DISTRIBUTION PATTERNS AND HABITAT ENVIRONMENTAL CHARACTERISTICS OF BRACHYMYSTAX TSINLINGENSIS LARVAL FISH
-
摘要:
为揭示秦岭细鳞鲑(Brachymystax tsinlingensis)仔稚鱼分布模式及其环境驱动因子, 从而推测产卵场并为该物种早期资源保护提供研究基础。研究选取陕西陇县秦岭细鳞鲑国家级自然保护区内蒲峪河及其支流木拉石沟河作为研究样地, 并设定100个样点(2 m×2 m)作为详细抽样调查生境。研究发现: (1)分布在支流的仔稚鱼数量显著多于干流(P<0.05); (2)仔稚鱼种群数量随海拔变化呈先增后降的趋势, 在干流与支流的最适分布海拔分别是1460和1446 m; (3)仔稚鱼分布的环境驱动因子在干流与支流不尽相同, 干流仔稚鱼数量与流速和青苔数量显著负相关(P<0.05)、与石蛾幼虫数量显著正相关(P<0.05), 支流仔稚鱼数量与流速显著负相关(P<0.05)、与蝌蚪和石蛾幼虫数量显著正相关(P<0.05)。研究揭示了秦岭细鳞鲑仔稚鱼分布模式及其栖息地环境特征, 并构建了栖息地各类环境驱动因子关系网络热图。研究结果可为秦岭细鳞鲑仔稚鱼种群调研与监测、栖息地适宜性评估、保护及生态修复提供必要且亟需的科学依据。
Abstract:Qinling lenok Brachymystax tsinlingensis, a threatened salmonid species endemic to the Qinling Mountain Range, is currently experiencing a population decline and holds the status of a second-class state-protected wild animal in China Red Data Book of Endangered Animals. Scientific and effective investigation and assessment of the population size of this species have been lacking for an extended period, along with systematic research on the distribution patterns of its larval fish and the environmental characteristics of its habitats. This study aims to elucidate the distribution patterns of larval B. tsinlingensis and the environmental drivers, thereby providing a research basis for early resource conservation efforts for the species. In this study, the trunk stream Puyu River and its tributary Mulashigou River in the Qinling Lenok National Nature Reserve, Longxian, Shaanxi Province, China, were selected as the study sites. 100 sample squares (2 m×2 m) were set up as detailed sampling habitats. The results showed that: (1) The number of larval B. tsinlingensis distributed in tributary was significantly higher than that in the trunk stream (P<0.05). (2) The population size of larval B. tsinlingensis showed an increasing and then decreasing trend with altitude. The optimal distribution altitudes in the trunk stream and tributary were 1460 and 1446 m, respectively. (3) Environmental drivers influencing larval B. tsinlingensis distribution varied between the trunk stream and tributary, with larval B. tsinlingensis abundance in trunk stream significantly negatively correlated (P<0.05) with flow velocity and green moss abundance, while positively correlated (P<0.05) with larval caddis worm abundance. In contrast, larval B. tsinlingensis abundance was significantly negatively correlated (P<0.05) with flow velocity and positively correlated (P<0.05) with tadpole and larval caddis worm abundance in the tributary. This study revealed the distribution patterns of larval B. tsinlingensis and the environmental characteristics of their habitats. Additionally, it constructed a heat map illustrating the relationships between various environmental drivers in larval B. tsinlingensis habitats. These findings will provide the necessary scientific basis for the investigation and monitoring of Qinling lenok populations, as well as for habitat suitability assessment, conservation, and ecological restoration for this species.
