丹, 吴迪, 等. 基于C、N同位素技术的河流食物网基础碳源研究进展 [J]. 核农学报, 2017, 31(5): 1029-1035. Li B, Xu D D, Wu D, et al. Research on carbon sources of river food webs based on the carbon and nitrogen stable isotopic technique [J]. Journal of Nuclear Agricultural Sciences, 2017, 31(5): 1029-1035.
[38] Xie J, Wang C Y, Liu L, et al. Assessment of aquatic ecological health based on the characteristics of the fish community structures of the Hun River Basin, Northeastern China [J]. Water, 2023, 15(3): 501. doi: 10.3390/w15030501
[39] Wang C Y, Shao J, Ma B S, et al. Longitudinal patterns in fish assemblages after long-term ecological rehabilitation in the Taizi River, Northeastern China [J]. Sustainability, 2022, 14(22): 14973. doi: 10.3390/su142214973
[40] 徐军, 张敏, 谢平. 氮稳定同位素基准的可变性及对营养级评价的影响 [J]. 湖泊科学, 2010, 22(1): 8-20. doi: 10.18307/2010.0102 Xu J, Zhang M, Xie P. Variability of stable nitrogen isotopic baselines and its consequence for trophic modeling [J]. Journal of Lake Sciences, 2010, 22(1): 8-20. doi: 10.18307/2010.0102
[41] Sha Y C, Su G H, Zhang P Y, et al. Diverse dietary strategy of Lake Anchovy Coilia ectenes taihuensis in lakes with different trophic status [J]. Journal of Ichthyology, 2015, 55(6): 866-873. doi: 10.1134/S0032945215060193
[42] 曾艳艺, 杨婉玲, 李海燕, 等. 珠江河网典型段基础碳源对水生动物的贡献 [J]. 生态学杂志, 2018, 37(8): 2403-2410. Zeng Y Y, Yang W L, Li H Y, et al. Contribution of basal carbon sources to aquatic animals in typical sections of the Pearl River [J]. Chinese Journal of Ecology, 2018, 37(8): 2403-2410.
[43] 尹洪洋, 朱文涛, 马文刚, 等. 三亚蜈支洲岛海洋牧场区域夏季食物网研究 [J]. 生态学报, 2022, 42(8): 3241-3253. Yin H Y, Zhu W T, Ma W G, et al. The summer food web in the marine ranch area of Wuzhizhou Island in Sanya, Hainan [J]. Acta Ecologica Sinica, 2022, 42(8): 3241-3253.
[44] 张远, 陈立斌, 渠晓东, 等. 辽宁太子河大型水生植物的群落特征及其与环境的关系 [J]. 植物科学学报, 2011, 29(5): 552-560. Zhang Y, Chen L B, Qu X D, et al. Environmental factors and community characteristics of aquatic macrophytes in Taizi River Tributaries of Liaoning Province [J]. Plant Science Journal, 2011, 29(5): 552-560.
[45] 刘佳. 浑河中上游近60年水文气象要素变化特征及周期演变分析 [J]. 水利技术监督, 2018(4): 242-247. Liu J. Study on changes of hydrological and meteorological factors in the upper and middle reaches of Hunhe river in recent 60 years [J]. Technical Supervision in Water Resources, 2018(4): 242-247.
[46] 曹永强, 张亮亮, 袁立婷. 辽宁省植被生长季NDVI对气候因子的响应 [J]. 植物学报, 2018, 53(1): 82-93. Cao Y Q, Zhang L L, Yuan L T. Correlation analysis of normalized difference vegetation index (NDVI) and climatic factors in the vegetative growing season in Liaoning Province [J]. Chinese bulletin of botany, 2018, 53(1): 82-93.