-
-
图 6 底质对秦岭细鳞鲑仔稚鱼数量分布的影响(平均值±标准误)
图中小写字母相同表示干流不同底质间无显著差异(P>0.05), 大写字母不同表示支流不同底质间差异显著(P<0.05)
Figure 6. Effects of substrate on the number of larval Brachymystax tsinlingensis population (mean±SE)
The same lowercase letter indicates no significant difference among different substrates in the trunk stream (P>0.05), and different capital letters indicate significant differences among different substrates in the tributary (P<0.05)
图 7 干流秦岭细鳞鲑仔稚鱼栖息地不同环境驱动因子之间的相关性
1. 秦岭细鳞鲑仔鱼Brachymystax tsinlingensis; 2. 海拔Altitude; 3. 温度Temperature; 4. 流速Flow velocity; 5. 河宽River width; 6. 河深River depth; 7. 拉氏鱥Phoxinus lagowskii; 8. 蝌蚪Tadpole; 9. 石蛾幼虫Caddis worm; 10. 鳅Cobitidae; 11. 青苔Green moss; 12. 野草Weed*代表不同环境驱动因子之间显著相关(*P<0.05, **P<0.01, ***P<0.001); 下同
Figure 7. Correlations in different environmental factors of larval Brachymystax tsinlingensis habitat in trunk stream
* represent significant correlations in different environmental drivers (*P<0.05, **P<0.01, ***P<0.001); the same applies below
表 1 环境驱动因子与仔稚鱼数量分布的相关性水平(P值)
Table 1 Level of correlation (P-value) between environmental factor and the number of larval Brachymystax tsinlingensis population
海拔
Altitude温度
Temperature流速
Flow
velocity河宽
River
width河深
River
depth拉氏鱥
Phoxinus
lagowskii蝌蚪
Tadpole石蛾幼虫
Caddis
worm鳅
Cobitidae青苔
Green
moss野草
Weed干流
Trunk stream0.025 0.031 0.039 0.455 0.075 0.820 0.306 <0.001 0.566 0.001 0.405 支流
Tributary<0.001 <0.001 0.005 0.948 0.363 0.058 0.013 0.049 0.314 0.900 0.748 -
[1] Rodriguez J M. Temporal and cross-shelf distribution of ichthyoplankton in the central Cantabrian Sea [J]. Estuarine,Coastal and Shelf Science, 2008, 79(3): 496-506. doi: 10.1016/j.ecss.2008.05.010
[2] 万瑞景, 曾定勇, 卞晓东, 等. 东海生态系统中鱼卵、仔稚鱼种类组成、数量分布及其与环境因素的关系 [J]. 水产学报, 2014, 38(9): 1375-1398. Wan R J, Zeng D Y, Bian X D, et al. Species composition and abundance distribution pattern of ichthyoplankton and their relationship with environmental factors in the East China Sea ecosystem [J]. Journal of Fisheries of China, 2014, 38(9): 1375-1398.
[3] Li Z G, Ye Z J, Wan R. Spatial and seasonal patterns of ichthyoplankton assemblages in the Haizhou Bay and its adjacent waters of China [J]. Journal of Ocean University of China, 2015, 14(6): 1041-1052. doi: 10.1007/s11802-015-2603-3
[4] 李跃飞, 李新辉, 杨计平, 等. 珠江干流长洲水利枢纽蓄水后珠江鳡鱼(Elopichthys bambusa)早期资源现状 [J]. 湖泊科学, 2015, 27(5): 917-924. doi: 10.18307/2015.0519 Li Y F, Li X H, Yang J P, et al. Status of Elopichthys bambusa recruitment stock after the impoundment of Changzhou Hydro-junction in Pearl River [J]. Journal of Lake Sciences, 2015, 27(5): 917-924. doi: 10.18307/2015.0519
[5] 李新丰, 丁隆强, 何晓辉, 等. 长江安庆段仔稚鱼群落特征调查研究 [J]. 水生生物学报, 2019, 43(6): 1300-1310. Li X F, Ding L Q, He X H, et al. The community characteristics of larvae and juvenile fish in the Anqing section of the Yangtze River [J]. Acta Hydrobiologica Sinica, 2019, 43(6): 1300-1310.
[6] 代培, 周游, 任鹏, 等. 太湖五里湖仔稚鱼时空分布特征 [J]. 水生生物学报, 2020, 44(3): 577-586. Dai P, Zhou Y, Ren P, et al. Spatial and temporal distributions of fish larvae and juveniles in Lake Wuli, Lake Taihu [J]. Acta Hydrobiologica Sinica, 2020, 44(3): 577-586.
[7] Planque B, Loots C, Petitgas P, et al. Understanding what controls the spatial distribution of fish populations using a multi-model approach [J]. Fisheries Oceanography, 2011, 20(1): 1-17. doi: 10.1111/j.1365-2419.2010.00546.x
[8] Smialek N, Pander J, Geist J. Environmental threats and conservation implications for Atlantic salmon and brown trout during their critical freshwater phases of spawning, egg development and juvenile emergence [J]. Fisheries Management and Ecology, 2021, 28(5): 437-467. doi: 10.1111/fme.12507
[9] 吴金明, 杨焕超, 邵俭, 等. 秦岭细鳞鲑栖息地环境特征研究 [J]. 水生生物学报, 2017, 41(1): 214-219. Wu J M, Yang H C, Shao J, et al. Habitat environmental characteristics of Brachymystax lenok tsinlingensis [J]. Acta Hydrobiologica Sinica, 2017, 41(1): 214-219.
[10] 宋超, 刘媛媛, 吕杨, 等. 长江口有明银鱼仔鱼的分布及其与环境因子的关系 [J]. 海洋渔业, 2015, 37(4): 318-324. Song C, Liu Y Y, Lv Y, et al. Distribution of Salanx ariakensis larvae in the Yangtze Estuary and its relationship with environmental factors [J]. Marine Fisheries, 2015, 37(4): 318-324.
[11] Lacoursière-Roussel A, Côté G, Leclerc V, et al. Quantifying relative fish abundance with eDNA: a promising tool for fisheries management [J]. Journal of Applied Ecology, 2016, 53(4): 1148-1157. doi: 10.1111/1365-2664.12598
[12] Lee H, Choi J H, Moon S Y, et al. Small-scale spatiotemporal pattern in the spawning of Pacific herring (Clupea pallasii) in the Jinhae Bay, Korea, estimated using hydroacoustic survey [J]. Applied Sciences, 2021, 11(5): 2058. doi: 10.3390/app11052058
[13] Ferreira C E L, Goncçalves J E A, Coutinho R. Community structure of fishes and habitat complexity on a tropical rocky shore [J]. Environmental Biology of Fishes, 2001, 61(4): 353-369. doi: 10.1023/A:1011609617330
[14] Zhao Y H, Zhang C G. Threatened fishes of the world: Brachymystax lenok tsinlingensis Li, 1966 (Salmonidae) [J]. Environmental Biology of Fishes, 2009, 86(1): 11-12. doi: 10.1007/s10641-008-9337-7
[15] Xia J G, Ma Y J, Fu C, et al. Effects of temperature acclimation on the critical thermal limits and swimming performance of Brachymystax lenok tsinlingensis: a threatened fish in Qinling Mountain region of China [J]. Ecological Research, 2017, 32(1): 61-70. doi: 10.1007/s11284-016-1418-z
[16] Xia J G, Peng M R, Huang Y, et al. Acute warming in winter eliminates chemical alarm responses in threatened Qinling lenok Brachymystax lenok tsinlingensis [J]. Science of the Total Environment, 2021(764): 142807. doi: 10.1016/j.scitotenv.2020.142807
[17] 彭敏锐, 郑雪丽, 李平, 等. 温度和重复测定对秦岭细鳞鲑快速启动反应、游泳性能及力竭后代谢特征的影响 [J]. 生态学报, 2021, 41(6): 2505-2514. Peng M R, Zheng X L, Li P, et al. Effects of temperature and repeat measurement on fast-start, swimming performance and post-exhaustion metabolic characteristics in Brachymystax lenok tsinlingensis [J]. Acta Ecologica Sinica, 2021, 41(6): 2505-2514.
[18] 夏继刚, 陈梅, 肖静, 等. 秦岭细鳞鲑代谢及低氧耐受能力对温度驯化的响应 [J]. 水生生物学报, 2017, 41(1): 201-205. Xia J G, Chen M, Xiao J, et al. The metabolism and hypoxia tolerance of Brachymystax lenok tsinlingensis in relation to temperature acclimation [J]. Acta Hydrobiologica Sinica, 2017, 41(1): 201-205.
[19] 李平, 王丰, 问思恩. 秦岭细鳞鲑亲鱼培育和人工繁育技术研究 [J]. 上海海洋大学学报, 2015, 24(6): 841-846. Li P, Wang F, Wen S E. Study on parent fish cultivation and artificial propagation of Brachymystax lenok tsinlingensis [J]. Journal of Shanghai Ocean University, 2015, 24(6): 841-846.
[20] 张艳萍, 王太, 杜岩岩, 等. 秦岭细鳞鲑人工繁育群体与野生群体遗传变异分析 [J]. 水生生物学报, 2014, 38(5): 828-833. Zhang Y P, Wang T, Du Y Y, et al. Analysis of the genetic diversity of cultured and wild Brachymystax lenok tsinlingensis populations based on mtDNA D-loop and Cyt b [J]. Acta Hydrobiologica Sinica, 2014, 38(5): 828-833.
[21] 张艳萍, 杜岩岩, 王太, 等. 秦岭细鳞鲑群体遗传结构 [J]. 生态学报, 2014, 34(17): 4950-4956. Zhang Y P, Du Y Y, Wang T, et al. Population genetic structure of Brachymystax lenok tsinlingensis as inferred from mtDNA D-loop sequence [J]. Acta Ecologica Sinica, 2014, 34(17): 4950-4956.
[22] 苟妮娜, 靳铁治, 张建禄, 等. 黑河国家级自然保护区秦岭细鳞鲑主要饵料生物——拉氏鱥种群特征及其季节变化 [J]. 西北农业学报, 2018, 27(9): 1258-1264. Gou N N, Jin T Z, Zhang J L, et al. Population characteristics and seasonal variation of Brachymystax lenok tsinlingensis’s main bait organism Lagowskiella lagowskii in national nature reserves of rare aquatic wildlife of Heihe River [J]. Acta Agriculturae Boreali-occidentalis Sinica, 2018, 27(9): 1258-1264.
[23] 龙建国, 张建云. 兼长角纹石蛾的生态特征 [J]. 生态学杂志, 2002, 21(3): 25-28. Long J G, Zhang J Y. Ecological characteristics of Amphipsyche proluta MacLachlan [J]. Chinese Journal of Ecology, 2002, 21(3): 25-28.
[24] 何云川, 杨贵军, 王新谱. 银川不同湿地陆生昆虫群落多样性与稳定性 [J]. 昆虫学报, 2018, 61(12): 1439-1452. He Y C, Yang G J, Wang X P. Diversity and stability of terrestrial insect community in different wetlands in Yinchuan, Ningxia, Northwest China [J]. Acta Entomologica Sinica, 2018, 61(12): 1439-1452.
[25] 胡燕利. 中国浙江毛翅目幼虫分类研究(昆虫纲: 毛翅目) [D]. 南京: 南京农业大学, 2019: 10-13. Hu Y L. Larval taxonomy of caddisfly in Zhejiang provinces, China (Insecta: Trichoptera) [D]. Nanjing: Nanjing Agricultural University, 2019: 10-13.
[26] Vahteri P, Mäkinen A, Salovius S, et al. Are drifting algal mats conquering the bottom of the Archipelago Sea, SW Finland [J]? AMBIO, 2000, 29(6): 338-343. doi: 10.1579/0044-7447-29.6.338
[27] Norkko J, Bonsdorff E, Norkko A. Drifting algal mats as an alternative habitat for benthic invertebrates: species specific responses to a transient resource [J]. Journal of Experimental Marine Biology and Ecology, 2000, 248(1): 79-104. doi: 10.1016/S0022-0981(00)00155-6
[28] Gaston K J. Global patterns in biodiversity [J]. Nature, 2000, 405(6783): 220-227. doi: 10.1038/35012228
[29] Askeyev A, Askeyev O, Yanybaev N, et al. River fish assemblages along an elevation gradient in the eastern extremity of Europe [J]. Environmental Biology of Fishes, 2017, 100(5): 585-596. doi: 10.1007/s10641-017-0588-z
[30] Li J, He Q X, Hua X, et al. Climate and history explain the species richness peak at mid-elevation for Schizothorax fishes (Cypriniformes: Cyprinidae) distributed in the Tibetan Plateau and its adjacent regions [J]. Global Ecology and Biogeography, 2009, 18(2): 264-272. doi: 10.1111/j.1466-8238.2008.00430.x
[31] McCain C M. Global analysis of reptile elevational diversity [J]. Global Ecology and Biogeography, 2010, 19(4): 541-553. doi: 10.1111/j.1466-8238.2010.00528.x
[32] Honda K, Kagiwada H, Tojo N, et al. Riverine environmental characteristics and seasonal habitat use by adult Sakhalin taimen Hucho perryi [J]. Journal of Fish Biology, 2010, 77(7): 1526-1541. doi: 10.1111/j.1095-8649.2010.02790.x
[33] Yoon J D, Kim J H, Jo H B, et al. Seasonal habitat utilization and movement patterns of the threatened Brachymystax lenok tsinlingensis in a Korean River [J]. Environmental Biology of Fishes, 2015, 98(1): 225-236. doi: 10.1007/s10641-014-0254-7
[34] Jonsson B, Jonsson N. A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow [J]. Journal of Fish Biology, 2009, 75(10): 2381-2447. doi: 10.1111/j.1095-8649.2009.02380.x
[35] Nislow K H, Armstrong J D. Towards a life-history-based management framework for the effects of flow on juvenile salmonids in streams and rivers [J]. Fisheries Management and Ecology, 2012, 19(6): 451-463. doi: 10.1111/j.1365-2400.2011.00810.x
[36] McHenry M J, Feitl K E, Strother J A, et al. Larval zebrafish rapidly sense the water flow of a predator’s strike [J]. Biology Letters, 2009, 5(4): 477-479. doi: 10.1098/rsbl.2009.0048
[37] Love S A, Phelps Q E, Tripp S J, et al. The importance of shallow-low velocity habitats to juvenile fish in the middle Mississippi River [J]. River Research and Applications, 2017, 33(3): 321-327. doi: 10.1002/rra.3075
[38] Riley W D, Maxwell D L, Pawson M G, et al. The effects of low summer flow on wild salmon (Salmo salar), trout (Salmo trutta) and grayling (Thymallus thymallus) in a small stream [J]. Freshwater Biology, 2009, 54(12): 2581-2599. doi: 10.1111/j.1365-2427.2009.02268.x